Linear sketching for Functions over Boolean Hypercube

Grigory Yaroslavtsev

(Indiana University, Bloomington)

http://grigory.us

with Sampath Kannan (U. Pennsylvania), Elchanan Mossel (MIT) and Swagato Sanyal (NUS)

F₂-Sketching

- Input $x \in \{0,1\}^n$
- Parity = Linear function over GF_2 : $\bigoplus_{i \in S} x_i$
- Deterministic linear sketch: set of k parities:

$$\ell(\mathbf{x}) = \bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \dots; \bigoplus_{i_k \in S_k} x_{i_k}$$

- E.g. $x_4 \oplus x_2 \oplus x_{42}$; $x_{239} \oplus x_{30}$; x_{566} ;...
- Randomized linear sketch: distribution over k parities (random $S_1, S_2, ..., S_k$):

$$\ell(\mathbf{x}) = \bigoplus_{i_1 \in \mathbf{S_1}} x_{i_1}; \bigoplus_{i_2 \in \mathbf{S_2}} x_{i_2}; \dots; \bigoplus_{i_k \in \mathbf{S_k}} x_{i_k}$$

Linear sketching over \mathbb{F}_2

- Given $f(x): \{0,1\}^n \to \{0,1\}$
- Question:

Can one recover f(x) from a small ($k \ll n$) linear sketch over \mathbb{F}_2 ?

- Allow randomized computation (99% success)
 - Probability over choice of random sets
 - Sets are known at recovery time
 - Recovery is deterministic (w.l.o.g)

Motivation: Distributed Computing

Distributed computation among M machines:

$$-x=(x_1,x_2,...,x_M)$$
 (more generally $x=\bigoplus_{i=1}^M x_i$)

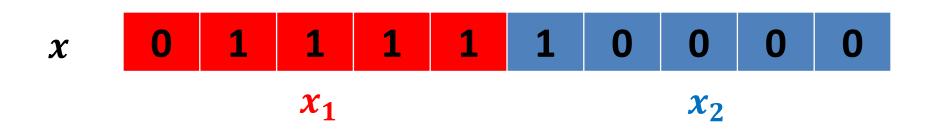
— M machines can compute sketches locally:

$$\ell(x_1), \ldots, \ell(x_M)$$

– Send them to the coordinator who computes:

$$\ell_i(x) = \ell_i(x_1) \oplus \cdots \oplus \ell_i(x_M)$$
 (coordinate-wise XORs)

- Coordinator computes f(x) with kM communication



Motivation: Streaming

x generated through a sequence of updates

• Updates i_1, \dots, i_m : update i_t flips bit at position i_t

 $\ell(x)$ allows to recover f(x) with k bits of space

Frequently Asked Questions

- **Q**: Why \mathbb{F}_2 updates instead of ± 1 ?
 - AFAIK it doesn't help if you know the sign
- Q: Some applications?
 - Essentially all dynamic graph streaming algorithms can be based on L_0 -sampling
 - L_0 -sampling can be done optimally using \mathbb{F}_2 sketching [Kapralov et al. FOCS'17]
- Q: Why not allow approximation?
 - Stay tuned

Deterministic vs. Randomized

Fact: f has a deterministic sketch if and only if

$$-f = g(\bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \dots; \bigoplus_{i_k \in S_k} x_{i_k})$$

– Equivalent to "f has Fourier dimension k"

Randomization can help:

- $-\mathbf{OR}: f(x) = x_1 \vee \cdots \vee x_n$
- Has "Fourier dimension" = n
- Pick $t = \log 1/\delta$ random sets S_1, \dots, S_t
- If there is j such that $\bigoplus_{i \in S_j} x_i = 1$ output 1, otherwise output 0
- Error probability 6

Fourier Analysis

- $f(x_1, ..., x_n): \{0,1\}^n \to \{0,1\}$
- Notation switch:
 - $-0 \rightarrow 1$
 - $-1 \rightarrow -1$
- $f': \{-1,1\}^n \to \{-1,1\}$
- Functions as vectors form a vector space:

$$f: \{-1,1\}^n \to \{-1,1\} \Leftrightarrow f \in \{-1,1\}^{2^n}$$

• Inner product on functions = "correlation":

$$\langle f, g \rangle = 2^{-n} \sum_{x \in \{-1,1\}^n} f(x) g(x) = \mathbb{E}_{x \sim \{-1,1\}^n} [f(x) g(x)]$$

$$||f||_2 = \sqrt{\langle f, f \rangle} = \sqrt{\mathbb{E}_{x \sim \{-1,1\}^n}[f^2(x)]} = 1$$
 (for Boolean only)

"Main Characters" are Parities

- For $S \subseteq [n]$ let character $\chi_S(x) = \prod_{i \in S} x_i$
- Fact: Every function $f: \{-1,1\}^n \to \{-1,1\}$ is uniquely represented as a multilinear polynomial

$$f(x_1, ..., x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x)$$

- $\hat{f}(S)$ a.k.a. Fourier coefficient of f on S
- $\widehat{f}(S) \equiv \langle f, \chi_S \rangle = \mathbb{E}_{x \sim \{-1,1\}^n} [f(x) \chi_S(x)]$
- $\sum_{S} \hat{f}(S)^2 = 1$ (Parseval)

Fourier Dimension

- Fourier sets $S \equiv \text{vectors in } \mathbb{F}_2^n$
- "f has Fourier dimension k" = a k-dimensional subspace in Fourier domain has all weight

$$\sum_{\mathbf{S}\subseteq A_{\mathbf{k}}}\widehat{f}(\mathbf{S})^2=1$$

$$f(x_1, \dots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x) = \sum_{S \subseteq A_k} \hat{f}(S) \chi_S(x)$$

- Pick a basis S_1, \dots, S_k in A_k :
 - Sketch: $\chi_{S_1}(x)$, ..., $\chi_{S_k}(x)$
 - For every $S \in A_k$ there exists $Z \subseteq [k]$: $S = \bigoplus_{i \in Z} S_i$ $\chi_S(x) = \bigoplus_{i \in Z} \chi_{S_i}(x)$

Deterministic Sketching and Noise

Suppose "noise" has a bounded norm

$$f = k$$
-dimensional \bigoplus "noise"

- Sparse Fourier noise (via [Sanyal'15])
 - $-\widehat{f} = k$ -dim. + "Fourier L_0 -noise"
 - $-\left|\widehat{noise}\right|_0 = \#$ non-zero Fourier coefficients of noise (aka "Fourier sparsity")
 - Linear sketch size: $\mathbf{k} + O(||\widehat{noise}||_0^{1/2})$
 - **Our work**: can't be improved even with randomness and even for uniform x, e.g for ``addressing function''.

How Randomization Handles Noise

- L_0 -noise in original domain (via hashing a la OR)
 - -f = k-dim. + " L_0 -noise"
 - Linear sketch size: \mathbf{k} + O($\log ||noise||_0$)
 - Optimal (but only existentially, i.e. $\exists f: ...$)
- L_1 -noise in the Fourier domain (via [Grolmusz'97])
 - $-\hat{f} = k$ -dim. + "Fourier L_1 -noise"
 - Linear sketch size: $\mathbf{k} + O(||\widehat{noise}||_{1}^{2})$
 - Example = k-dim. + small decision tree / DNF / etc.

Randomized Sketching: Hardness

- k -dimensional affine extractors require k:
 - f is an affine-extractor for dim. k if any restriction on a k-dim. affine subspace has values 0/1 w/prob. ≥ 0.1 each
 - Example (inner product): $f(x) = \bigoplus_{i=1}^{n/2} x_{2i-1}x_{2i}$
- Not γ -concentrated on k-dim. Fourier subspaces
 - For $\forall k$ -dim. Fourier subspace A:

$$\sum_{S \notin A} \hat{f}(S)^2 \ge 1 - \gamma$$

- Any k -dim. linear sketch makes error $\frac{1-\sqrt{\gamma}}{2}$
- Converse doesn't hold, i.e. concentration is not enough

Randomized Sketching: Hardness

- Not γ -concentrated on o(n)-dim. Fourier subspaces:
 - Almost all symmetric functions, i.e. $f(x) = h(\sum_i x_i)$
 - If not Fourier-close to constant or $\bigoplus_{i=1}^n x_i$
 - E.g. Majority (not an extractor even for $O(\sqrt{n})$)
 - Tribes (balanced DNF)
 - Recursive majority: $Maj^{\circ k} = Maj_3 \circ Maj_3 ... \circ Maj_3$

Approximate Fourier Dimension

- Not γ -concentrated on k-dim. Fourier subspaces
 - $\forall k$ -dim. Fourier subspace $A: \sum_{S \notin A} \widehat{f}(S)^2 \ge 1 \gamma$
 - Any k -dim. linear sketch makes error $\frac{1}{2}(1-\sqrt{\gamma})$
- Definition (Approximate Fourier Dimension)
 - $-\dim_{\gamma}(f) = \text{smallest } d \text{ such that } f \text{ is } \gamma \text{-concentrated}$ on some Fourier subspace of dimension d

$$\hat{f}(S_1 + S_3) \qquad \hat{f}(S_1 + S_2 + S_3)$$

$$\hat{f}(S_1) \qquad \hat{f}(S_2 + S_3)$$

$$\hat{f}(S_3) \qquad \hat{f}(S_2) \qquad \sum_{S \in A} \hat{f}(S)^2 \ge \gamma$$

Sketching over Uniform Distribution + Approximate Fourier Dimension

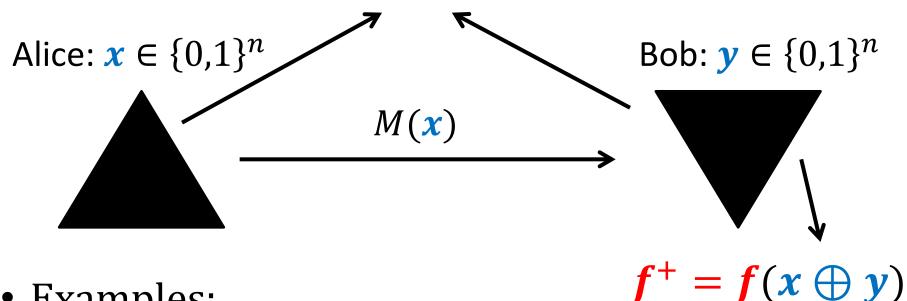
- Sketching error over **uniform distribution of** *x*.
- $\dim_{\epsilon}(f)$ -dimensional sketch gives error 1ϵ :
 - Fix dim_{ϵ}(f)-dimensional $A: \sum_{S \in A} \hat{f}(S)^2 \ge \epsilon$
 - Output: $g(x) = \operatorname{sign}(\sum_{S \in A} \hat{f}(S) \chi_{S}(x))$:

$$\Pr_{x \sim U(\{-1,1\}^n)} [g(x) = f(x)] \ge \epsilon \Rightarrow \text{error } 1 - \epsilon$$

- We show a basic refinement \Rightarrow error $\frac{1-\epsilon}{2}$
 - Pick θ from a carefully chosen distribution $\frac{1}{2}$
 - Output: $g_{\theta}(x) = \operatorname{sign}\left(\sum_{S \in A} \hat{f}(S) \chi_{S}(x) \theta\right)$

1-way Communication Complexity of **XOR-functions**

Shared randomness



- Examples:
 - $f(z) = OR_{i=1}^{n}(z_i) \Rightarrow f^+$: (not) Equality
 - $f(z) = (||z||_0 > d) \Rightarrow f^+$: Hamming Dist > d
- $R_{\epsilon}^{1}(f^{+})$ = min. |M| so that Bob's error prob. ϵ

Communication Complexity of XOR-functions

- Well-studied (often for 2-way communication):
 - [Montanaro, Osborne], ArXiv'09
 - [Shi, Zhang], QIC'09,
 - [Tsang, Wong, Xie, Zhang], FOCS'13
 - [O'Donnell, Wright, Zhao, Sun, Tan], CCC'14
 - [Hatami, Hosseini, Lovett], FOCS'16
- Connections to log-rank conjecture [Lovett'14]:
 - Even special case for XOR-functions still open

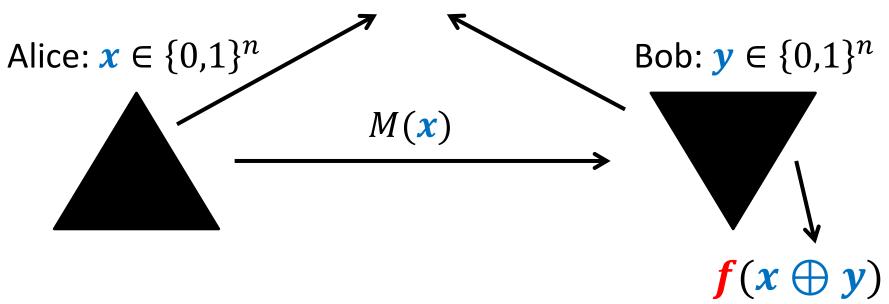
Deterministic 1-way Communication Complexity of XOR-functions

Alice: $x \in \{0,1\}^n$ M(x) $f^+ = f(x \oplus y)$

- $D^1(f) = \min.|M|$ so that Bob is always correct
- [Montanaro-Osborne'09]: $D^1(f) = D^{lin}(f)$
- $D^{lin}(f^+)$ = deterministic lin. sketch complexity of f^+
- $D^1(f) = D^{lin}(f^+)$ = Fourier dimension of f

1-way Communication Complexity of XOR-functions

Shared randomness



- $R_{\epsilon}^{1}(f)$ = min. |M| so that Bob's error prob. ϵ
- $R_{\epsilon}^{lin}(f^+)$ = rand. lin. sketch complexity (error ϵ)
- $R_{\epsilon}^{1}(f^{+}) \leq R_{\epsilon}^{lin}(f)$
- Conjecture: $R_{\epsilon}^{1}(f^{+}) \approx R_{\epsilon}^{lin}(f)$?

$$R_{\epsilon}^{1}(f^{+}) \approx R_{\epsilon}^{lin}(f)$$
?

As we show holds for:

- Majority, Tribes, recursive majority, addressing function
- Linear threshold functions
- (Almost all) symmetric functions
- Degree-d \mathbb{F}_2 -polynomials:

$$R_{5\epsilon}^{lin}(\mathbf{f}) = O(\mathbf{d} R_{\epsilon}^{1}(\mathbf{f}^{+}))$$

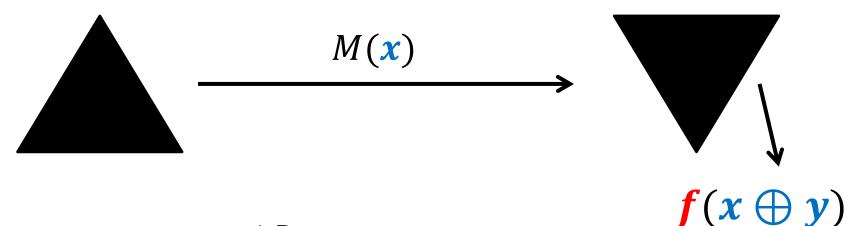
Analogous question for 2-way is wide open:

[HHL'16]
$$Q_{\epsilon}^{\bigoplus -dt}(\mathbf{f}) = poly(R_{\epsilon}(\mathbf{f}^+))$$
?

Distributional 1-way Communication under Uniform Distribution

Alice: $x \sim U(\{0,1\}^n)$

Bob: $y \sim U(\{0,1\}^n)$



- $R_{\epsilon}^{1}(\mathbf{f}) = \sup_{D} \mathfrak{D}_{\epsilon}^{1,D}(\mathbf{f})$
- $\mathfrak{D}_{\epsilon}^{1,U}(f) = \min.|M|$ so that Bob's error prob. ϵ is over the uniform distribution over (x, y)
- Enough to consider deterministic messages only
- Motivation: streaming/distributed with random input

Sketching over Uniform Distribution

Thm: If
$$\dim_{\epsilon}(f) = d - 1$$
 then $\mathfrak{D}_{\frac{1-\epsilon}{6}}^{1,U}(f^+) \ge \frac{d}{6}$.

• Optimal up to error as d-dim. linear sketch has error $\frac{1-\epsilon}{2}$

Weaker: If
$$\epsilon_2 > \epsilon_1$$
, $\dim_{\epsilon_1}(f) = \dim_{\epsilon_2}(f) = d - 1$ then: $\mathfrak{D}^{1,U}_{\delta}(f) \geq d$,

where $\delta = (\epsilon_2 - \epsilon_1)/4$.

Corollary: If $\hat{f}(\emptyset) < C$ for C < 1 then there exists d:

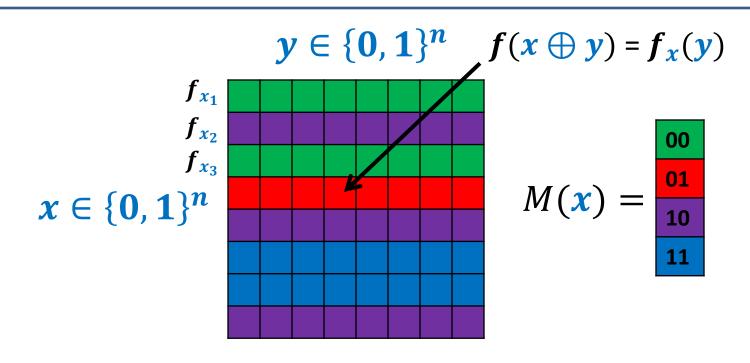
$$\mathfrak{D}_{\Theta\left(\frac{1}{n}\right)}^{1,U}(f) \geq \mathbf{d}.$$

Tight for the Majority function, etc.

$\mathfrak{D}_{\epsilon}^{1,U}$ and Approximate Fourier Dimension

Thm: If
$$\epsilon_2 > \epsilon_1 > 0$$
, $\dim_{\epsilon_1}(f) = \dim_{\epsilon_2}(f) = d - 1$ then: $\mathfrak{D}^{1,U}_{\delta}(f) \geq d$,

where $\delta = (\epsilon_2 - \epsilon_1)/4$.



$\mathfrak{D}_{\epsilon}^{1,U}$ and Approximate Fourier Dimension

- If |M(x)| = d 1 average "rectangle" size = 2^{n-d+1}
- A subspace A distinguishes x_1 and x_2 if:

$$\exists S \in A : \chi_S(x_1) \neq \chi_S(x_2)$$

- Lem 1: Fix a d-dim. subspace A_d : typical x_1 and x_2 in a typical "rectangle" are distinguished by A_d
- Lem 2: If a d-dim. subspace A_d distinguishes x_1 and x_2 +
- 1) f is ϵ_2 -concentrated on A_d
- 2) f is not ϵ_1 -concentrated on any (d-1)-dim. subspace

$$\Rightarrow \Pr_{z \sim U(\{-1,1\}^n)} [f_{x_1}(z) \neq f_{x_2}(z)] \geq \epsilon_2 - \epsilon_1$$

$\mathfrak{D}_{\epsilon}^{1,U}$ and Approximate Fourier Dimension

Thm: If
$$\epsilon_2 > \epsilon_1 > 0$$
, $\dim_{\epsilon_1}(f) = \dim_{\epsilon_2}(f) = d - 1$ then: $\mathfrak{D}^{1,U}_{\delta}(f) \geq d$,

Where $\delta = (\epsilon_2 - \epsilon_1)/4$.

$$\Pr_{z \sim U(\{-1,1\}^n)} \left[f_{x_1}(z) \neq f_{x_2}(z) \right] \geq \epsilon_2 - \epsilon_1$$

$$g_{x_1} = 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad R = \text{"typical rectangle"}$$

Error for fixed
$$y = \min(\Pr_{x \in R}[f_x(y) = 0], \Pr_{x \in R}[f_x(y) = 1])$$

Average error for $(x, y) \in R = \Omega(\epsilon_2 - \epsilon_1)$

Application: Random Streams

- $x \in \{0,1\}^n$ generated via a stream of updates
 - Each update flips a random coordinate
- Goal: maintain f(x) during the stream (error prob. ϵ)
- Question: how much space necessary?
- Answer: $\mathfrak{D}_{\epsilon}^{1,U}$ and best algorithm is linear sketch
 - After first $O(n \log n)$ updates input x is uniform
- Big open question:
 - Is the same true if x is not uniform?
 - True for **VERY LONG** $(2^{2^{2^{\Omega(n)}}})$ streams (via [LNW'14])
 - How about short ones?
 - Answer would follow from our conjecture if true

Approximate \mathbb{F}_2 -Sketching [Y.'17]

- $f(x_1, ..., x_n): \{0,1\}^n \to \mathbb{R}$
- Normalize: $||f||_2 = 1$
- Question:

Can one compute $f' : \mathbb{E}[(f(x) - f'(x))^2 \le \epsilon]$ from a small $(k \ll n)$ linear sketch over \mathbb{F}_2 ?

Approximate \mathbb{F}_2 -Sketching [Y.'17]

Interesting facts:

- All results under the uniform distribution generalize directly to approximate sketching
- L_1 -sampling has optimal dependence on parameters:
 - Optimal dependence: $O\left(\frac{\left||\hat{f}|\right|_1^2}{\epsilon}\right)$
 - **Open problem:** Is L_1 -sampling optimal for Boolean functions?

\mathbb{F}_2 -Sketching of Valuation Functions [Y.'17]

- Additive $(\sum_{i=1}^{n} w_i x_i)$:
 - $-\Theta\left(\min\left(\frac{||w||_1^2}{\epsilon},n\right)\right)$ (optimal via weighted Gap Hamming)
- Budget-additive (min(b, $\sum_{i=1}^{n} w_i x_i$)):
 - $-\Theta\left(\min\left(\frac{||w||_1^2}{\epsilon},n\right)\right)$
- Coverage:
 - Optimal $\Theta\left(\frac{1}{\epsilon}\right)$ (via L_1 -Sampling)
- Matroid rank
- α -Lipschitz submodular functions:
 - $-\Omega(n)$ communication lower bound for $\alpha = \Omega(1/n)$
 - Uses a large family of matroids from [Balcan, Harvey'10]

Thanks! Questions?

- Other stuff [Karpov, Y.]:
 - Linear Threshold Functions: $\Theta\left(\frac{\theta}{m}\log\frac{\theta}{m}\right)$
 - Resolves a communication conjecture of [MO'09]
 - Simple neural nets: LTF(ORs), LTF(LTFs)
- Blog post: http://grigory.us/blog/the-binary-sketchman

Example: Majority

Majority function:

$$Maj_n(z_1,...,z_n) \equiv \sum_{i=1}^n z_i \ge n/2$$

- $\widehat{Maj}_n(S)$ only depends on |S|
- $\widehat{Maj}_n(S) = 0$ if |S| is odd

•
$$W^{k}(Maj_{n}) = \sum_{S:|S|=k} \widehat{Maj}_{n}(S) = \alpha k^{-\frac{3}{2}} \left(1 \pm O\left(\frac{1}{k}\right)\right)$$

• (n-1)-dimensional subspace with most weight:

$$A_{n-1} = span(\{1\}, \{2\}, ..., \{n-1\})$$

•
$$\sum_{S \in A_{n-1}} \widehat{Maj}_n(S) = 1 - \frac{\gamma}{\sqrt{n}} \pm O(n^{-3/2})$$

• Set
$$\epsilon_2 = 1 - O(n^{-3/2})$$
, $\epsilon_1 = 1 - \frac{\gamma}{\sqrt{n}} + O(n^{-3/2})$

$$\mathfrak{D}_{O(1/\sqrt{n})}^{1,U}\left(Maj_{n}\right)\geq n$$