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Testing Big Data

Q: How to understand properties of large data
looking only at a small sample?

Q: How to ignore noise and outliers?

Q: How to minimize assumptions about the
sample generation process?

Q: How to optimize running time?



Which stocks were growing steadily?
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Property Testing

[Goldreich, Goldwasser, Ron; Rubinfeld, Sudan]

Randomized Algorithm Property Tester

Accept with — Accept with
1o 2 . 2
probability > > YES probability >

e-close | = Don’t care
: : Reject with

_— Reject with . = » )
probability > - probability = -

e-close : < € fraction has to be changed to become YES



Tolerant Property Testing

[Parnas, Ron, Rubinfeld]

Property Tester Tolerant Property Tester

= Accept with

Accept with
YES probability>> | YES b

probability > g

e-close | = Don’t care €,-close

= Reject with —> Don’t care
- 2
probability > 3 Reject with
probability > g

e-close : < € fraction has to be changed to become YES
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Tolerant “L{Property Testing”

f:{1,..,n} - [0,1]
P = class of monotone
functions

min|f —gl,
dist, (f, P) = 2=

n

e-close: dist;(f,P) < €

Tolerant “L, Property Tester”
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€,-close
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WIN

probability >
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New L, -Testing Model for
Real-Valued Data

Generalizes standard Hamming testing

For p > O still have a probabilistic interpretation:

d,(f,g) = (E[If — glPD?

Compatible with existing PAC-style learning models
(preprocessing for model selection)

For Boolean functions, do(f, g) = d,,(f, g)P.



Our Contributions

1. Relationships between L,-testing models
2. Algorithms
— L,-testersforp = 1

* monotonicity, Lipschitz, convexity
— Tolerant L,-tester forp = 1

* monotonicity in 1D (sublinear algorithm for isotonic regression)

s Our L,-testers beat lower bounds for Hamming testers
*»*Simple algorithms backed up by involved analysis
*** Uniformly sampled (or easy to sample) data suffices

3. Nearly tight lower bounds

9



Implications for Hamming Testing

Some techniques/results carry over to Hamming testing

— Improvement on Levin’s work investment strategy
* Connectivity of bounded-degree graphs [Goldreich, Ron ‘02]
* Properties of images [Raskhodnikova ‘03]
* Multiple-input problems [Goldreich 13]

— First example of monotonicity testing problem where
adaptivity helps

— Improvements to Hamming testers for Boolean
functions

10



Definitions

f: D — [0,1] (D = finite domain/poset)
fll = CreplfCIIP)7, forp = 1

f o = Hamming weight (# of non-zero values)

Property P = class of functions (monotone,
convex, linear, Lipschitz, ...)

min [|f =gl
. ___ gEP
dist,(f,P) = TE




Relationships: L,-Testing

Q,(P,€) = query complexity of L,,-testing
property P at distance €

° Ql(P,E) < Q()(P,E)
* 04(P,e) < Q,(P,€) (Cauchy-Shwarz)

* Ql(P,E) = QZ(PI\/E)

Boolean functions f: D — {0,1}
QO(P/E) = QI(PIE) = QZ(PI\/E)



Relationships: Tolerant L,,-Testing

Q,(P,€1, €2) = query complexity of tolerant L ,-testing
property P with distance parameters €4, €5

* No general relationship between tolerant Lq-testing
and tolerant Hamming testing

* L,-testing for p > 1is close in complexity to L;-testing
Ql(Plgllji 82) = Qp(Piel; 82) = QI(PIEIJ 8129)

For Boolean functions f: D — {0,1}
1/p 1
Qo(P,£1, &) = Q1(P,£1, &2) = Qy(P,€,/7, &7 )



Our Results: Testing Monotonicity
d
)

* Hypergrid (D = [n]

dl d d
Upper 0( ogn) 0<—log—)
€ € €

bound [Dodis et al.’99,...,

Chakrabarti, Seshadhri ’13]

Lower o e N
€ € €

bo un d [Dodis et al.’99..., Non-adaptive 1-sided error
Chakrabarti, Seshadhri ’13]

« 20(d) /¢ adaptive tester for Boolean functions



Monotonicity: Key Lemma

* M = class of monotone functions

* Boolean slicing operator f,: D — {0,1}
fy(x) =1,if f(x) = y,
fy(x) = 0, otherwise.

e Theorem:

dist,(f, M) = [, disto(f,, M)dy




Proof sketch: slice and conquer

1) Closest monotone function with minimal L{-norm is
unique (can be denoted as an operator M}).

2) lIf —gll, = Iy — gyl dy
3) Mg and f, commute: (M})y = Ml(fy)

W {lr =Ml 2515 = eyl dy 3)
disty (f, M) = =5 D

f"l‘fy— 13’ 1,
o —= ] disty(f,, M)dy




L-Testers from Boolean Testers

Thm: A nonadaptive, 1-sided error L,-test for monotonicity of
f:D — {0,1}is also an L;-test for monotonicity of f: D — [0,1].
Proof: fx) > f®

* Aviolation (x,y): 0 -0 -0 -9

* A nonadaptive, 1-sided error test queries a randomset Q < D
and rejects iff ) contains a violation.

 If f:D — [0,1]is monotone, Q will not contain a violation.
 Ifdy(f,M) = ethen 3t :do(f (), M) = &€
* W.p. = 2/3, set Q contains a violation (x,y) for f
f(t*)(x) = 1:f(t*)(3’) =0
U

f)>fQy)



Distance Approximation and Tolerant Testing

[n] - [0,1] 1)%/® 1
polylogn-(g) 0 52

[Saks Seshadhri 10]

* Time complexity of tolerant L{-testing for monotonicity is

€2
0 ((32 — 81)2>

— Better dependence than what follows from distance
appoximation for €, < 1

~(1 . . .
— Improves O (—2) adaptive distance approximation of

[Fattal, Ron’10] for Boolean functions



L.-Testers for Other Properties

Via combinatorial characterization of L{-distance to the property

* Lipschitz property f:[n]?¢ - [0,1]:

()

Via (implicit) proper learning: approximate in L; up to error ¢,
test approximation on a random 0O (1/€)-sample

* Convexity f:[n]? - [0,1]:
4
O (e 2 + Z) (tight for d < 2)
e Submodularity f:{0,1}¢ - [0,1]
20(2) + poly ()10gd [Feldman, Vondrak 13]

€



Open Problems

* All our algorithms for for p > 1 were obtained directly from L-
testers.

Can one design better algorithms by working directly with L,,-distances?
* Our complexity for L, -testing convexity grows exponentially with d

Is there an L, -testing algorithm for convexity with subexponential
dependence on the dimension?

* Our L,-tester for monotonicity is nonadaptive, but we show that
adaptivity helps for Boolean range.

Is there a better adaptive tester?
 We designed tolerant tester only for monotonicity (d=1,2).
Tolerant testers for higher dimensions?
Other properties?



