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Abstract

We study the problem of constructing a linear sketch of minimum dimension that allows
approximation of a given real-valued function f : Fn2 → R with small expected squared error. We
develop a general theory of linear sketching for such functions through which we analyze their
dimension for most commonly studied types of valuation functions: additive, budget-additive,
coverage, α-Lipschitz submodular and matroid rank functions. This gives a characterization of
how many bits of information have to be stored about the input x so that one can compute f
under additive updates to its coordinates.

Our results are tight in most cases and we also give extensions to the distributional version of
the problem where the input x ∈ Fn2 is generated uniformly at random. Using known connections
with dynamic streaming algorithms, both upper and lower bounds on dimension obtained in
our work extend to the space complexity of algorithms evaluating f(x) under long sequences of
additive updates to the input x presented as a stream. Similar results hold for simultaneous
communication in a distributed setting.

1 Introduction

Linear sketching is a fundamental tool in efficient algorithm design that has enabled many of the
recent breakthroughs in fast graph algorithms and computational linear algebra. It has a wide
range of applications, including randomized numerical linear algebra (see survey [Woo14]), graph
sparsification (see survey [McG14]), frequency estimation [AMS99], dimensionality reduction
[JL84], various forms of sampling, signal processing, and communication complexity. In fact,
linear sketching has been shown to be the optimal algorithmic technique [LNW14, AHLW16] for
dynamic data streams, where elements can be both inserted and deleted. Linear sketching is
also a frequently used tool in distributed computing — summaries communicated between the
processors in massively parallel computational models are often linear sketches.

In this paper we introduce a study of approximate linear sketching over F2 (F2-sketching).
This is a previously unstudied but natural generalization of the work of [KMSY18], which
studies exact F2-sketching. For a set S ⊆ [n] let χS : Fn2 → F2 be a parity function defined as
χS(x) =

∑
i∈S xi. Given a function f : Fn2 → R, we are looking for k subsets S1, . . . ,Sk ⊆ [n]

such that for any input x, it should be possible to compute f(x) with expected squared error
at most ε from the parities computed over these sets, denoted as χS1(x), χS2(x), . . . , χSk(x).
While looking only at linear functions over F2 as candidate sketches might seem restrictive,
we are unaware of any problem for which sketching over reals gives any advantage over F2 if
the domain of the function is Fn2 . Furthermore, as shown recently in [KNP+17], almost all
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dynamic graph streaming algorithms1 can be based on versions of the `0-sampling primitive
without losing optimality in space which in turn can be implemented optimally as F2-sketches.
Examples of such algorithms include dynamic streaming algorithms for graph connectivity,
k-connectivity, bipartiteness, minimum spanning tree [AGM12a], subgraph counting, min-cut,
cut sparsifiers, spanners, spectral sparsifiers [AGM12b], maximal matching [CCHM15], maximum
matching [Kon15, AKLY16, AKL17, CCE+16], densest subgraph [BHNT15, MTVV15, EHW16],
vertex and hyperedge connectivity [GMT15] and graph degeneracy [FT16].

In matrix form, F2-sketching corresponds to multiplication over F2 of the row vector x ∈ Fn2
by a random n× k matrix whose i-th column is the characteristic vector of χSi :

(
x1 x2 . . . xn

) 
...

...
...

...
χS1

χS2
. . . χSk

...
...

...
...

 =
(
χS1

(x) χS2
(x) . . . χSk(x)

)

The goal is to minimize k, ensuring that the sketch alone is sufficient for computing f with
expected squared error at most ε for any fixed input x. For a fixed distribution D of x, the
definition of error is modified to include an expectation over D in the error guarantee. We give
formal definitions below.

Definition 1.1 (Exact F2-sketching, [KMSY18]). The exact randomized F2-sketch complexity
with error δ of a function f : Fn2 → R (denoted as Rlinδ (f)) is the smallest integer k such that
there exists a distribution χS1 , χS2 , . . . , χSk over k linear functions over Fn2 and a post-processing
function g : Fk2 → R that satisfies:

∀x ∈ Fn2 : Pr
S1,...,Sk

[g(χS1(x), χS2(x), . . . , χSk(x)) = f(x)] ≥ 1− δ.

The number of parities k in the definition above is referred to as the dimension of the
F2-sketch.

Definition 1.2 (Approximate F2-sketching). The ε-approximate randomized F2-sketch complex-
ity of a function f : Fn2 → R (denoted as R̄linε (f)) is the smallest integer k such that there exists
a distribution χS1 , χS2 , . . . , χSk over k linear functions over Fn2 and a post-processing function
g : Fk2 → R that satisfies:

∀x ∈ Fn2 : E
S1,...,Sk

[
(g(χS1(x), χS2(x), . . . , χSk(x))− f(x))2

]
≤ ε

If g is an unbiased estimator of f , then this corresponds to an upper bound on the variance
of the estimator. For example, we show that functions with small spectral norm (e.g. coverage
functions, Corollary A.4) admit such approximate F2-sketches.

In addition to this worst-case guarantee, we also consider the same problem for x from a
certain distribution. In this case, a weaker guarantee is required, i.e. the bound on expected
squared error should hold only over some fixed known distribution D. An important case is
D = U(Fn2 ), the uniform distribution over all inputs.

Definition 1.3 (Approximate distributional F2-sketching). For a function f : Fn2 → R, we define
its ε-approximate randomized distributional F2-sketch complexity with respect to a distribution
D over Fn2 (denoted as D̄lin,Dε (f)) as the smallest integer k such that there exists a distribution
χS1

, χS2
, . . . , χSk over k linear functions over F2 and a post-processing function g : Fk2 → F2 that

satisfies:

E
x∼D

E
S1,...,Sk

[
(g(χS1

(x), χS2
(x), . . . , χSk(x))− f(x))2

]
≤ ε.

1With the only exception being the work of [KLM+17] on spectral graph sparsification.
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1.1 Applications to streaming and distributed computing

One of the key applications of our results is to the dynamic streaming model. In this model, the
input x is generated via a sequence of additive updates to its coordinates, starting with x = 0n.
If x ∈ Rn, then updates are of the form (i,∆i) (turnstile model), where i ∈ [n], and ∆i ∈ R,
which adds ∆i to the i-th coordinate of x. For x ∈ Fn2 , only the coordinate i is specified and
the corresponding bit is flipped, which is known as the XOR-update model [Tha16]2. Dynamic
streaming algorithms aim to minimize space complexity of computing a given function f for an
input generated through a sequence of such updates while also ensuring fast update and function
evaluation times.

It is known that linear sketching over the reals ([LNW14, AHLW16]) as well as F2-sketching
([KMSY18]) give (almost) optimal space complexity for processing dynamic data streams in the
respective update models for any function f . Hence, both upper and lower bounds on F2-sketch
complexity obtained in our work extend to space complexity of dynamic streaming algorithms.
However, all existing general reductions between sketching and streaming require adversarial
streams of length triply exponential in n. We thus complement our lower bounds on dimension
of F2-sketches with one-way communication complexity lower bounds for the corresponding
XOR functions. Such lower bounds translate to dynamic streaming lower bounds for streams
of length 2n. Furthermore, whenever our communication lower bounds hold for the uniform
distribution, the corresponding streaming lower bound applies to streaming algorithms under
uniformly random input updates. Finally, our results can be used for distributed algorithms
computing f(x1 + . . . xM ) over a collection of distributed inputs x1, . . . , xM as F2-sketches can
be used for distributed inputs. On the other hand, our communication lower bounds also hold in
the simultaneous message passing (SMP) communication model, which is strictly harder than
one-way communication.

1.2 Valuation functions and sketching

Submodular valuation functions, originally introduced in the context of algorithmic game theory
and optimization, have received a lot of interest recently in the context of learning theory [BH10,
BCIW12, CKKL12, GHRU13, RY13, FKV13, FK14, FV15, FV16]3, approximation [GHIM09,
BDF+12] and property testing [CH12, SV14, BB17]. As we show in this work, valuation functions
also represent an interesting study case for linear sketching and streaming algorithms. While a
variety of papers exists on streaming algorithms for optimizing various submodular objectives,
e.g. [SG09, DIMV14, BMKK14, CGQ15, CW16, ER16, HIMV16, AKL16, BEM17], to the best
of our knowledge no prior work considers the problem of evaluating such functions under a
changing input.

A systematic study of F2-sketching has been initiated for Boolean functions in [KMSY18].
This paper can be seen as a next step, as we introduce approximation into the study of F2-
sketching. One of the consequences of our work is that the Fourier `1-sampling technique,
originally introduced by Bruck and Smolensky [BS92] (see also [Gro97, MO09]), turns out to be

2By slightly changing the function to f ′(x1, . . . , xn, y1, . . . , yn) = f(x1 + y1, x2 + y2, . . . , xn + yn), it is easy to see
that knowledge of the sign of the update (i.e. whether it is +1 or -1) does not help in general. For some further
motivation of the XOR-update model, consider dynamic graph streaming algorithms, i.e the setting when x represents
the adjacency matrix of a graph and updates correspond to adding and removing the edges. Almost all known
dynamic graph streaming algorithms (except spectral graph sparsification of [KLM+17]) are based on the `0-sampling
primitive [FIS08]. As shown recently, `0-sampling can be implemented optimally using F2-sketches [KNP+17] and
hence almost all known dynamic graph streaming algorithms can handle XOR-updates, i.e. knowing whether an edge
was inserted or deleted does not help.

3We remark that in this literature the term “sketching” is used to refer to the space complexity of representing the
function f itself under the assumption that it belongs to a certain class. This question is orthogonal to our work as
we assume f is known and fixed while the input x is changing.
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Class Error Distribution Complexity Result

Additive/Budget additive
ε any Θ

(
‖w‖21
ε

) Theorem A.7, 4.1

min(b,
∑n

i=1wixi) Corollary A.3, A.6

min(c
√
n, 2c√

n

∑n
i=1 xi) constant uniform Ω(n) Theorem 4.1

Coverage ε any O
(
1
ε

)
Corollary A.4

Matroid Rank 2
exact any Θ(1)

Theorem 3.1

Graphic Matroids Theorem 3.5

Matroid Rank r exact any Ω(r) Corollary 3.24

Matroid Rank r exact uniform O((r log r + c)r+1) Corollary D.6

Matroid Rank 1/
√
n uniform Θ(1) Corollary D.8

c
n -Lipschitz Submodular constant any Θ(n) Theorem 3.17

Table 1: Linear sketching complexity of classes of valuation functions

optimal in its dependence on both spectral norm and the error parameter. For Boolean functions,
a corresponding result is not known as Boolean functions with small spectral norm and necessary
properties are hard to construct.

Another technical consequence of our work is that the study of learning and sketching
algorithms turn out to be related on a technical level despite pursuing different objectives. In
particular, our hardness result for Lipschitz submodular functions uses a construction of a large
family of matroids from [BH10] (even though in a very different parameter regime), who designed
such a family to fool learning algorithms.

1.3 Our results

A function f : 2[n] → R is α-Lipschitz if for any S ⊆ [n] and i ∈ [n], it holds that |f(S ∪ {i})−
f(S)| ≤ α for some constant α > 0. A function f : 2[n] → R is submodular if:

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B) ∀A ⊆ B ⊆ [n] and i /∈ B.

We consider the following classes of valuation functions of the form f : Fn2 → R (all of them
submodular) sometimes treating them as f : 2[n] → R and vice versa. These classes mostly cover
all of existing literature on submodular functions4.

• Additive (linear). f(x) =
∑n
i=1 wixi, where wi ∈ R.

Our results: For additive functions, it is easy to show that dimension of F2-sketches
is O(min(‖w‖21/ε, n)) (Corollary A.3) and give a matching communication lower bound
(Theorem A.7) for all ε ≥ ‖w‖22.

• Budget-additive. f(x) = min(b,
∑n
i=1 wixi) where b, wi ∈ R. An example of such

functions is the “hockey stick” function hsα(x) = min(α, 2α
n

∑n
i=1 xi).

Our results: For budget-additive functions, it is easy to show that dimension of F2-
sketches is O(min(‖w‖21/ε, n)) (Corollary A.6). We give a matching communication bound

4We don’t discuss some other subclasses of submodular functions because they are either superclasses of classes
for which we already have an Ω(n) lower bound (e.g. submodular, subadditive, etc.) or because such a lower bound
follows trivially (e.g. for OXS/XOS since for XS-functions a lower bound of Ω(n) is easy to show, see Appendix C).
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for the “hockey stick” function for constant ε (Theorem 4.1) which holds even under the
uniform distribution of the input.

• Coverage. A function f is a coverage function on some universe U of size m if there exists
a collection A1, . . . , An of subsets of U and a vector of non-negative weights (w1, . . . , wm)
such that: v

f(S) =
∑

i∈∪j∈SAj

wi.

Our results: We show a simple upper bound of O(1/ε) (Corollary A.4) for such functions.

• Matroid rank. A pair M = ([n], I) is called a matroid if I ⊆ 2[n] is a non-empty set
family such that the following two properties are satisfied:

– If I ∈ I and J ⊆ I, then J ∈ I
– If I, J ∈ I and |J | < |I|, then there exists an i ∈ I \ J such that J ∪ {i} ∈ I.

The sets in I are called independent. A maximal independent set is called a base of M . All
bases have the same size, which is called the rank of the matroid and is denoted as rk(M).
The rank function of the matroid is the function rankM : 2[n] → N+ defined as:

rankM (S) := max{|I| : I ⊆ S, I ∈ I}.

It follows from the definition that rankM is always a submodular 1-Lipschitz function.

Our results: In order to have consistent notation with the rest of the manuscript we
always assume that matroid rank functions are scaled so that their values are in [0, 1].
Some of our results are exact, i.e. the corresponding matroid rank function is computed
exactly (and in this case rescaling does not matter) while others allow approximation of
the function value. In the latter case, the approximation guarantees are multiplicative with
respect to the rescaled function.

Our main theorem regarding sketching of matroid rank functions is as follows:

Theorem 1.4 (Sketching matroid rank functions). For (scaled) matroid rank functions:

– There exists an exact F2-sketch of size O(1) for matroids of rank 2 (Theorem 3.1) and
graphic matroids (Theorem 3.5).

– There exists c = Ω(1) and a matroid of rank r such that a c-approximation of its
matroid rank function has randomized linear sketch complexity Ω(r). Furthermore,
this lower bound also holds for the corresponding one-way communication problem
(Theorem 3.23, Corollary 3.24).

This can be contrasted with the results under the uniform distribution for which matroids
of rank r have an exact F2-sketch of size O

((
r log r + log 1

ε

)r+1
)

, where ε is the probability

of failure (Corollary D.6, follows from the junta approximation of [BOSY13]). Further-
more, matroids of high rank Ω(n) can be trivially approximately sketched under product
distributions, due to their concentration around their expectation (see Appendix D for
details).

• Lipschitz submodular. A function f : 2[n] → R is α-Lipschitz submodular if it is both
submodular and α-Lipschitz.

Our results: We show an Ω(n) communication lower bound (and hence a lower bound
on F2-sketch complexity) for constant error for monotone non-negative O(1/n)-Lipschitz
submodular functions (Theorem 3.17). We note that this hardness result crucially uses a non-
product distribution over the input variables since Lipschitz submodular functions are tightly
concentrated around their expectation under product distributions (see e.g. [Von10, BH10])
and hence can be approximated using their expectation without any sketching at all.
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1.4 Overview and Techniques

Basic tools: XOR functions, spectral norm, approximate Fourier dimension
In Section 2, we introduce the basics of approximate F2-sketching. Most definitions and results
in this section can be seen as appropriate generalizations of the results of [KMSY18] regarding
Boolean functions to the case of real-valued functions where we replace Hamming distance with
expected squared distance. We then define the randomized one-way communication complexity
of the two-player XOR-function f+(x, y) = f(x+ y) corresponding to f . This communication
problem plays an important role in our arguments as it gives a lower bound on the sketching
complexity of f . We then introduce the notion of approximate Fourier dimension developed
in [KMSY18]. The key structural results of [KMSY18] which characterize both the sketching
complexity of f and the one-way communication complexity of f+ under the uniform distribution
using the approximate Fourier dimension can be extended to the real-valued case as shown in
Proposition 2.6 and Theorem 2.7. This characterization is our main tool for showing lower
bounds under the uniform distribution of x.

Another useful basic tool is a bound on the linear sketching complexity based on the spectral
norm of f which we develop in Appendix A.1. In particular, as we show in Appendix A.1.1,
analogously to the Boolean case, the ε-approximate randomized Fourier sketching complexity
of a function f is at most O(‖f̂‖21/ε). Thus, we can determine the dimension of F2-sketches
for classes of functions whose spectral norms are well-bounded as well as functions which can
be computed as Lipschitz compositions of a small number of functions with bounded spectral
norm (Proposition A.5). Examples of such classes include additive (linear), budget-additive and
coverage functions. Finally, we argue that the dependence on the parameters in the spectral
norm bound can’t be substantially improved in the real-valued case by presenting a subclass of
linear functions which require sketches of size Ω(‖f̂‖21/ε) (Theorem A.7). This is in contrast with
the case of Boolean functions studied in [KMSY18] for which such tightness result is not known.

Matroid rank functions, LTF, LTF◦OR In Section 3, we present our results on
sketching matroid rank and Lipschitz submodular functions. In Section 3.1 we show that matroid
rank functions of matroids of rank 2 and graphic matroids have constant randomized sketching
complexity. This is done by first observing that rank functions of such matroids can be expressed
as a threshold function over a number of disjunctions. Therefore, it remains to determine the
sketching complexity of the threshold function on a collection of disjunctions. Unfortunately,
known upper bounds for the sketching complexity of even the simpler class of linear threshold
functions have a dependence on n and hence one cannot get a constant upper bound directly.

Hence we show how to remove this dependence in Section 3.1.1, also resolving an open
question of Montanaro and Osborne [MO09]. Recall that a linear threshold function (LTF) can
be represented as f(x) = sgn (

∑n
i=1 wixi − θ) for some weights wi and threshold θ, where sgn is

the sign function. An important parameter of an LTF is its margin which corresponds to the
difference between the threshold and the value of the LTF closest to it. We first observe that
the terms with insignificant coefficients, i.e. weights that are small in absolute value, do not
contribute to the final output and thus, we can ignore them. Similarly, the remaining weights can
be rounded to a collection of weights without altering the output of the function and moreover,
the collection is bounded in size, independent of n. Furthermore, f(x) = 0 only if xi = 1 for at
most θ

2m of these “significant” indices i of x. Thus, we hash the significant indices to a large, but
independent of n, number of buckets. As a result, either there are a small number of significant
indices i with x1 = 1 and there are no collisions, or there is a large number of significant indices
i with xi = 1. Since we can differentiate between these two cases, the sketch can output whether
f(x) = 0 or f(x) = 1 with constant probability. With a more careful choice of hash functions
this idea can be extended to linear thresholds of disjunctions. We show in Section 3.1.2 that a
threshold function over a number of disjunctions (LTF◦OR) also has linear sketch complexity
independent of n.
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In Section 3.2.1, we show that there exists an Ω(n)-Lipschitz submodular function f that
requires a randomized linear sketch of size Ω(n). We construct such a function probabilistically
by using a large family of matroid rank functions constructed by [BH10] with an appropriately
chosen set of parameters. We show any fixed deterministic sketch fails on a matroid chosen
uniformly at random from this parametric family with very high probability. In fact, even if we
take a union bound over all possible sketches of bounded dimension, the failure of probability is
still negligibly close to 1. By Yao’s principle, the randomized linear sketch complexity follows. We
then extend this result to a communication lower bound for f+ in Section 3.2.2. In the one-way
communication complexity setting we show that there exists an Ω(n)-Lipschitz submodular
function f whose f+ requires communication Ω(n).

Uniform Distribution In Section 4, we show lower bounds for a budget additive “hockey
stick” function under the uniform distribution. The lower bounds follow from a characterization
of communication complexity using approximate Fourier dimension, and to complete the analysis,
we lower bound the Fourier spectrum of the hockey stick function in Section 4.1. Although our
approach for matroids of rank 2 does not seem to immediately generalize to matroids of higher
rank under arbitrary distributions, we show in Section D that under the uniform distribution, we
can use ε-approximations of disjunctive normal forms (DNFs) by juntas to obtain a randomized
linear sketch whose size is independent of n. Furthermore, rank functions of matroids of very
high rank admit trivial approximate sketches under the uniform distribution as follows from
standard concentration results [Von10] (see Section D).

2 Basics of Approximate F2-Sketching

2.1 Communication Complexity of XOR functions

In order to analyze the optimal dimension of F2-sketches we need to introduce a closely related
communication complexity problem. For f : Fn2 → R define the XOR-function f+ : Fn2 × Fn2 → R
as f+(x, y) = f(x+ y) where x, y ∈ Fn2 . Consider a communication game between two players
Alice and Bob holding inputs x and y respectively. Given access to a shared source of random bits
Alice has to send a single message to Bob so that he can compute f+(x, y). This is known as the
one-way communication complexity problem for XOR-functions (see [SZ08, ZS10, MO09, LZ10,
LLZ11, SW12, LZ13, TWXZ13, Lov14, HHL16, KMSY18] for related communication complexity
results).

Definition 2.1 (Randomized one-way communication complexity of XOR function). For a
function f : Fn2 → R the randomized one-way communication complexity with error δ (denoted
as R→δ (f+)) of its XOR-function is defined as the smallest size5 (in bits) of the (randomized
using public randomness) message M(x) from Alice to Bob which allows Bob to evaluate f+(x, y)
for any x, y ∈ Fn2 with error probability at most δ.

It is easy to see that R→δ (f+) ≤ Rlinδ (f) as using shared randomness Alice can just send k bits
χS1

(x), χS2
(x), . . . , χSk(x) to Bob who can for each i ∈ [k] compute χSi(x+y) = χSi(x)+χSi(y),

which is an F2-sketch of f on x+ y and hence suffices for computing f+(x, y) with probability
1− δ.

Replacing the guarantee of exactness of the output in the above definition with an upper
bound on expected squared error we obtain the following definition.

Definition 2.2 (Randomized one-way communication complexity of approximating an XOR
function). For a function f : Fn2 → R the randomized one-way communication complexity

5Formally the minimum here is taken over all possible protocols where for each protocol the size of the message
M(x) refers to the largest size (in bits) of such message taken over all inputs x ∈ Fn

2 . See [KN97] for a formal definition.
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(denoted as R̄→ε (f+)) of approximating its XOR-function with error ε is defined as the smallest
size(in bits) of the (randomized using public randomness) message M(x) from Alice to Bob which
allows Bob to evaluate f+(x, y) for any x, y ∈ Fn2 with expected squared error at most ε.

Distributional communication complexity is defined analogously for the corresponding XOR
function and is denoted as Dε.

Finally, in the simultaneous model of computation [BK97, BGKL03], also called simultaneous
message passing (SMP) model, there exist two players and a coordinator, who are all aware of a
function f . The two players maintain x and y respectively, and must send messages of minimal
size to the coordinator so that the coordinator can compute f(x⊕ y).

Definition 2.3 (Simultaneous communication complexity of XOR function). For a function
f : Fn2 → R the simulatenous one-way communication complexity with error δ (denoted as
Rsimδ (f+)) of its XOR-function is defined as the smallest sum of the sizes (in bits) of the
(randomized using public randomness) messages M(x) and M(y) from Alice and Bob, respectively,
to a coordinator, which allows the coordinator to evaluate f+(x, y) for any x, y ∈ Fn2 with error
probability at most δ.

Observe that a protocol for randomized one-way communication complexity of XOR function
translates to a protocol for the simultaneous model of computation.

2.2 Distributional Approximate F2-Sketch Complexity

Fourier analysis plays an important role in the analysis of distributional F2-sketch complexity
over the uniform distribution. In our discussion below we make use of some standard facts from
Fourier analysis of functions over Fn2 . For definitions and basics of Fourier analysis of functions of
such functions we refer the reader to the standard text [O’D14] and Appendix A.1. In particular,
Fourier concentration on a low-dimensional subspace implies existence of a small sketch which
satisfies this guarantee:

Definition 2.4 (Fourier concentration). A function f : Fn2 → R is γ-concentrated on a linear
subspace Ad of dimension d if for this subspace it satisfies:∑

S∈Ad

f̂(S)2 ≥ γ.

We also use the following definition of approximate Fourier dimension from [KMSY18],
adapted for the case of real-valued functions.

Definition 2.5 (Approximate Fourier dimension). Let Ak be the set of all linear subspaces of Fn2
of dimension k. For f : Fn2 → R and ε ∈ (0, ‖f‖22] the ε-approximate Fourier dimension dimε(f)
is defined as:

dimε(f) = min
k

{
∃A ∈ Ak :

∑
α∈A

f̂2(α) ≥ ε

}
.

Proposition 2.6. For any f : Fn2 → R it holds that:

D̄lin,Uε (f) ≤ dim‖f‖22−ε(f).

Proof. Indeed, let Ad be a d-dimensional subspace such that
∑
S∈Ad f̂

2(S) ≥ ‖f‖22 − ε and

consider the function g(x) =
∑
S∈Ad f̂(S)χS(x). Note that in order to compute all values χS(x)

for S ∈ Ad it suffices to evaluate d parities corresponding to sets S1, . . . , Sd forming a basis in
Ad. Values of all other parities can be computed as linear combinations. Let ∆(x) = f(x)− g(x).
Then the desired guarantee follows from and the following calculation:

E
x∼U({0,1}n)

[∆(x)2] = E
S∼U({0,1}n)

[∆̂(S)2] =
∑

S∈{0,1}n
((f̂(S)− ĝ(S)))2 =

∑
S/∈Ad

f̂(S)2 ≤ ε.
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Furthermore, approximate Fourier dimension can be used as a lower bound on the one-way
communication complexity of the corresponding XOR-function. We defer the proof of the
following result to Appendix B as it is follows closely an analogous result for Boolean functions
from [KMSY18].

Theorem 2.7. For any f : Fn2 → R, δ ∈ [0, 1/2] and ξ = ‖f‖22 − ε(1 + 2δ) it holds that:

D̄→,Uε (f+) ≥ δ

2
· dimξ(f).

3 Sketching Matroid Rank Functions

In this section we analyze sketching complexity of matroid rank functions. We start by considering
the most fundamental possible matroids (of rank 2) in Section 3.1 and showing that exactly
sketching the matroid rank function requires O(1) complexity. Similarly, we show that exactly
sketching the rank of graphic matroids only uses O(1) complexity. On the other hand, we show
a lower bound in Section 3.2.1 that even approximating the rank r of general matroids up to
certain constant factors requires Ω(r) complexity.

To sketch matroids of rank 2, we leverage a result by Acketa [Ack78] which characterizes the
collection of independent sets of such matroids. This allows us to represent matroid rank functions
for matroids of rank 2 as a threshold Hamming weight function of disjunctions. Thus, we first
show the randomized linear sketch complexity of (θ,m)-linear threshold functions, resolving an
open question by Montanaro and Osborne [MO09].

3.1 Matroids of Rank 2

In this section, we show that there exists a constant-size sketch which can be used to compute
exact values of matroid rank functions for matroids of rank 2.

Theorem 3.1. For every matroid M of rank 2 it holds that Rlin1
3

(rankM ) = O(1).

It is well-known that matroids of rank 2 admit the following characterization (see e.g. [Ack78]).

Fact 3.2. The collection of independent sets of size 2 of a rank 2 matroid can be represented as
edges in a complete graph with edges corresponding to some disjoint union of cliques removed.

We use a series of technical lemmas in the following section to prove the following result,
which says that linear threshold functions can be succinctly summarized:

Theorem 3.3. The function HAM≤d
(∨

i∈S1
xi,
∨
i∈S2

xi, . . .
)

has a randomized linear sketch of

size O(d2 log d).

Using Fact 3.2, Theorem 3.3, and the following fact that upper bounds the sketch complexity
for functions with small support, we prove Theorem 3.1 by writing the matroid rank function for
M as a linear threshold function of disjunctions.

Fact 3.4 (Folklore, see e.g. [MO09, KMSY18]). For any function f : {0, 1}n → {0, 1} with

minz∈{0,1}Prx(f(x) = z) ≤ ε it holds that Rlinδ (f) ≤ log 2n+1ε
δ .

Proof of Theorem 3.1: F2-sketching complexity of the rank function of any rank 2 matroid
M is essentially the same as the complexity of the corresponding Boolean function that takes
value 1 if rankM (x) = 2 and takes value 0 otherwise. Indeed, let the function above be denoted
as fM . Without loss of generality, we can assume that all singletons are independent sets in
M as otherwise the rank function of M doesn’t depend on the corresponding input. Hence
rankM (x) = 0 if and only if x = 0n. Thus Rlinδ (rankM ) = Rlinδ (fM ) +O(log 1/δ) as by Fact 3.4
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we can use O(log 1/δ)-bit sketch to check whether x = 0n first and then evaluate rankM using
fM . Recall from Fact 3.2 that matroids of rank 2 can be represented as edges in a complete
graph with edges corresponding to some disjoint union of cliques removed.

Let S1, . . . , St be the collection of vertex sets of disjoint cliques defining a rank 2 matroid M
in Fact 3.2. Without loss of generality, we can assume that | ∪ti=1 Si| = n by adding singletons.
Then:

fM (x) = Ham≥2

 ∨
j∈S1

xj ,
∨
j∈S2

xj , . . . ,
∨
j∈St

xj

 ,

where Ham≥2(z1, . . . , zt) = 1 if and only if
∑t
i=1 zi ≥ 2 is the threshold Hamming weight

function. By Theorem 3.3, the sketch complexity of fM (x) is O(1), since the Hamming weight
threshold is d = 2.

�

Since the independent bases of a graphic matroid M(G) are the spanning forests of G, the
matroid rank r function of a graphic matroid can be expressed as

fM (x) = Ham≥r

 ∨
j∈S1

xj ,
∨
j∈S2

xj , . . . ,
∨
j∈St

xj

 ,

where each Si is a separate spanning forest. Therefore, Theorem 3.3 yields a O(r2 log r) space
linear sketch for graphic matroids of rank r.

Theorem 3.5. For every graphic matroid M of rank r, it holds that Rlin1
3

(rankM ) = O(r2 log r).

We use the remainder of the Section 3.1 to prove Theorem 3.3, while resolving an open
question by Montanaro and Osborne [MO09].

3.1.1 Linear Threshold Functions

We first define linear threshold functions (LTFs) and (θ,m)-LTFs.

Definition 3.6. A function f : {0, 1}n → {0, 1} is a linear threshold function (LTF) if there
exist constants θ, w1, w2, . . . , wn such that f(x) = sgn (−θ +

∑n
i=1 wixi), where sgn (x) = 0 for

x < 0 and sgn (x) = 1 for x ≥ 0 is the Heaviside step function.

Definition 3.7. A monotone linear threshold function f : {0, 1}n → {0, 1} is a (θ,m)-LTF if
m ≤ minx∈{0,1}n |−θ +

∑n
i=1 wixi|, where θ is referred to as the threshold and m as the margin

of the LTF.

Although (θ,m)-LTFs have previously been shown to have randomized linear sketch complexity
O
(
θ
m log n

)
[LZ13], Montanaro and Osborne asked whether any (θ,m)-LTF can be represented

in the simultaneous model with O
(
θ
m log θ

m

)
communication.

Question 3.8 ([MO09]). Let g(x, y) = f(x⊕ y), where f is a (θ,m)-LTF. Does there exist a
protocol for g in the simultaneous model with communication complexity O

(
θ
m log θ

m

)
?

Note that the difference between log n and log θ
m is crucial for obtaining constant randomized

linear sketch complexity for functions for matroid rank 2. We answer Question 3.8 in the
affirmitive and show the stronger result that (θ,m)-LTFs admit a randomized linear sketch of
size O

(
θ
m log θ

m

)
. We first show that we can completely ignore all variables whose weights are

significantly smaller than the margin 2m in evaluating a (θ,m)-LTF.

Lemma 3.9. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. For 1 ≤ i ≤ n, let w′i if

wi ≥ 2m and w′i = 0 otherwise. Then f(x) = sgn (−θ +
∑n
i=1 w

′
ixi).
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Proof. We show the stronger result that for any j such that wj < 2m, then f(x) = f(x⊕ ej),
where ej is the elementary unit vector with one in the jth position, and zeros elsewhere. This
implies the lemma since it shows that any variable whose weight is less than 2m does not affect
the output of the function or the margin of the function and thus might as well have weight zero.

Suppose, by way of contradiction, that f(x) 6= f(x ⊕ ej) and without loss of generality,
f(x) = −1 with xj = −1. Since f is a linear threshold function and f(x) = −1, then
−θ+

∑n
i=1 wixi < 0. Moreover, f is a (θ, 2m)-LTF, so −θ+

∑n
i=1 wixi < −m. Because wj < m,

−θ+wj +
∑n
i=1 wixi < −θ+ 2m+

∑n
i=1 wixi < m. But because m is the margin of the function,

if −θ + wj +
∑n
i=1 wixi < m, then it must hold that −θ + wj +

∑n
i=1 wixi < −m. Therefore,

f(x⊕ ej) = 0, so xj does not affect the output of the function or the margin of the function.

As noted, Lemma 3.9 implies that we can ignore not only variables with zero weights, but all
variables whose weights are less than 2m. We now apply Fact 3.4 by showing that the support
of the set {x | f(x) = −1}, where f is a (θ,m)-LTF.

Lemma 3.10. For any (θ,m)-LTF, there exists a randomized linear sketch of size O
(
θ
m log n

)
.

Proof. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. By Lemma 3.9, the output of f

remains the same even if we only consider the variables S with weight at least 2m. On the other
hand, if f(x) = −1, then at most θ

2m variables in S can have value 1. Equivalently, at most θ
2m

indices i can have xi = 1 if f(x) = −1. Thus, the number of x ∈ {0, 1}n with f(x) = −1 is at
most

∑
0≤i≤θ/2m

(
n
i

)
≤ (n+ 1)dθ/2me. Applying Fact 3.4, there exists a randomized linear sketch

for f , of size O
(
θ
m log n

)
.

In order to fully prove Question 3.8 and obtain a dependence on log θ
m rather than log n,

we use the following two observations. First, we show in Lemma 3.11 that the weights of a
(θ,m)-LTF can be rounded to a set that contains O

(
θ
m

)
elements. Second, we show in Theorem

3.14 that we can then use hashing to reduce the number of variables down to poly
(
θ
m

)
before

applying Lemma 3.10.

Lemma 3.11. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. Then there exists a set W

with |W | = O
(
θ
m log θ

m

)
, and a margin m′ = Ω(m) such that f(x) = sgn (−θ +

∑n
i=1 w

′
ixi),

where each w′i ∈W and f is a (θ,m′)-LTF.

Proof. Observe that for any wi ≥ 2θ, if xi = 1, then f(x) = 1. Thus, if f(x) = 1, it suffices to
consider 2m ≤ wi ≤ 2θ.

Let W = {2m(1 + ε)i}ti=0 for t =
⌈
log1+ε

(
θ
m

)⌉
, where ε is some fixed constant that we set

at a later time. For each i, let w′i be the largest element in W that does not exceed wi. Thus,
w′i ≤ wi < (1 + ε)w′i. Observe that since w′i ≤ wi and f is a (θ,m)-LTF, then f(x) = 0 implies
−m > −θ +

∑n
i=1 wixi ≥ −θ +

∑n
i=1 wixi, so that sgn (−θ +

∑n
i=1 w

′
ixi) = 0 = f(x) and a

margin of m remains.
On the other hand, if f(x) = 1, then

∑n
i=1 wixi > θ + m as f is a (θ,m)-LTF. Since

w′i ≤ wi < (1 + ε)w′i, then
∑n
i=1 w

′
ixi >

θ+m
1+ε > (1− ε)(θ +m). Observe that θ ≥ m and hence,∑n

i=1 w
′
ixi > θ−εθ+m−εm ≥ θ+m−2εθ. Setting ε = θ

10m shows that sgn (−θ +
∑n
i=1 w

′
ixi) =

1 = f(x) and a margin of 4
5m remains.

The following result is also useful for our construction of a sketch for a (θ,m)-LTF.

Lemma 3.12. [HSZZ06] There is a randomized linear sketch with size O(1) for the function

HAMn,d|2d(x) =

{
1, if ||x||0 ≤ d
0, if ||x||0 ≥ 2d

on instances {x|x ∈ {0, 1}n and ||x||0 ≤ d or ||x||0 ≥ 2d}.
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Fact 3.13. If h : [n] → [M ] is a random hash function and S ⊆ [n], then the probability that

there exist x, y ∈ S with h(x) = h(y) is at most |S|
2

2M .

Theorem 3.14. Any (θ,m)-LTF admits a randomized linear sketch of size O
(
θ
m log θ

m

)
.

Proof. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. By Lemma 3.11, we can assume that

wi ∈ W = {2m(1 + ε)i}ti=0 so that the new margin m′ = 4
5m and t =

⌈
log1+ε

θ
m

⌉
for ε = θ

10m .

Recall from Lemma 3.10, f(x) = 0 only if xi = 1 for at most θ
2m indices i of x. From Lemma

3.12, we can detect the instances where at least θ
2m indices i of x satisfy xi = 1.

On the other hand, if less than θ
2m indices i of x satisfy xi = 1, we can identify these indices

and corresponding weights via hashing. Let h : [n]→ [M ], where M = 5
(
θ
m

)2
, and S be a set

of indices of x, of size at most θ
m . Then by Fact 3.13, the probability of a collision in h under

elements of S is at most 1
5 . We partition [n] into sets Sw,j where w ∈ W and j ∈ M so that

Sw,j = {i|h(i) = j ∧ wi = w}. Therefore with probability at least 4
5 , there are no collisions in h

under elements of S and |Sw,j | ≤ 1 for all w ∈W and j ∈M .
Let yw,j =

∑
i∈Sw,j xi and note that if there are no collisions in h under elements of S, then

n∑
i=1

wixi =
∑
w,j

w

 ∑
i∈Sw,j

xi

 =
∑
w,j

w · yw,j .

Thus, f(x) is equivalent to the function g(y) = sgn
(
−θ +

∑
w,j w · yw,j

)
. Since |W | =

O
(
θ
m log θ

m

)
, M = 5

(
θ
m

)2
and m′ = 4

5m is the margin for g(y), then g(y) depends on

O
((

θ
m

)3
log θ

m

)
variables yw,j . By Lemma 3.10, there exists a randomized sketch for g(y)

of size O
(
θ
m log θ

m

)
.

We can also show that Theorem 3.14 is tight by considering the following function. Let

HAM≤d(x) =

{
0, if

∑n
i=1 x+ i ≤ d+ 1

2

1, otherwise.

Since this function is a
(
d+ 1

2 ,
1
2

)
-LTF, it can be represented by a randomized linear sketch of

size O(d log d). On the other hand, Dasgupta, Kumar and Sivakumar [DKS12] notes that the
one-way complexity of small set disjointness for two vectors x and y of weight d is Ω(d log d),
which reduces to the function HAM≤d(x⊕ y). Thus, HAM≤d(x⊕ y) also requires a sketch of size
Ω(d log d).

3.1.2 Linear Threshold of Disjunctions

In this section, we describe a randomized linear sketch for functions that can be represented as
2-depth circuits where the top gate is a monotone linear threshold function with threshold θ and

margin m, and the bottom gates are OR functions. Formally, if gS(x) =
∨
i∈S

xi and wS ≥ 0, then

f(x) = q(. . . , gS(x), . . .) = sgn
(
−θ +

∑
S∈2[n] wS · gS(x)

)
.

Lemma 3.15. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF where wi ∈ W for some set

W . Let h : [n]→ [M ] be a random hash function where M = 50θ2

m2 and

fh(x) = sgn

−θ +
∑

(j,w)∈[M ]×W

w

 ∨
i:h(i)=j
wi=w

xi


 .
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Then for all x, Pr [fh(x) 6= f(x)] ≤ 1
50 .

Proof. As by Lemma 3.11, we can assume without loss of generality that wi ≥ 2m and w ≥ 2m.
Let S = {i|xi = 1} so that if there are no collisions under h in S, then

∑
(j,w)∈[M ]×W

w

 ∨
i:h(i)=j
wi=w

xi

 =
∑
i

wixi.

If f(x) = 0, then |S| ≤ θ
2m so that the probability there are collisions under h in S is at most

1
200 by Fact 3.13. Thus if f(x) = 0, then fh(x) = 0 with probability at least 1− 1

200 .

If f(x) = 1, then either |S| ≤ θ
m or |S| ≥ θ

m . If |S| ≤ θ
m , then the probability there are

collisions under h in S is at most 1
50 by Fact 3.13, so then fh(x) = 1 with probability at least

1 − 1
50 . If |S| ≥ θ

m , with probability at least 1 − 1
50 , there exist θ

m values j such that there

exists xi = 1 and h(i) = j. Therefore, we set fh(x) = 1 whenever at least θ
m buckets of h are

non-empty.
In all cases, fh(x) = f(x) with probability at least 1− 1

50 .

Theorem 3.16. Let gS(x) =
∨
i∈S xi with wS ≥ 0 and

f(x) = q(. . . , gS(x), . . .) = sgn

−θ +
∑
S∈2[n]

wS · gS(x)

 .

Then there is a randomized linear sketch for f of size O
((

θ
m

)3
log2 θ

m

)
, where m is the margin

of q.

Proof. We first apply Lemma 3.9 and Lemma 3.11 to q so that weights wi can be rounded to

elements of a set W with |W | = O
(
θ
m log θ

m

)
. By Lemma 3.15 and noting that M = O

((
θ
m

)2)
,

we can construct a randomized linear sketch with size O
((

θ
m

)3
log2 θ

m

)
by requiring that each

sketch in M fails with probability 1
50W to ensure that the sketch errs with probability at most

1
50 on each input.

Proof of Theorem 3.3: Recall that HAM≤d(x) is a
(
d+ 1

2 ,
1
2

)
-LTF. Furthermore, the set of

weights W for HAM≤d(x) consists of a single element {1}, since the coefficient of each disjunction
is one. Since M = O(d2 log d), we can construct a randomized linear sketch with size O(d2 log d)
by Lemma 3.15. �

We note that our approach can be easily generalized to the case where the disjunction include
the negations of some variables as well.

3.2 Communication Complexity of Lipschitz Submodular Functions

We discuss the communication complexity of Lipschitz submodular functions in this section.
We first show in Section 3.2.1 that there exists an Ω(n)-Lipschitz submodular function f that
requires a randomized linear sketch of size Ω(n). We then show in Section 3.2.2 that in the
one-way communication complexity model for XOR functions, there exists an Ω(n)-Lipschitz
submodular function f that has communication complexity Ω(n).
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3.2.1 Approximate F2-Sketching of Lipschitz Submodular Functions

Theorem 3.17. There exist constants c1, c2, ε ≥ 0 and a monotone non-negative ( c1n )-Lipschitz
submodular function f (a scaling of a matroid rank function) such that:

R̄linε (f) ≥ c2n.

Proof. Our proof uses a construction of a large family of matroid rank functions given in [BH10],
Theorem 8. The construction uses the following notion of lossless bipartite expanders:

Definition 3.18 (Lossless bipartite expander). Let G = (U ∪ V,E) be a bipartite graph. For
J ⊆ U let Γ(J) = {v|∃u ∈ U : {u, v} ∈ E}. Graph G is a (D,L, ε)-lossless expander if:

|Γ({u})| = D ∀u ∈ U
|Γ(J)| ≥ (1− ε)D|J | ∀J ⊆ U, |J | ≤ L.

Here we need different parameters than in [BH10] so we restate their theorem as follows:

Theorem 3.19 ([BH10]). Let (U ∪ V,E) be a (D,L, ε)-lossless expander with |U | = k and
|V | = n and let b = 8 log k. If D ≥ b, L = 4D/b− 2 and ε = b

4D then there exists a family of

sets A ⊆ 2[n] and a family of matroids {MB : B ⊆ A} with the following properties:

• |A| = k and for every A ∈ A it holds that |A| = D.

• For every B ⊆ A and every A ∈ A, we have:

rankMB(A) =

{
b if A ∈ B
D if A ∈ A \ B

We use the following construction of lossless expanders from [Vad12], see also [BH10].

Theorem 3.20 ([Vad12]). Let k ≥ 2 and ε ≥ 0. For any L ≤ k, let D ≥ 2 log k/ε and
n ≥ 6DL/ε. Then a (D,L, ε)-lossless expander exists.

In the above theorem we can set parameters as follows:

D =
n

3 · 27
, L = 23, ε = 2−3, k = 2n/3·2

11

, b =
n

3 · 28
.

Note that under this choice of parameters we have 6DL/ε = n and 2 log k
ε = D and hence a

(D,L, ε)-lossless expander with parameters set above exists.
Now consider the family of matroidsM given by Theorem 3.19 using the expander construction

above. The rest of the proof uses probabilistic method. We will show non-constructively that
there exists a matroid in this family whose rank function does not admit a sketch of dimension
d = o(n). Let D = U(A) be uniform distribution over A. By Yao’s principle it suffices to
show that there exists a matroid rank function for which any deterministic sketch fails with
a constant probability over this distribution. In the proof below we first show that any fixed
deterministic sketch succeeds on a randomly chosen matroid from M with only a very tiny

probability, probability 22−Ω(n)

, and then take a union bound over all 2nd sketches of dimension
at most d.

Indeed, fix any deterministic sketch S of dimension d = n/211. Let {b1, . . . , b2d} where
bi ∈ {0, 1}d be the set of all possible binary vectors of length d corresponding to the possible
values of the sketch.

Let Sbi = {A ∈ A : S(A) = bi}. Let t = 1
42n/2

11

and G = {bi ∈ {0, 1}d||Sbi | ≥ t}. The
following proposition follows by a simple calculation.

Proposition 3.21. If t = 1
42n/2

11

then 1
k

∑
bi∈G |Sbi | ≥

3
4 .

14



Proof. We have:

1

k

∑
bi∈G

|Sbi | ≥ 1− 1

k

∑
bi : |Sbi |<

k

4·2d

|Sbi | ≥ 1− 1

k
· k

4 · 2d
· 2d ≥ 3

4
.

Let S1
bi

= {A ∈ Sbi : rankMB(A) = b} and S2
bi

= {A ∈ Sbi : rankMB(A) = D}.

Lemma 3.22. Let t = 1
42n/2

11

and d = n/211. There exists a matroid MB ∈M such that for
all deterministic sketches S of dimension d and all bi ∈ G:

min(|S1
bi |, |S

2
bi |) ≥

1

4
|Sbi |.

Proof. The proof uses probabilistic method to show existence of B with desired properties.
Consider drawing a random matroid from the family M, i.e. pick B to be a unformly random
subset of A and consider MB. Fix any deterministic sketch S and any bi ∈ G. Since |Sbi | ≥ t by
the Chernoff bound it holds that:

Pr
B⊆A

[∣∣S1
bi

∣∣ > (1

2
+ δ

)
|Sbi |

]
≤ e−cδ

2|Sbi | ≤ e−cδ
2t.

Setting δ = 1/4 we have that the above probability is at most e−Ct for some constant C > 0.
Applying the argument above to both S1

bi
and S2

bi
we have that:

Pr
B⊆A

[
min(

∣∣S1
bi

∣∣ , ∣∣S2
bi

∣∣) < 1

4
|Sbi |

]
≤ 2e−Ct.

Let E denote the event that min(
∣∣S1
bi

∣∣ , ∣∣S2
bi

∣∣) ≥ 1
4 |Sbi |.

Note that the total number of deterministic sketches of dimension d is at most 2nd since each
sketch is specified by a collection of d linear functions over Fn2 . Also note that for each sketch
|G| ≤ 2d. Taking a union bound over all sketches and all sets G by the choice of t and d event E
holds for all S and bi ∈ G with probability at least:

1− 2(n+1)d+1e−Ct ≥ 1− 2(n+1)d+12−
C
4 2n/2

11

= 1− o(1).

Thus there exists some set B for which the statement of the lemma holds.

Fix the set B constructed in Lemma 3.22 and consider the function rankMB . Consider
distribution D over the inputs. The probability that any deterministic sketch over this distribution
makes error at least D − b is at least:

1

k

∑
bi∈{0,1}n

min(|S1
bi |, |S

2
bi |) ≥

1

k

∑
bi∈G

min(|S1
bi |, |S

2
bi |)

≥ 1

k

∑
bi∈G

1

4
|Sbi | (by Lemma 3.22)

≥ 3

4
× 1

4
≥ 1

6
. (by Proposition 3.21)

Finally, the construction of [BH10] ensures that the function rankMB takes integer values
between 0 and D. Using this and the fact that matroid rank functions are 1-Lipschitz, we can
normalize it by dividing all values by D and ensure that the resulting function is O(1/n)-Lipschitz
and takes values in [0, 1], while the sketch makes error at least (D − b)/D = 1

2 .
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3.2.2 One-Way Communication of Lipschitz Submodular Functions

In this section we strengthen the lower bound shown above, extending it to the corresponding
one-way communication problem. We use the same notation as in the previous section.

Theorem 3.23. There exists a constant c1 > 0 and a c1
n -Lipschitz submodular function such

that R→1/3 = Ω(n).

Proof. Let α = 1
3·211 and |A| = k = 2αn. Suppose Alice holds x ∈ A ⊆ {0, 1}n and Bob holds

y ∈ {0, 1}n. Recall that in the one-way communication model for XOR functions, Alice must
pass a message of minimal length to Bob, who must then compute f(x⊕y) with some probability,
say 2

3 . Here, we let specifically let f be a scaling of a matroid rank function, which is some
monotone non-negative

(
c1
n

)
-Lipschitz submodular function. By Yao’s principle, it suffices to

show that every deterministic one-way communication protocol using at most α
4 n bits fails with

probability greater than 1
3 . Suppose by way of contradiction, that Alice and Bob succeed through

a deterministic one-way communication protocol, using at most α
4 n bits. For the purpose of

analysis, we furthermore suppose that Bob’s input is fixed.
We now claim that if Alice passes a message to Bob using at most α

4 n bits, then there are at

least 2αn − 4 · 2αn/4 points in A that are represented by the same message as at least five other
points. Note that Alice can partition the input space A into at most 2αn/4 parts, each part with
its own distinct representative message. The number of points not in parts containing at least
five other points is at most 4 · 2αn/4. The remaining points, at least 2αn − 4 · 2αn/4 in quantity,
are represented by the same message as at least five other points.

Let S be the set of points in A represented by a given message from Alice. Hence, Alice
assigns the same message to each of these points and passes the state of the protocol to Bob.
Because Bob cannot distinguish between these points and must perform a deterministic protocol,
then Bob must output the same result for each of these points. Recall that we consider Bob’s
input y ∈ {0, 1}n as fixed. Consider the family of functions

F = {f : f(x⊕ y) = b or f(x⊕ y) = D for all x ∈ A}.

Thus, if S contains at least five points, there exists f ∈ F such that Bob errs on at least 2
5

fraction of the points in S by setting f(x⊕ y) = b to at least
⌊
|S|−1

2

⌋
of the points x ∈ S and

similarly for f(x⊕ y) = D. Moreover, since Alice partitions the points in A, then there exists an
f ∈ F such that Bob errs on at least 2

5 fraction on all points that are represented by the same
message as at least five other points. Hence, the total number of inputs that Bob errs is at least
2
5

(
2αn − 6 · 2αn/4

)
> 1

3 · 2
αn for sufficiently large values of n. This contradicts the assumption

that the communication protocol, using at most α
4 n bits, succeeds with probability 2

3 .

By restricting the n-dimensional elements to r coordinates and observing that the construction
outputs matroids of rank b or D that are separated by a constant gap, we obtain the following
result using the same proof:

Corollary 3.24. There exists c = Ω(1) such that a c-approximation of matroid rank functions
has randomized one-way communication complexity R→1/3 = Ω(r) where r is the rank of the
underlying matroid.

4 Communication Under the Uniform Distribution

In this section we switch to lower bounds for the uniform distribution and show the following
result for the “hockey stick” function:
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Theorem 4.1. For any odd n, constant c > 0 and α = c
√
n there exists a constant ε > 0 such

that for the“hockey stick” function hsα(x) = min(α, 2α
n

∑n
i=1 xi) it holds that:

D̄→,Uε (hs+
α ) = Ω(n)

The proof relies on the characterization of communication complexity using approximate
Fourier dimension (Theorem 2.7). We also require a structural result, whose proof we defer to
Section 4.1, about the Fourier spectrum of the hockey stick function.

Lemma 4.2. Let n be odd and let hsα(x) = min(α, 2α
n

∑n
i=1 xi) then:

‖ĥsα‖22 − ĥsα(∅)2 − ĥsα([n])2 = Θ

(
α2

n

)
,

where [n] denotes the set {1, . . . , n}.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1: By Lemma 4.2 it follows that
∑
S 6=∅,S 6=[n] ĥsα(S)2 = Ω

(
α2

n

)
= Ω(1).

Since hsα is a symmetric function and hence its Fourier coefficients for all sets of the same
size are the same one can show that it is not ‖hsα‖22 − ε-concentrated on o(n)-dimensional
subspaces. Formally, this is proved in Theorem 4.6 in [KMSY18] which shows that there exists
ε > 0 such that dim‖f‖22−ε(f) = Ω(n) for any symmetric function which satisfies the condition∑
S 6=∅,S 6=[n] f̂(S)2 = Ω(1). �

4.1 Fourier Spectrum of the “Hockey Stick” Function

In this section, we bound the fourier spectrum of the “hockey stick” function.

Proof of Lemma 4.2: We have:

‖hsα‖22 = 2−n
∑

x∈{0,1}n
hsα(x)2 = 2−n

α22n−1 +
4α2

n2

bn/2c∑
i=0

i2
(
n

i

)
We also have:

ĥsα(∅)2 =

2−n
∑

x∈{0,1}n
hsα(x)

2

= 2−2n

α2n−1 +
2α

n

bn/2c∑
i=0

i

(
n

i

)2

.

Hence:

‖ĥsα‖22 − ĥsα(∅)2 = 4α2

 1

16
+

1

n22n

bn/2c∑
i=0

i2
(
n

i

)
− 1

n2n+1

bn/2c∑
i=0

i

(
n

i

)
− 1

n222n

bn/2c∑
i=0

i

(
n

i

)2


For i ≥ 1 we have i
(
n
i

)
= i n!

i!(n−i)! = n (n−1)!
(i−1)!(n−i)! = n

(
n−1
i−1

)
. Hence:

bn/2c∑
i=0

i

(
n

i

)
= n

bn/2c−1∑
i=0

(
n− 1

i

)
= n(2n−2 −

(
n− 1

(n− 1)/2

)
/2) ≈ n2n−2(1−

√
2√
πn

).

Similarly we have i2
(
n
i

)
= ni

(
n−1
i−1

)
= n

(
n−1
i−1

)
+ n(i− 1)

(
n−1
i−1

)
. Hence:
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bn/2c∑
i=0

i2
(
n

i

)
= n

bn/2c−1∑
i=0

(
n− 1

i

)
+ n

bn/2c−1∑
i=0

i

(
n− 1

i

)

= n

(
2n−1 −

(
n− 1

(n− 1)/2

)
/2

)
+ n(n− 1)

bn/2c−2∑
i=0

(
n− 2

i

)
= n

(
2n−1 −

(
n− 1

(n− 1)/2

)
/2

)
+ n(n− 1)

(
2n−3 −

(
n− 2

bn− 2c

))
≈ n

(
2n−1 −

√
22n−2

√
πn

)
+ n(n− 1)

(
2n−3 −

√
22n−2

√
πn

)

= n22n−3 −
√

2n3/22n−2

√
π

+ 3n2n−3 + o(2nn)

Thus we have:

‖ĥsα‖22 − ĥsα(∅)2 = Θ

(
α2

n

)
To complete the proof we will show that ĥsα([n])2 = 0. It is well-known (see e.g. [FV15])

that for all S ⊆ [n] such that |S| ≥ 2 and i ∈ S it holds that ĥsα(S) = α M̂aj(S\{i})
n . Using the

fact that majority is an odd function its Fourier coefficients on sets of even size are 0. �
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A Background

A.1 Fourier Analysis

We consider functions6 from Fn2 to R. For any fixed n ≥ 1, the space of these functions forms
an inner product space with the inner product 〈f, g〉 = Ex∈Fn2 [f(x)g(x)] = 1

2n

∑
x∈Fn2

f(x)g(x).

The `2 norm of f : Fn2 → R is ‖f‖2 =
√
〈f, f〉 =

√
Ex[f(x)2] and the `2 distance between

two functions f, g : Fn2 → R is the `2 norm of the function f − g. In other words, ‖f − g‖2 =√
〈f − g, f − g〉 =

√
1

2n

∑
x∈Fn2

(f(x)− g(x))2.

For x, y ∈ Fn2 we denote the inner product as x · y =
∑n
i=1 xiyi. For α ∈ Fn2 , the character

χα : Fn2 → {+1,−1} is the function defined by χα(x) = (−1)α·x. Characters form an orthonormal
basis as 〈χα, χβ〉 = δαβ where δ is the Kronecker symbol. The Fourier coefficient of f : Fn2 → R
corresponding to α is f̂(α) = Ex[f(x)χα(x)]. The Fourier transform of f is the function

f̂ : Fn2 → R that returns the value of each Fourier coefficient of f . The Fourier `1 norm, or the

spectral norm of f , is defined as ‖f̂‖1 :=
∑
α∈Fn2

|f̂(α)|.

Fact A.1 (Parseval’s identity). For any f : Fn2 → R it holds that ‖f‖2 = ‖f̂‖2 =
√∑

α∈Fn2
f̂(α)2.

Moreover, if f : Fn2 → {+1,−1} then ‖f‖2 = ‖f̂‖2 = 1.

A.1.1 Fourier `1-Sampling

The following Fourier `1-sampling primitive is based on the work of Bruck and Smolensky [Bel92]
(see also [Gro97, MO09]). Here we need to analyze its properties for approximating real-valued
functions instead of computing Boolean functions as in [Gro97, MO09].

Proposition A.2 (Fourier `1-sampling). For any f : Fn2 → R it holds that R̄linε (f) = O(‖f̂‖21/ε).

Proof. Sample S ∈ {0, 1}n from the following distribution: Pr[S = S] = |f̂(S)|
‖f̂‖1

. Let Z =

sgn(f̂(S))χS(x)‖f̂‖1. Then:

E[Z] =E
S

[sgn(f̂(S))χS(x)‖f̂‖1]

=
∑

S∈{0,1}n
sgn(f̂(S))

|f̂(S)|
‖f̂‖1

χS(x)‖f̂‖1

=
∑

S∈{0,1}n
f̂(S)χS(x)

=f(x).

6 In all Fourier-analytic arguments Boolean functions are treated as functions of the form f : Fn
2 → {+1,−1} where

0 is mapped to 1 and 1 is mapped to −1. Otherwise we use these two notations interchangeably.
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Variance of Z is:

V ar[Z] =E
S

[(
sgn(f̂(S))χS(x)‖f̂‖1 − f(x)

)2
]

=‖f̂‖21 + f(x)2 − 2‖f̂‖1f(x)E
S

[sgn(f̂(S))χS(x)]

=‖f̂‖21 − f(x)2

≤‖f̂‖21.

Thus averaging Z over
‖f̂‖21
ε repetitions reduces variance to at most ε as desired.

It follows from Proposition A.2 that additive and coverage functions admit small approximate
F2-sketches.

Corollary A.3. Let `w(x) : {0, 1}n → R be an additive function `w(x) =
∑n
i=1 wixi. Then

R̄linε (`w) = O(min(‖w‖21/ε, n)).

Proof. Note that ‖ˆ̀w‖1 = O(‖w‖1) and hence the bound follows.

Corollary A.4. If f : Fn2 → [0, 1] is a coverage function then R̄linε (f) = O(1/ε).

Proof. It is known (see Lemma 3.1 in [FK14]) that for such coverage functions ‖f̂‖1 ≤ 2 and
hence the desired bound follows from Proposition A.2.

However, direct Fourier `1-sampling can fail even in some fairly basic situations, e.g. even
for budget-additive functions. Consider, for example, the “hockey stick” function: hs 1

2
(x) =

min
(

1
2 ,

1
n

∑n
i=1 xi

)
. Fourier spectrum of this function is well-understood (see. e.g. [FV15]) and

in particular ‖f̂‖1 = 2Ω(n). Nevertheless small sketches for budget-additive functions can be
constructed using the following composition theorem.

A function f : Rn → R is α-Lipschitz if |f(x)− f(y)| ≤ α‖x− y‖2 for any x, y ∈ Rn and some
constant α > 07.

Proposition A.5 (Composition theorem). If h : Rt → R is an α-Lipschitz function then for
any functions f1, . . . , ft where fi : Fn2 → R it holds that:

R̄linε (h(f1, . . . , ft)) ≤
t∑
i=1

R̄linε/α2t(fi).

Proof. Let f ′1, . . . , f
′
t be the sketches of f1, . . . , ft respectively. Applying h to their values we

have:

E[(h(f ′1, . . . , f
′
t)− h(f1, . . . , ft))

2] ≤ E[α2‖f ′ − f‖22] = α2
t∑
i=1

E[(f ′i(x)− fi(x))2] ≤ ε.

From Corollary A.3 and Proposition A.5 the following bound on approximate F2-sketch
complexity of budget-additive functions follows immediately.

Corollary A.6. For any budget additive function f(x) = min(b,
∑n
i=1 wixi) it holds that:

R̄linε (f) = O(min(‖w‖21/ε, n)).

Proof. In the composition theorem above we set h = min(b, z) and hence h is a 1-Lipschitz
function of z. Hence we can set α = 1 and t = 1 by treating

∑n
i=1 wixi as f1 and the proof

follows.
7Note that this definition is slightly different from the corresponding definition for functions over the Boolean

hypercube
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A.1.2 Optimality of Fourier `1-Sampling

Let `w(x) : {0, 1}n → R be an additive function `w(x) =
∑n
i=1 wixi parametrized by w ∈ Rn with

non-negative weights w1, w2 . . . , wn. The corresponding XOR-function `+w(x, y) gives weighted
Hamming distance between vectors x and y. The following result can be seen as a generalization
of the unweighted Gap Hamming lower bound due to Jayram, Kumar and Sivakumar [JKS08]
(see also [IW03, CR12]).

Theorem A.7. For any additive function `w of the form `w(x) =
∑n
i=1 wixi where wi ≥ 0 it

holds that for any ε ≥ ‖w‖22:

R̄→ε (`+w) = Ω

(
‖w‖21
ε

)
.

Proof. We use reduction from the standard communication problem INDEX. In this problem
Alice is given a ∈ {0, 1}n and Bob is given t ∈ [n]. Alice needs to send one message to Bob so
that he can compute at. It is well-known that this requires linear communication:

Theorem A.8 ([KNR99]). R→1/3(INDEX) = Ω(n).

Let n be odd and k be a parameter to be chosen later. Consider an instance of indexing
where Alice has an input a ∈ {−1, 1}k and Bob has an index t ∈ [k]. Draw n random vectors
r1, . . . , rn where each ri is uniform over {−1, 1}k. Construct vectors x, y ∈ {−1, 1}n as follows:

xi = sign(〈a, ri〉), yi = sign(ri,t),

where we define sign(z) = −1 if z ≤ 0 and sign(z) = 1 if z > 0.
Note that if at = 1 then Pr[xi = yi] ≥ 1

2 + c√
k
, otherwise Pr[xi = yi] ≤ 1

2 −
c√
k

for some

absolute constant c > 0. Now consider the function `+w(x, y) =
∑n
i=1 wi(xi + yi). We will show

that for a suitable choice of k with a large constant probability `+w(x, y) > 1
2‖w‖1 + 2

√
ε if at = 1

and `+w(x, y) < 1
2‖w‖1− 2

√
ε = if at = −1. By Markov’s inequality a communication protocol for

`+w with expected squared error ε has squared error at most 4ε (and hence absolute error at most
2
√
ε) with probability at least 3/4. Hence, such a protocol can distinguish these two cases with

probability 3/4 − ξ where ξ is the error probability introduced by the reduction. If ξ < 1/12
then it can solve indexing on strings of length k with probability at least 2/3 and so a lower
bound of Ω(k) follows.

Indeed, consider the case at = −1, as the case at = 1 is symmetric. Let Zi be a random

variable defined as Zi = wiI[xi = yi]. We have E[Zi] ≤ wi
(

1
2 −

c√
k

)
. Let Z =

∑n
i=1 Zi, then:

E[Z] ≤
n∑
i=1

wi

(
1

2
− c√

k

)
= ‖w‖1

(
1

2
− c√

k

)
.

Let Xi = Z≤i − E[Z≤i] where Z≤i =
∑i
j=1 Zj . We have

E[Xi+1|X1, . . . , Xi] = E[Z≤i+1 − E[Z≤i+1]|X1, . . . , Xi]

= E[Zi+1 − E[Zi+1] +Xi|X1, . . . , Xi]

= E[Zi+1 − E[Zi+1]] +Xi

= Xi,

and hence Xi is a martingale. Furthermore, for every i it holds that:

|Xi −Xi−1| = |Z≤i − E[Z≤i]− Z≤i−1 + E[Z≤i−1]| = |Zi − E[Zi]| < |wi|.

We can now use the following form of Azuma’s inequality:
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Theorem A.9 (Azuma’s inequality). If Xi for i = 0, 1, . . . is a martingale such that X0 = 0
and |Xi −Xi−1| < ci almost surely then for every integer m and positive real θ it holds that:

Pr[Xm ≥ θ] ≤ e
− θ2

2
∑m
i=1

c2
i .

Applying Azuma’s inequality we have: Pr[Xn ≥ θ] ≤ e
− θ2

2‖w‖22 . Recall that E[Z≤n] ≤
‖w‖1

(
1
2 −

c√
k

)
and hence:

Pr

[
Z ≥ ‖w‖1

(
1

2
− c√

k

)
+ θ

]
≤ e−θ

2/2‖w‖22 .

Setting θ = c‖w‖1
2
√
k

we have Pr
[
Z ≥ ‖w‖12 (1− c/

√
k)
]
≤ e
− c

2‖w‖21
8k‖w‖22 . If k =

c2‖w‖21
36‖w‖22

then:

Pr

[
Z ≥ ‖w‖1

2
− 3‖w‖2

]
≤ e−4.

Using similar analysis for the case at = 1 we conclude that with probability at least 1−2e−4 >

1− 1/12 in this case it holds that Pr
[
Z ≤ ‖w‖12 + 3‖w‖2

]
≤ e−4 and hence error probability ξ

introduced by the reduction is at most 1/12. Thus using this reduction we obtain a protocol
for solving indexing on strings of length k with probability at least 2/3 and the lower bound of
Ω(k) = Ω(‖w‖21/‖w‖22) = Ω(‖w‖21/ε) follows where we used the fact that ε ≥ ‖w‖22

A.2 Information Theory

Let X be a random variable supported on a finite set {x1, . . . , xs}. Let E be any event in the
same probability space. Let P[·] denote the probability of any event. The conditional entropy
H(X | E) of X conditioned on E is defined as follows.

Definition A.10 (Conditional entropy).

H(X | E) :=

s∑
i=1

P[X = xi | E ] log2

1

P[X = xi | E ]

An important special case is when E is the entire sample space. In that case the above
conditional entropy is referred to as the Shannon entropy H(X) of X.

Definition A.11 (Entropy).

H(X) :=

s∑
i=1

P[X = xi] log2

1

P[X = xi]

Let Y be another random variable in the same probability space as X, taking values from a
finite set {y1, . . . , yt}. Then the conditional entropy of X conditioned on Y , H(X | Y ), is defined
as follows.

Definition A.12.

H(X | Y ) =

t∑
i=1

P[Y = yi] ·H(X | Y = yi)

We next define the binary entropy function Hb(·).
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Definition A.13 (Binary entropy). For p ∈ (0, 1), the binary entropy of p, Hb(p), is defined to
be the Shannon entropy of a random variable taking two distinct values with probabilities p and
1− p.

Hb(p) := p log2

1

p
+ (1− p) log

1

1− p
.

The following properties of entropy and conditional entropy will be useful.

Fact A.14. (1) Let X be a random variable supported on a finite set A, and let Y be another
random variable in the same probability space. Then 0 ≤ H(X | Y ) ≤ H(X) ≤ log2 |A|.

(2) (Sub-additivity of conditional entropy). Let X1, . . . , Xn be n jointly distributed random
variables in some probability space, and let Y be another random variable in the same
probability space, all taking values in finite domains. Then,

H(X1, . . . , Xn | Y ) ≤
n∑
i=1

H(Xi | Y ).

(3) Let X1, . . . , Xn are independent random variables taking values in finite domains. Then,

H(X1, . . . , Xn) =

n∑
i=1

H(Xi).

(4) (Taylor expansion of binary entropy in the neighborhood of 1
2 ).

Hb(p) = 1− 1

2 loge 2

∞∑
n=1

(1− 2p)2n

n(2n− 1)

Definition A.15 (Mutual information). Let X and Y be two random variables in the same
probability space, taking values from finite sets. The mutual information between X and Y ,
I(X;Y ), is defined as follows.

I(X;Y ) := H(X)−H(X | Y ).

It can be shown that I(X;Y ) is symmetric in X and Y , i.e. I(X;Y ) = I(Y ;X) = H(Y )−H(Y |
X).

The following observation follows immediately from the first inequality of Fact A.14 (1).

Fact A.16. For any two random variables X and Y , I(X;Y ) ≤ H(X).

B Missing Proofs

Proof of Theorem 2.7:

Proof. The proof is largely based on a similar proof in [KMSY18] except that here we work
with real-valued functions with unbounded norm. In the next two lemmas, we look into the
structure of a one-way communication protocol for f+, and analyze its performance when the
inputs are uniformly distributed. We give a lower bound on the number of bits of information
that any correct randomized one-way protocol reveals about Alice’s input8, in terms of the linear
sketching complexity of f for uniform distribution.

The next lemma bounds the probability of error of a one-way protocol from below in terms
of the Fourier coefficients of f , and the conditional distributions of different parities of Alice’s
input conditioned on Alice’s random message.

8We thus prove an information complexity lower bound. See, for example, [Jay10] for an introduction to information
complexity.
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Lemma B.1. Let ε ∈ [0, 1
2 ). Let Π be a deterministic one-way protocol for f+ such that

Ex,y∼U(Fn2 )[Π(x, y)− f+(x, y)]2 ≤ ε. Let M denote the distribution of the random message sent
by Alice to Bob in Π. For any fixed message m sent by Alice, let Dm denote the distribution of
Alice’s input x conditioned on the event that M = m. Then,

ε ≥
∑
α∈Fn2

f̂(α)2 ·

(
1− E

m∼M

(
E

x∼Dm
[χα(x)]

)2
)
.

Proof. For any fixed input y of Bob, define ε
(y)
m := Ex∼Dm(Π(x, y)− f+(x, y))2. Thus,

ε ≥ E
m∼M

E
y∼U(Fn2 )

[ε(y)
m ]. (1)

Note that the output of the protocol is determined by Alice’s message and y. Hence for a fixed
message and Bob’s input, if the restricted function has high variance, the protocol is forced to

commit error with high probability. Formally, let a
(y)
m be the output of the protocol when Alice’s

message is m and Bob’s input is y. Also, define µ
(y)
m := Ex∼Dm [f+(x, y)]. Then,

ε(y)
m = E

x∼Dm

[
(a(y)
m − f+(x, y))2

]
= E
x∼Dm

[
((µ(y)

m − f+(x, y)) + (a(y)
m − µ(y)

m ))2
]

= E
x∼Dm

[
((µ(y)

m − f+(x, y))2 + (a(y)
m − µ(y)

m )2)
]

+ 2(a(y)
m − µ(y)

m ) E
x∼Dm

[
(µ(y)
m − f+(x, y))

]
≥ E
x∼Dm

[
(µ(y)
m − f+(x, y))2

]
= Varx∼Dm

[
f+(x, y)

]
. (2)

Now,

Varx∼Dm [f+(x, y)] = E
x∼Dm

[f+(x, y)2]−
(

E
x∼Dm

[f+(x, y)]

)2

= E
x∼Dm

[f+(x, y)2]−

∑
α∈Fn2

f̂(α)χα(y) E
x∼Dm

[χα(x)]

2

= E
x∼Dm

[f+(x, y)2]−

∑
α∈Fn2

f̂(α)2

(
E

x∼Dm
[χα(x)]

)2

+
∑

(α1,α2)∈Fn2×Fn2 :α1 6=α2

f̂(α1)f̂(α2)χα1+α2
(y) E

x∼Dm
[χα1

(x)] E
x∼Dm

[χα2
(x)]

 .

Taking expectation over y we have:

E
y∼U(Fn2 )

[
Varx∼Dm [f+(x, y)]

]
= E
y∼U(Fn2 )

E
x∼Dm

[f+(x, y)2]−
∑
α∈Fn2

f̂(α)2

(
E

x∼Dm
[χα(x)]

)2

= E
x∼Dm

E
y∼U(Fn2 )

[f+(x, y)2]−
∑
α∈Fn2

f̂(α)2

(
E

x∼Dm
[χα(x)]

)2

= ‖f‖22 −
∑
α∈Fn2

f̂(α)2

(
E

x∼Dm
[χα(x)]

)2

,
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where in the last step we used the fact that for any fixed x we have Ey∼U(Fn2 )[f
+(x, y)2] =

Ez∼U(Fn2 )[f
2(z)] = ‖f‖22. Taking expectation over messages it follows using (1), (2) that,

ε ≥ ‖f‖22 −
∑
α∈Fn2

f̂(α)2 · E
m∼M

(
E

x∼Dm
[χα(x)]

)2

=
∑
α∈Fn2

f̂(α)2 ·

(
1− E

m∼M

(
E

x∼Dm
[χα(x)]

)2
)
.

(3)

The second equality above follows from Parseval’s identity. The lemma follows.

Let Π be a deterministic protocol such that Ex,y∼U(Fn2 )[(Π(x, y) − f+(x, y))2] ≤ ε, with

optimal cost cΠ := D→,Uε (f+). To prove our theorem, we use the protocol Π to come up with a
subspace of Fn2 . Next, in Lemma B.2 (a) we prove, using Lemma B.1, that f is ξ-concentrated
on that subspace where ξ = ‖f‖22 − ε(1 + 2δ). In Lemma B.2 (b) we upper bound the dimension
of that subspace in terms of cΠ.

Let Aδ := {α ∈ Fn2 : Em∼M
(
Ex∼Dm χα(x)

)2 ≥ δ} ⊆ Fn2 .

Lemma B.2. Let δ ∈ [0, 1/2] and ξ = ‖f‖22 − ε(1 + 2δ), then
∑
α/∈span(Aδ) f̂(α)2 ≤ ‖f‖22 − ξ.

Proof. We show that f is ξ-concentrated on span(Aδ). By Lemma B.1 we have that

ε ≥
∑

α∈span(Aδ)

f̂(α)2 ·

(
1− E

m∼M

(
E

x∼Dm
χα(x)

)2
)

+
∑

α/∈span(Aδ)

f̂(α)2 ·

(
1− E

m∼M

(
E

x∼Dm
χα(x)

)2
)

> (1− δ) ·
∑

α/∈span(Aδ)

f̂(α)2.

Thus
∑
α/∈span(Aδ) f̂(α)2 < ε

1−δ ≤ ε · (1 + 2δ) = ‖f‖22 − ξ (since δ ≤ 1/2).

Now we are ready to complete the proof of Theorem 2.7. Let ` = dim(span(Aδ)). Then it
suffices to show that ` ≤ 2cΠ

δ . Note that χα(x) is a unbiased random variable taking values in

{1,−1}. For each α in the set Aδ in Proposition B.2, the value of Em∼M
(
Ex∼Dm χα(x)

)2
is

bounded away from 0. This suggests that for a typical message m drawn from M , the distribution
of χα(x) conditioned on the event M = m is significantly biased. Fact B.3 enables us to conclude
that Alice’s message reveals Ω(1) bit of information about χα(x). However, since the total
information content of Alice’s message is at most cΠ, there can be at most O(cΠ) independent
vectors in Aδ. Now we formalize this intuition.

In the derivation below we use several standard facts about properties of entropy and mutual
information which can be found in Appendix A.2. We will need the following fact about entropy
of a binary random variable. The proof can be found in Appendix A of [KMSY18].

Fact B.3. For any random variable X supported on {1,−1}, H(X) ≤ 1− 1
2 (EX)2.
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Let T = {α1, . . . , α`} be a basis of span(Aδ). Then,

cΠ ≥ H(M)

≥ I(M ;χα1
(x), . . . ,χα`

(x))

= H(χα1
(x), . . . ,χα`

(x))−H(χα1
(x), . . . ,χα`

(x) |M)

= `−H(χα1
(x), . . . ,χα`

(x) |M)

≥ `−
∑̀
i=1

H(χαi
(x) |M)

≥ `−
∑̀
i=1

(1− 1

2

(
E[χαi

(x)|M ])2
)

(by Fact B.3)

≥ `− `
(

1− δ · 1

2

)
=
`δ

2
.

Thus ` ≤ 2cΠ
δ .

�

C Lower bound for XS functions

The class of XS functions introduced in [LLN06] corresponds to unit demand functions f(S) =
maxi∈S wi.

Theorem C.1. If f is an XS function corresponding to a collection of distinct weights then
R→1/3(f+) = Ω(n).

Proof. Let w1 > w2 > · · · > wn. We use a reduction from a standard communication problem
called Augmented Indexing, denoted AI(x, i). In this problem Alice’s input is x ∈ Fn2 and Bob’s
input is i ∈ [n] and the bits x1, . . . , xi−1.

Theorem C.2 ([MNSW98, BJKK04]). R→1/3(AI) = Ω(n).

In order to solve AI(x, i) using a protocol for f+ set x′ = x and y′ = (x1, . . . , xi−1, 0, . . . , 0).
If AI(x, i) = 1 then f+(x′ + y′) = wi, otherwise f+(x′ + y′) ≤ wi+1. Hence an Ω(n) lower bound
follows.

D Sketches under Uniform Distribution

Recall that a function f : {0, 1}n → {0, 1} is ε-approximated by a function g : {0, 1}n → {0, 1} if

Prx∈{0,1}n [f(x) 6= g(x)] ≤ ε.

Theorem D.1. [GMR12] Every DNF with width w can be ε-approximated by a
(
w log 1

ε

)O(w)
-

junta.

Theorem D.2. Let f be a (θ,m)-LTF of width w DNFs then Dlin,U1−ε (f) ≤ u
(

1
ε ,

θ
m , w

)
for some

function u.
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Proof. Observe that by Lemma 3.15 and standard probability amplification techniques, there ex-

ists an ε
2 -approximation of f , denoted fh, that is a threshold function of q = O

((
θ
m

)3
log2 θ

m log 2
ε

)
width w disjunctions. Thus, it suffices to take a ε

2q -approximation for each of the q width w
disjunctions, using Theorem D.1. By a simple union bound, the resulting linear sketch differs

from f on at most ε fraction of the inputs. The resulting sketch complexity is
(
w log 1

ε

)O(w)
for

each of the O
((

θ
m

)3
log2 θ

m

)
disjunctions.

Corollary D.3. If f can be represented as a (monotone) linear threshold function of (θi,mi)-

linear threshold functions, then Dlin,U1−ε (f) ≤ u
(

1
ε ,

θ
m

)
, where θ

m = maxi
θi
mi

.

Note that any matroid of rank r can be expressed as a linear threshold function of DNFs,
where each clause contains the r independent basis elements. Therefore, matroid rank functions
can be sketched succinctly under the uniform distribution:

Theorem D.4. Given 0 < ε < 1 to be the probability of failure, matroids of rank r have a
randomized linear sketch of size g

(
r, 1
ε

)
under the uniform distribution, where g is some function.

In fact, the function f(·) can be improved using the following observation about using juntas
to approximate monotone submodular functions.

Theorem D.5 ([BOSY13], Theorem 6). Let f : {0, 1}n → {a1, . . . , ar} be a monotone submodu-
lar function. For any ε ∈

(
0, 1

2

)
, f is ε-close to a (z + 1)r+1-junta, where z = O

(
r log r + log 1

ε

)
.

Corollary D.6. Matroids of rank r under the uniform distribution have a sketch of size

O
((
r log r + log 1

ε

)r+1
)

, where ε is the probability of failure.

Finally, we note the concentration of matroid rank functions on uniform distributions (see
also [Von10]):

Theorem D.7 ([Von10],[GHRU13] Lemma 2.1). Let f : 2U → R be a 1-Lipschitz submodular
function. Then for any product distribution D over 2U ,

Pr
S∼D

[|f(x)− E[f(S)]| ≥ t] ≤ 2 exp

(
− t2

2 (E[f(S)] + 5t/6)

)
.

Corollary D.8. For matroids of rank Ω(n) and ε > 1√
n

, the expectation of the matroid rank

function rankM suffices for a ε-approximation to the matroid rank.

Proof. Recall that the matroid rank function rankM is always a submodular 1-Lipschitz function.
Thus, matroids of rank Ω(n) are highly concentrated around their expectation and so to get an
ε-approximation to the matroid rank, it suffices to simply output the expectation of f , provided
ε > 1√

n
.
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