Randomized Composable Core-sets for Distributed Optimization

Vahab Mirrokni Google Research, New York

Based on the following papers:

- 1) Diversity Maximization @PODS'14: w/ Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian
- 2) Balanced Clustering @NIPS'14: w/ Hossein Bateni, Aditya Bhaskara, Silvio Lattanzi 3) Submodular Maximization @STOC'15: w/ Morteza ZadiMoghaddam

Google NYC Large-scale Graph Mining

- 1. Algorithms/Tools: Ranking, Pairwise Similarity, Graph Clustering, Balanced Partitioning, Embedding...
 - Aim for scale Solve for XXXB edges
- 2. Help product groups use our tools e.g.,
 - Ads, Search, Social, YouTube, Maps.
- 3. Compare MR+DHT, Flume, Pregel, ASYMP:
 - Compare for fault-tolerance and scalability
 - Public/private real data, synthetic data
- 4. Algorithmic Research:
 - Combined system/algorithms research
 - Streaming & local algorithms
 - Distributed Optimization e.g. core-sets

Outline of this Talk

Composable Core-sets are useful

- Diversity Maximization: Composable Core-sets
- Clustering Problems: Mapping Core-set
- Submodular/Coverage Maximization: Randomized Composable Core-sets

Large-scale Graph Mining

- Modern Graph Algorithms Frameworks:
 - E.g. Connected Components in MR and MR+DHT
 - ASYMP: ASYnchronous Message Passing
- Problems inspired by specific Applications
 - E.g. Algorithms for public-private graphs

Processing Big Data

- Extract and process a compact representation of data. Examples:
 - Sampling: focus only on a small subset of data
 - Sketching: compute a small summary of data, e.g.
 mean, variance, ...
 - Mergeable Summaries: if multiple summaries can be merged while preserving accuracy [Agarwal et al. 2012].
- Composable core-sets [Indyk et al. 2014]

Distributed Optimization Framework

Executive Summary: Composable Core-sets

- Technique for effective distributed algorithm
 - One or Two rounds of Computation
 - Minimal Communication Complexity

Problems

- Diversity Maximization
 - Composable Core-sets
- Clustering Problems
 - Mapping Core-sets
- Submodular/Coverage Maximization:
 - Randomized Composable Core-sets

Core-sets

Input: A set of points P

Goal: Optimize some function f

For instance find the farthest

distance pair of points

Core-set: A subset of points that preserves the optimal solution

For instance Convex hull is a 1-core-set because the farthest pair of points are in the convex hull

In general, we are looking for a **small** α -core-set S, in other words, a small S with the guarantee $f(S) \ge \alpha$ f(P)

Composable Core-sets

- Partition input into several parts T₁, T₂, ..., T_m
- In each part, select a subset S_i ⊆ T_i
- Take the union of selected sets: $S=S_1 \cup S_2 \cup ... \cup S_m$
- Solve the problem on S
- Evaluation: We want set S to represent the original big input well, and preserve the optimum solution approximately.

Formal Definition of Composable Core-sets

- Define $f_k(S) \stackrel{\text{def}}{=} \max_{S' \subseteq S, |S'| \le k} f(S')$, e.g. $f_k(N)$ is the value of the optimum solution.
- ALG(T) is the output of algorithm ALG on input set T. Suppose |ALG(T)| is at most k.
- ALG is α -approximate composable core-set iff for any collection of sets $T_1, T_2, ..., T_m$ we have

$$f_k(\mathsf{ALG}(T_1) \cup \ldots \cup \mathsf{ALG}(T_m)) \ge \alpha f_k(T_1 \cup \ldots \cup T_m)$$

Applications – Streaming Computation

Streaming Computation:

- Processing sequence of n data elements "on the fly"
- limited Storage

c-Composable Core-set of size k

Chunks of size \sqrt{nk} , thus number of chunks = $\sqrt{n/k}$

Applications – Streaming Computation

Streaming Computation:

- Processing sequence of n data elements "on the fly"
- limited Storage

c-Composable Core-set of size k

- Chunks of size \sqrt{nk} , thus number of chunks = $\sqrt{n/k}$
- Core-set for each chunk
- Total Space: $k\sqrt{n/k} + \sqrt{nk} = O(\sqrt{nk})$

Applications – Distributed Systems

- Streaming Computation
- Distributed System:
 - Each machine holds a block of data.
 - A composable core-set is computed and sent to the server

Applications – Distributed Systems

Streaming Computation

Distributed System:

- Each machine holds a block of data.
- A composable core-set is computed and sent to the server

Map-Reduce Model:

- One round of Map-Reduce
- $\sqrt{n/k}$ mappers each getting \sqrt{nk} points
- Mapper computes a composable core-set of size k
- Will be passed to a single reducer

Problems considered

- Diversity Maximization: Find a set S of k
 points and maximize the sum of
 pairwise distances i.e. diversity(S).
- Capacitated/Balanced Clustering: Find a set S of k centers and cluster nodes around them while minimizing the sum of distances to S.
- Coverage/submodular Maximization:
 Find a set S of k items & maximize f(S).

Diversity Maximization Problem

- Given: n points in a metric space
- Find a set S of k points
- Goal:

maximize *diversity(S)* i.e.

diversity(S) = sum of pairwise distances
 of points in S.

- Background: Max Dispersion
 - Halldorson et al studied 7 variants
 - Recently studied by Borodin et al,
 Abbassi et al'13.

k=4 n = 6

Local Search for Diversity Maximization (KDD'13)

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
 - » Perform the swap
- For Remote-Clique
 - Number of rounds: $\log_{\left\{1+\frac{\epsilon}{n}\right\}} k^2 = O(\frac{n}{\epsilon} \log k)$
 - Approximation factor is constant.

Local Search for Diversity Maximization (KDD'13)

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improdiversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
 - » Perform the swap
- For Remote-Clique
 - Number of rounds: $\log_{\left\{1+\frac{\epsilon}{n}\right\}} k^2 = O(\frac{n}{\epsilon} \log k)$
 - Approximation factor is constant.

Composable Core-sets for Diversity Maximization

- Theorem(IndykMahabadiMahdianM.'14): A local search algorithm computes a *constant-factor* composable coreset for maximizing *sum of pairwise distances*.
- Thm(IMMM'14): Greedy Algorithm Computes a 3-composable core-set for maximizing the minimum pairwise distance.

Proof Idea

Let P_1,\cdots,P_m be the set of points , $P=\cup P_i$ S_1,\cdots,S_m be their core-sets, $S=\cup S_i$ Let $\mathit{OPT}=\{o_1,\cdots,o_k\}$ be the optimal solution Let r be their maximum diversity , $r=\max_i div(S_i)$,

Goal: $div_k(S) \ge div_k(P) / c$ Goal: $div_k(S) \ge div(OPT) / c$

Note: $\operatorname{div}_{k}(S) \geq r$

Proof Idea

Let P_1, \dots, P_m be the set of points , $P = \bigcup P_i$

 S_1, \dots, S_m be their core-sets, $S = US_i$

Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution

Let r be their maximum diversity, $r = \max_{i} div(S_i)$,

Goal: $div_k(S) \ge div_k(P) / c$

Goal: $div_k(S) \ge div(OPT) / c$

Note: $\operatorname{div}_{k}(S) \geq r$

Case 1: one of S_i has diversity as good as the optimum: $r \ge O(div(OPT))$

Case 2: $r \leq O(div(OPT))$

- find a **one-to-one** mapping μ from $OPT = \{o_1, \dots, o_k\}$ to $S = S_1 \cup \dots \cup S_m$ s.t. $dist(o_i, \mu(o_i)) \leq \mathbf{O}(r)$
- Replacing o_i with $\mu(o_i)$ has still large diversity
- $div(\{\mu(o_i)\})$ is approximately as good as $div(\{o_i\})$

Proof Idea

Let P_1, \dots, P_m be the set of points , $P = \bigcup P_i$

 S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Goal: $div_k(S) \ge div_k(P) / c$

Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution **Goal:** $div_k(S) \ge div(OPT) / c$

Let r be their maximum diversity, $r = \max_{i} div(S_i)$, Note: $div_k(S) \ge r$

Case 1: one of S_i has diversity as good as the optimum: $r \ge O(div(OPT))$

Case 2: $r \leq O(div(OPT))$

- find a **one-to-one** mapping μ from $OPT = \{o_1, \dots, o_k\}$ to $S = S_1 \cup \dots \cup S_m$ s.t. $dist(o_i, \mu(o_i)) \leq \mathbf{O}(r)$
- Replacing o_i with $\mu(o_i)$ has still large diversity
- $div(\{\mu(o_i)\})$ is approximately as good as $div(\{o_i\})$

Distributed Clustering

Clustering: Divide data into groups containing "nearby" points

Minimize:

k-center: $\max_{i} \max_{u \in S_i} d(u, c_i)$

k-means: $\sum_{i} \sum_{u \in S_i} d(u, c_i)^2$

k-median : $\sum_{i} \sum_{j \in S} d(u, c_i)$

Metric space (d, X)

 α -approximation algorithm: cost less than $\alpha^*\mathsf{OPT}$

Clustering via Composable Core-sets

Goal: Find k clusters (and centers) to minimize objective

- partition points into m machines
- solve on machines separately
- cluster the centers obtained (k' * m)
- 4. assign points to closest chosen centers

Mapping Core-sets Framework

How can we ensure cluster sizes are bounded?

- 1. partition points into *m* machines
- 2. "map" points in machine to a small #points (k')
- 3. create a "multi-set" instance
- 4. solve multi-set instance *efficiently*

Balanced/Capacitated Clustering

Theorem(BhaskaraBateniLattanziM. NIPS'14): distributed balanced clustering with

- approx. ratio: (small constant) * (best "single machine" ratio)
- rounds of MapReduce: constant (2)
- memory: $(n/m)^2$ with m machines

Works for all Lp objectives.. (includes k-means, k-median, k-center)

Improving Previous Work

- Bahmani, Kumar, Vassilivitskii, Vattani: Parallel K-means++
- Balcan, Enrich, Liang: Core-sets for k-median and k-center

Experiments

Aim: Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Setup: Two "base" instances and subsamples (used k=1000, #machines = 200)

US graph: N = x0 Million distances: geodesic

	size of seq. inst.	increase in OPT
US	1/300	1.52
World	1/1000	1.58

World graph: N = x00 Million distances: geodesic

Accuracy: analysis pessimistic

Scaling: sub-linear

Submodular Functions

- A non-negative set function f defined on subsets of a ground set N, i.e. f: 2^N → R⁺∪{0}
- f is submodular iff for any two subsets A and B
 f(A) + f(B) ≥ f(A∪B) + f(A∩B)
- Alternative definition: f is submodular iff for any two subsets A⊆B, and element x:
 - $-f(A \cup \{x\}) f(A) \ge f(B \cup \{x\}) f(B)$

Coverage/Submodular Maximization

Submodular Maximization:

- Given: k and a submodular function f
- Goal: Find a set S of k elements & maximize f(S).

Max-Coverage (special case):

- Given: : k & family of subsets $V_1 \dots V_n$
- Goal: Choose k subsets $V'_1 \dots V'_k$ with the maximum cardinality of union.

Submodular Maximization: Applications

- Many applications for maximizing coverage:
 Data summarization, data clustering, column selection, diversity maximization in search.
- Machine Learning Applications: Exemplar based clustering, active set selections, graph cuts and others in [Mirzasoleiman, Karbasi, Sarkar, Krause NIPS'13]

Application e.g. Exemplar Sampling

k-median-cost(S) = sum of distances of points to their closest centers in S

f(S) = k-median-cost(empty set) - k-median-cost(S)
f is a submodular function
Instead of minimizing median cost, maximize f

Bad News!

• Theorem[IndykMahabadiMahdianM PODS'14] There exists no better than $\frac{\log k}{\sqrt{k}}$ approximate composable core-set for submodular maximization.

Submodular Maximization: Related Work

Submodular/coverage maximization in MapReduce:

- ChierchettiKumarTomkins'09: Polylog #rounds
- CoromodeKarloffWirth'10: Better communication in poly log # rounds
- Belloch et al'13: log² n #rounds
- KumarMoselyVassilivitskiiVattani (SPAA'13): log #rounds or constant #rounds with log communication overhead
- Mirzasoleiman, Karbasi, Sarkar, Kraus, NIPS'13: Greedy algorithm works in two rounds (for special submodular functions)
- Q: is it possible to solve this in one or two rounds of MapReduce without space/communication overhead?
- IMMM'14 shows that it's not doable via core-sets.

Randomization comes to rescue

- Instead of working with worst case partitioning to sets T_1 , T_2 , ..., T_m , suppose we have a random partitioning of the input.
- We say alg is α-approximate randomized composable core-set iff
- $\mathbb{E}\left[f_k(\mathsf{ALG}(T_1)\cup\ldots\cup\mathsf{ALG}(T_m))\right]\geq \alpha\cdot\mathbb{E}\left[f_k(T_1\cup\ldots\cup T_m)\right]$ where the expectation is taken over the random choice of $\{\mathsf{T}_1,\mathsf{T}_2,...,\mathsf{T}_m\}$

General Framework

Run ALG in each machine

Good news! [M. ZadiMoghaddam – STOC'15]

- Theorem [M., ZadiMoghaddam]: There exists a class of O(1)-approximate randomized composable core-sets for monotone and nonmonotone submodular maximization.
- In particular, algorithm Greedy is 1/3approximate randomized core-set for monotone f, and (1/3-1/3m)-approximate for non-monotone f.

Family of β-nice algorithms

- ALG is β-nice if for any set T and element x ∈ T \ ALG(T) we have:
 - $ALG(T) = ALG(T \setminus \{x\})$
 - Δ(x, ALG(T)) is at most βf(ALG(T))/k where Δ(x, A) is the marginal value of adding x to set A, i.e. Δ(x, A) = f(A∪{x})-f(A)
- Theorem: A β -nice algorithm is $(1/(2+\beta))$ -approx randomized composable core-sets for monotone f and $((1-1/m)/(2+\beta))$ -approx for non-monotone.

Greedy Algorithm

- Given input set T, Greedy returns a size k output set S as follows:
 - Start with an empty set
 - For k iterations, find an item $x \in T$ with maximum marginal value to S, $\Delta(x, S)$, and add x to S.
- Remark: Greedy is a 1-nice algorithm.
- In the rest, we analyze algorithm Greedy for a monotone submodular function f.

Analysis

- Let OPT be the subset of size k with maximum value of f.
- Let OPT' be OPT \cap (S₁ \cup S₂ ... \cup S_m), and OPT'' be OPT\OPT'
- We prove that
 E[max{f(OPT'), f(S₁), f(S₂), ..., f(Sm)}] ≥ f(OPT)/3

Linearizing marginal contributions of elements in OPT

- Consider an arbitrary permutation π on elements of OPT
- For each x ∈ OPT, define OPT^x to be elements of OPT that appear before x in π
- By definition of Δ values, we have: $f(OPT) = \sum_{x \in OPT} \Delta(x, OPT^{x})$

Lower bounding f(OPT^S)

- f(OPT') is $\sum_{x \in OPT'} \Delta(x, OPT^x \cap OPT')$
- Using submodularity, we have: $\Delta(x, OPT^{\times} \cap OPT') \ge \Delta(x, OPT^{\times})$
- Therefore: $f(OPT') \ge \sum_{x \in OPT'} \Delta(x, OPT^x)$
- It suffices to upper bound $\sum_{x \in OPT''} \Delta(x, OPT^x)$

Proof Scheme

Goal: Lower bound max $\{f(OPT'), f(S_1), f(S_2), ..., f(S_m)\}$

Upper bounding Δ reductions

$$\Delta(x, OPT^x) - \Delta(x, S_i) \leq \Delta(x, OPT^x) - \Delta(x, OPT^x \cup S_i)$$

$$\sum_{x \text{ in OPT}} \Delta(x, OPT^x) - \Delta(x, OPT^x \cup S_i) = f(OPT) - (f(OPT \cup S_i) - f(S_i)) \le f(S_i)$$

in worst case:
$$\sum_{1 \le i \le m} \sum_{x \text{ in OPT}'' \cap Ti} \Delta(x, OPT^x) - \Delta(x, S_i) \le \sum_{1 \le i \le m} f(S_i)$$

in expectation:
$$\sum_{1 \leq i \leq m} \sum_{x \text{ in OPT}'' \cap Ti} \Delta(x, \text{ OPT}^x) - \Delta(x, S_i) \leq \sum_{1 \leq i \leq m} f(S_i)/m$$

Conclusion: $E[f(OPT')] \ge f(OPT) - max_i \{f(S_i)\} - Average_i \{f(S_i)\}$

Greedy is a 1/3-approximate randomized core-set

Distributed Approximation Factor

Run Greedy in each machine

Take the maximum of $\max_i \{f(S_i)\}\$ and $Greedy(S_1 \cup S_2 \cup ... \cup S_m)$ to achieve 0.27 approximation factor

Improving Approximation Factors for Monotone Submodular Functions?

- Hardness Result [M, ZadiMoghaddam]: With output sizes (|S_i|) ≤ k, Greedy, and locally optimum algorithms are not better than ½ approximate randomized core-sets.
- Can we increase the output sizes and get better results?

Summary of Results

[M. ZadiMoghaddam – STOC'15]

- 1. A class of 0.33-approximate randomized composable core-sets of size k for non-monotone submodular maximization.
- 2. Hard to go beyond ½ approximation with size k. Impossible to get better than 1-1/e.
- 0.58-approximate randomized composable core-set of size 4k for monotone f. Results in 0.54-approximate distributed algorithm.
- 4. For small-size composable core-sets of k' less than k: $sqrt\{k'/k\}$ -approximate randomized composable core-set.

Improved Distributed Approximation Factor

Run Greedy, and return 4k items in each machine

$(2-\sqrt{2})$ -approximate Randomized Core-set

- Positive Result [M, ZadiMoghaddam]: If we increase the output sizes to be 4k, Greedy will be (2-√2)-o(1) ≥ 0.585-approximate randomized core-set for a monotone submodular function.
- Remark: In this result, we send each item to C random machines instead of one. As a result, the approximation factors are reduced by a O(ln(C)/C) term.

Algorithm PseudoGreedy

- Forall $1 \le K_2 \le k$
 - Set K' := K₂/4
 - Set $K_1 := k K_2$
 - Partition the first 8K' items of S_1 into sets $\{A_1, ..., A_8\}$
 - For each $L \subseteq \{1, ..., 8\}$
 - Let S' be union of A_i where i is in L
 - Among selected items, insert K₁ + (4 |L|)K' items to S' greedily
 - If (f(S') > f(S)) then S := S'
- Return S

Small-size core-sets

• So far we have discussed core-sets of size k for problems with output size of k. What if k is too large and we need a core-set of size k' which is less than k?

 Problem: (Randomized) Composable core-sets for small-size core-sets for diversity and submodular maximization.

Small-size core-sets: Some results

- Problem: (Randomized) Composable core-sets for small-size core-sets for diversity and submodular maximization.
- Theorem (M.ZadiMoghaddam): There exists a $sqrt\{k'/k\}$ -approximate randomized composable core-set for coverage and submodular maximization of size k'. For non-randomized core-sets there is a hardness result of k'/k.

Summary: Composable Core-sets

- Composable core-set framework
 - Divide data into m parts (at random)
 - Solve independently for each part
 - Combine solutions and solve on the union of these solutions
- Also works for streaming and nearest neighbor search
- Solves diversity maximization and Balanced clustering (kcenter, k-median and k-means)
- Coverage and Submodular maximization
 - Impossible for non-randomized composable core-set but solved via randomized core-sets
- Apply to other ML & Graph algorithmic problems: Edges are partitioned into m parts or edges arrive in a stream (e.g. random order)
 - Maximum and Minimum and Weighted Matching Cut Problems
 - Correlation Clustering
 - ML problems: Subset column selection

Google NYC Large-scale Graph Mining

- 1. Algorithms/Tools: Ranking, Pairwise Similarity, Graph Clustering, Balanced Partitioning, Embedding...
 - Aim for scale Solve for XXXB edges
- 2. Help product groups use our tools e.g.,
 - Ads, Search, Social, YouTube, Maps.
- 3. Compare MR+DHT, Flume, Pregel, ASYMP:
 - Compare for fault-tolerance and scalability
 - Public/private real data, synthetic data
- 4. Algorithmic Research:
 - Combined system/algorithms research
 - Streaming & local algorithms
 - Distributed Optimization e.g. core-sets

Examples of Research done'14 & '15

Algorithms Research, e.g.

- MapReduce/Streaming Algorithmics: Minimize #rounds
 - Randomized core-sets for distributed computation ...
- Local clustering beyond Cheeger's Inequality (ICML'13)
- Reduce & Aggregate for Personalized Search @WWW'14
- Graph Alignment @VLDB'14
- Fast algorithms for Public/Private Graphs @KDD'15

Combined system + algorithms research:

- Algorithmic models for MR+DHT, ASYMP
- ASYMP: New graph mining framework
 - Based on "ASYnchronous Message Passing"
 - Compare with MR, Pregel
 - Study its fault-tolerance, and scalability

Graph Mining Frameworks

Applying various frameworks to graph algorithmic problems

- Iterative MapReduce (Flume):
 - More widely fault-tolerant available tool
 - Can be optimized with algorithmic tricks
- Iterative. MapReduce + DHT Service (Flume):
 - Better speed compared to MR
- Pregel:
 - Good for synch. computation w/ many rounds
- ASYMP (ASYnchronous Message-Passing):
 - More scalable/More efficient use of CPU
 - Asych. self-stabilizing algorithms

e.g. Connected Components

- Connected Components in MR & MR+DHT
 - Simple, local algorithms with O(log² n) round complexity
 - Communication efficient (#edges non-increasing)
- Use Distributed HashTable Service (DHT) to improve
 # rounds to O~(log n) [from ~20 to ~5]
- Data: Graphs with ~XT edges. Public data with 10B edges
- Results:
 - MapReduce: 10-20 times faster than Hash-to-Min
 - MR+DHT: 20-40 times faster than Hash-to-Min
 - ASYMP: A simple algorithm in ASYMP: 25-55 times faster than Hash-to-Min

KiverisLattanziM.RastogiVassilivitskii: SOCC'14:

ASYMP: Graph Processing via ASYnchronous Message Passing

- ASYMP: New graph mining framework
- Compare with MapReduce, Pregel
 - Computation does not happen in a synchronize number of rounds
 - Fault-tolerance implementation is also asynchronous
- More efficient use of CPU cycles
- We study its fault-tolerance and scalability
- Impressive performance: Simple implementations of connected component

Ongoing work joint with Fleury and Lattanzi

Algorithms for Public/Private Graphs

- Given: a public graph G(V, E)
- Each node v also has a set of private edges G_v not known to the rest of nodes
- Problem: Solve for each node v on G_v , e.g.
 - For each v, compute similar nodes to v in G_v : e.g, topK nodes based on #common neighbors or PPR
 - For each v, compute the cluster that v belongs to in G_v
- Goal: Solve the problem for G first. Then for each V, post-process in time proportional to $|G_V|$

KDD'15: Chierchetti-Epasto-Kumar-Lattanzi-M.

Concluding Remarks

- Composable Core-sets are useful
 - Diversity Maximization: Composable Core-sets
 - Clustering Problems: Mapping Core-set
 - Submodular/Coverage Maximization: Randomized Composable Core-sets
- Large-scale Graph Mining
 - Modern Graph Algorithms Frameworks:
 - E.g. Connected Components in MR and MR+DHT
 - ASYMP: Asynchronous Message Passing
 - Problems inspired by specific Applications
 - E.g. Algorithms for public-private graphs

Applications of composable core-sets

- Distributed Approximation:
 - Distribute input between m machines,
 - ALG selects set $S_i = ALG(T_i)$ in machine $1 \le i \le m$,
 - Gather the union of selected items, $S_1 \cup S_2 \cup ... \cup S_m$, on a single machine, and select k elements.
- Streaming Models: Partition the sequence of elements, and simulate the above procedure.
- A class of nearest neighbor search problems

Modern Distributed Algorithmics

Communication

- Can be the overwhelming cost
- In practice constant factors matter a lot

• Data Skew:

- Most datasets are heavily tailed
- Naïve data distributions can be disastrous
- In synchronous environments must wait for slowest shard: "The curse of reducer"

Algorithmic techniques:

- Embarasssingly parallel may still be slow
- Techniques to minimize communication & skew

Setup

- Set of n points P in d-dimensional space
- Optimize a function f

Setup

- Set of n points P in d-dimensional space
- Optimize a function f
- c-Core-set: Small subset of points S ⊂ P which suffices to c-approximate the optimal solution
- Maximization: $\frac{f_{opt}(P)}{c} \le f_{opt}(S) \le f_{opt}(P)$

Setup

- Set of n points P in d-dimensional space
- Optimize a function f
- c-Core-set: Small subset of points S ⊂ P which suffices to c-approximate the optimal solution
- Maximization: $\frac{f_{opt}(P)}{c} \le f_{opt}(S) \le f_{opt}(P)$

Example

 Optimization Function: Distance of the two farthest points

Setup

- Set of n points P in d-dimensional space
- Optimize a function f
- c-Core-set: Small subset of points S ⊂ P which suffices to c-approximate the optimal solution
- Maximization: $\frac{f_{opt}(P)}{c} \le f_{opt}(S) \le f_{opt}(P)$

Example

- Optimization Function: Distance of the two farthest points
- 1-Core-set: Points on the convex hull.

Setup

- $P_1, P_2, ..., P_m$ are set of points in d-dimensional space
- Optimize a function f over their union P.

Setup

- $P_1, P_2, ..., P_m$ are set of points in d-dimensional space
- Optimize a function f over their union P.
- c-Composable Core-sets: Subsets of points S₁ ⊂ P₁, S₂ ⊂ P₂, ..., S_m ⊂ P_m points such that the solution of the unio of the core-sets approximates the solution of the point sets.
 - Maximization:

$$\frac{1}{c}f_{opt}(P_1 \cup \dots \cup P_m) \le f_{opt}(S_1 \cup \dots \cup S_m) \le f_{opt}(P_1 \cup \dots \cup P_m)$$

Setup

- $P_1, P_2, ..., P_m$ are set of points in d-dimensional space
- Optimize a function f over their union P.
- c-Composable Core-sets: Subsets of points S₁ ⊂ P₁, S₂ ⊂ P₂, ..., S_m ⊂ P_m points such that the solution of the unic of the core-sets approximates the solution of the point sets.

Maximization:

$$\frac{1}{c}f_{opt}(P_1 \cup \dots \cup P_m) \le f_{opt}(S_1 \cup \dots \cup S_m) \le f_{opt}(P_1 \cup \dots \cup P_m)$$

• **Example:** two farthest points

Setup

- $P_1, P_2, ..., P_m$ are set of points in d-dimensional space
- Optimize a function f over their union P.
- c-Composable Core-sets: Subsets of points S₁ ⊂ P₁, S₂ ⊂ P₂, ..., S_m ⊂ P_m points such that the solution of the unic of the core-sets approximates the solution of the point sets.

Maximization:

$$\frac{1}{c}f_{opt}(P_1 \cup \dots \cup P_m) \le f_{opt}(S_1 \cup \dots \cup S_m) \le f_{opt}(P_1 \cup \dots \cup P_m)$$

• **Example:** two farthest points

Setup

- $P_1, P_2, ..., P_m$ are set of points in d-dimensional space
- Optimize a function f over their union P.
- **c-Composable Core-sets:** Subsets of points $S_1 \subset P_1$, $S_2 \subset P_2$, ..., $S_m \subset P_m$ points such that the solution of the unio of the core-sets approximates the solution of the point sets.
 - Maximization:

$$\frac{1}{c}f_{opt}(P_1 \cup \dots \cup P_m) \le f_{opt}(S_1 \cup \dots \cup S_m) \le f_{opt}(P_1 \cup \dots \cup P_m)$$

Example: two farthest points