Randomized Composable Core-sets
for Distributed Optimization

Vahab Mirrokni
Google Research, New York

Based on the following papers:

1) Diversity Maximization @PODS’14: w/ Piotr Indyk, Sepideh Mahabadi,
Mohammad Mahdian

2) Balanced Clustering @NIPS’14: w/ Hossein Bateni, Aditya Bhaskara, Silvio Lattanzi
3) Submodular Maximization @STOC’15: w/ Morteza ZadiMoghaddam

Google NYC Large-scale Graph Mining

1. Algorithms/Tools: Ranking, Pairwise Similarity, Graph
Clustering, Balanced Partitioning, Embedding...
® Aim for scale - Solve for XXXB edges

2. Help product groups use our tools e.g.,
® Ads, Search, Social, YouTube, Maps.

3. Compare MR+DHT, Flume, Pregel, ASYMP:
® Compare for fault-tolerance and scalability
® Public/private real data, synthetic data

4. Algorithmic Research:
® Combined system/algorithms research
® Streaming & local algorithms
® Distributed Optimization e.g. core-sets

Outline of this Talk

« Composable Core-sets are useful
* Diversity Maximization: Composable Core-sets
* Clustering Problems: Mapping Core-set
* Submodular/Coverage Maximization: Randomized
Composable Core-sets

* Large-scale Graph Mining
* Modern Graph Algorithms Frameworks:
* E.g. Connected Components in MR and MR+DHT
* ASYMP: ASYnchronous Message Passing

* Problems inspired by specific Applications
* E.g. Algorithms for public-private graphs

Processing Big Data

* Extract and process a compact representation
of data. Examples:

— Sampling: focus only on a small subset of data

— Sketching: compute a small summary of data, e.g.
mean, variance, ...

— Mergeable Summaries: if multiple summaries can

be merged while preserving accuracy [Agarwal et
al. 2012].

 Composable core-sets [Indyk et al. 2014]

Distributed Optimization Framework

Run ALG in each machine

. Machine 1 |
T S; Run ALG’ to find the
final size k output set

' Machine 2 |

Input Set N | T, S, W Selected . output
. elements set
Sm
T

' Machinem |

Executive Summary: Composable Core-sets

* Technique for effective distributed algorithm
* One or Two rounds of Computation
 Minimal Communication Complexity

 Problems

o Diversity Maximization
o Composable Core-sets

o Clustering Problems
o Mapping Core-sets

o Submodular/Coverage Maximization:
o Randomized Composable Core-sets

Core-sets

@
Input: A set of points P ©
Goal: Optimize some function f @ ©
For instance find the farthest o
distance pair of points @ O

Core-set: A subset of points that preserves
the optimal solution

For instance Convex hull is a 1-core-set
because the farthest pair of points are

in the convex hull

In general, we are looking for a small a-core-set S,
in other words, a small S with the guarantee f(S) > a f(P)

Composable Core-sets

Partition input into several partsT,, T,, ..., T

m

In each part, select a subset S, C T.
Take the union of selected sets:S=SUS,U...US
Solve the problem on S

Evaluation: We want set S to represent the
original big input well, and preserve the
optimum solution approximately.

Formal Definition of Composable Core-sets

def / _
+ Define fk(5) = SICRLNS <k 1(5) eg. fi(N)is

the value of the optimum solution.

e ALG(T) is the output of algorithm ALG on input
set T. Suppose |ALG(T)]| is at most k.

 ALG is a-approximate composable core-set iff
for any collection of sets T, T,, ..., T, we have

FL(ALG(T)U...UALG(T,,))>a fu(T1 U...UTy)

Applications — Streaming Computation

* Streaming Computation:

— Processing sequence of n data elements “on the fly”
— limited Storage

 c-Composable Core-set of size k
— Chunks of size Vnk , thus number of chunks = \/n/k

LITTTTTTIT I/ --- TJTT1
| Il T iss w |
Ink Ik

Applications — Streaming Computation

* Streaming Computation:

— Processing sequence of n data elements “on the fly”
— limited Storage

 c-Composable Core-set of size k

— Chunks of size Vnk , thus number of chunks = \/n/k
— Core-set for each chunk

— Total Space: k. /n/k + Vnk = 0(\/nk)

[(TTTTTTTIITITITIT ==~ TT1T1
I i] | © 06 0 ———l
Ink Ink

Applications — Distributed Systems

* Distributed System:
— Each machine holds a block of data.
— A composable core-set is computed and sent to the server

Applications — Distributed Systems

 Streaming Computation

* Distributed System:
— Each machine holds a block of data.
— A composable core-set is computed and sent to the server

* Map-Reduce Model:

* One round of Map-Reduce

« /n/k mappers each getting Vvnk points
Mapper computes a composable core-set of size k
* Will be passedto a single reducer

Data mapper coreset

coreset

Data mapper

Reducer }=>Solution

Data mapper coreset

il

Problems considered

* Diversity Maximization: Find a set S of k
points and maximize the sum of
pairwise distances i.e. diversity(S).

» (Capacitated/Balanced Clustering: Find
a set S of k centers and cluster nodes
around them while minimizing the sum
of distances to S.

* Coverage/submodular Maximization:
Find a set S of k items & maximize f(S).

Diversity Maximization Problem

* @Given: n points in @ metric space
* Find a set S of k points o®
e Goal:

maximize diversity(S) i.e.

diversity(S) = sum of pairwise distances

of points in S. ®
O
&
* Background: Max Dispersion k=4
n=6

— Halldorson et al studied 7 variants

— Recently studied by Borodin et al,
Abbassi et al’13.

Local Search for Diversity
Maximization (KDD’13)

 Used for sum of pairwise distances
* Algorithm [Abbasi, Mirrokni, Thakur] °
— Initialize S with an arbitrary set of
k points which contains the two
farthest points
— While there exists a swap that improves
diversity by a factor of (1 + %)

» Perform the swap
 For Remote-Clique

— Number of rounds: log{HE}kz = 0(§log k)

— Approximation factor is constant.

Local Search for Diversity
Maximization (KDD’13)

 Used for sum of pairwise distances
* Algorithm [Abbasi, Mirrokni, Thakur]
— Initialize S with an arbitrary set of
k points which contains the two
farthest points
— While there exists a swap that impr«
diversity by a factor of (1 + %)

» Perform the swap
 For Remote-Clique

— Number of rounds: log{HE}kz = 0(§log k)

— Approximation factor is constant.

Composable Core-sets for
Diversity Maximization

 Theorem(IndykMahabadiMahdianM.’14): A local search
algorithm computes a constant-factor composable core-
set for maximizing sum of pairwise distances.

e Thm(IMMM’14): Greedy Algorithm Computes a 3-
composable core-set for maximizing the minimum
pairwise distance.

Proof Idea

Let P, -+, B,, be the set of points , P = UP;

Sy, -+, S, be their core-sets, S =US; Goal: div, (S) = div,(P) / ¢
Let OPT = {04, -+, 04} be the optimal solution Goal: div, (S) = div(OPT) / ¢
Let r be their maximum diversity , r = max div(s;) , Note: divi(S) = r

Proof Idea

Let Py, -+, B, be the set of points , P = UP;

Sy, -+, S, be their core-sets, S =US; Goal: div,(S) = div,(P) / ¢
Let OPT = {04, -+, 04} be the optimal solution Goal: div, (S) = div(OPT) / ¢
Let r be their maximum diversity , r = max div(S;) , Note: divy(S) = r

L

Case 1: one of S; has diversity as good as the optimum: r > 0(div(0PT))

Case 2:: r < 0(div(OPT))

. find a one-to-one mapping u from OPT = {0,,:*,0,}t0 S =S, U---U S, s.t.
dist(o;,u(0;)) < 0(1)

. Replacing o; with u(o;) has still large diversity

. div({u(o;)}) is approximately as good as div({o;})

Proof Idea

Let Py, -+, B, be the set of points , P = UP;

Sy, -+, S, be their core-sets, S =US; Goal: div, (S) = div,(P) / ¢
Let OPT = {04, -+, 04} be the optimal solution Goal: div, (S) = div(OPT) / ¢
Let r be their maximum diversity , r = max div(S;) , Note: divy (S) = r

L

Case 1: one of S; has diversity as good as the optimum: r = 0(div(OPT))
Case 2:: r < 0(div(OPT))

. find a one-to-one mapping u from OPT = {0,,**,0,}t0 S =S5, U---U S, s.t.
dist(o;,u(0;)) < 0(r)

. Replacing o; with u(o;) has still large diversity
. div({u(o;)}) is approximately as good as div({o;})

Distributed Clustering

Clustering: Divide data into groups containing “nearby” points

3
.. ® .
0.9 1 ® o
e .m..
e ..’o .
e ° K
) o | O
< . .
@ 0.6 O # .
'g ° *02.:
2 . 8 eng e o e
S 8 ’ IR PR
A % o
$Ledemma,
9 0q000 e,
o v ‘.‘:‘g.“.‘ :. ...:
3 fraeed e
oo o o °
.1:%!'- : .‘.
%e% %3 v 2
L] L)
g ° .: o:.’:

T T T T T T
-120 -110 -100 -90 -80 -70

Minimize:

k-center : mzaxzngg?f d(ua Cfi) Metric space (d, X)

k-means : Z Z d(u,c;)?

1 UES;

k-median: >) d(u,c)

Clustering via Composable Core-sets

Goal: Find k clusters (and centers) to minimize objective

. partition points into m
machines

. solve on machines
separately

. cluster the centers
obtained (k’ * m)

. assign points to closest
chosen centers

n points

Mapping Core-sets Framework

* How can we ensure cluster sizes are bounded?

. partition points into m machines * . o
. “map” points in machine to a .
.) e o
small #points (k”)) .. (n/m) & % (n/m)
L

. create a “multi-set” instance 3 3, 36

2

° e3

. solve multi-set instance efficiently

Balanced/Capacitated Clustering

Theorem(BhaskaraBatenilLattanziM. NIPS’14): distributed balanced clustering
with

- approx. ratio: (small constant) * (best “single machine” ratio)
- rounds of MapReduce: constant (2)
- memory: ~(n/m)*2 with m machines

Improving Previous Work
e Bahmani, Kumar, Vassilivitskii, Vattani: Parallel K-means++
e Balcan, Enrich, Liang: Core-sets for k-median and k-center

Experiments

Aim: Test algorithm in terms of (a) scalability, and (b) quality of solution obtained
Setup: Two “base” instances and subsamples (used k=1000, #machines = 200)

US gra

xxxxxxxxx

ph: N = x0 Million |

World graph: N = x00 Million

distances: geodesic

distances: geodesic
size of seq. increase in
inst. OPT
US 1/300 1.52
World 1/1000 1.58

Accuracy: analysis pessimistic

Relative running time

100%

80%

60%

40%

20%

25% 50% 75% 100%

Relative size of instance

Scaling: sub-linear

Submodular Functions

* A non-negative set function f defined on
subsets of a ground set N, i.e. f: 2N— R* {0}

* fis submodular iff for any two subsets A and B
— f(A) + f(B) = f(AUB) + f(AB)

e Alternative definition: f is submodular iff for
any two subsets AC B, and element x:
— f(AU {x}) — f(A) = f(BU {x}) - f(B)

Coverage/Submodular Maximization

Submodular Maximization:
* Given: k and a submodular function f
 Goal: Find a set S of k elements &
maximize f(S).

Max-Coverage (special case):
* Given:: k & family of subsets V, ... V_
* Goal: Choose k subsets V’, ... V’, with
the maximum cardinality of union.

Submodular Maximization: Applications

 Many applications for maximizing coverage:
Data summarization, data clustering, column
selection, diversity maximization in search.

* Machine Learning Applications: Exemplar
based clustering, active set selections, graph
cuts and others in [Mirzasoleiman, Karbasi,

Sarkar, Krause NIPS’13]

Application e.g. Exemplar Sampling

k-median-cost(S) = sum of distances of points .%
to their closest centers in S

f(S) = k-median-cost(empty set) — k-median-cost(S)
fis a submodular function
Instead of minimizing median cost, maximize f

Bad News!

* Theorem[IndykMahabadiMahdianM PODS’14]
There exists no better than l‘z%“ approximate
composable core-set for submodular

maximization.

Submodular Maximization: Related Work

Submodular/coverage maximization in MapReduce:

e ChierchettiKkumarTomkins’09: Polylog #rounds

 CoromodeKarloffWirth’10: Better communication in
poly log # rounds

* Belloch et al’13: log? n #rounds

 KumarMoselyVassilivitskiiVattani (SPAA’13): log
#rounds or constant #rounds with log
communication overhead

 Mirzasoleiman, Karbasi, Sarkar, Kraus, NIPS’13:
Greedy algorithm works in two rounds (for special
submodular functions)

Q: is it possible to solve this in one or two rounds of

MapReduce without space/communication overhead?

* IMMM’14 shows that it’s not doable via core-sets.

Randomization comes to rescue

* |nstead of working with worst case
partitioning tosets T,, T,, ..., T_,, suppose we
have a random partitioning of the input.

* We say alg is a-approximate randomized
composable core-set iff

E[f,(ALG(T}) U...UALG(T,n))] > o E [fo(Ti U. .. U Th)]

where the expectation is taken over the
random choice of {T,, T,, ..., T..}

General Framework

Run ALG in each machine

Machine 1

S; Run ALG’ to find the
final size k output set

Machine 2

Selected
elements

©00

Machine m

Good news!

[M. ZadiMoghaddam — STOC’15]

* Theorem [M., ZadiMoghaddam]: There exists
a class of O(1)-approximate randomized
composable core-sets for monotone and non-
monotone submodular maximization.

* |n particular, algorithm Greedy is 1/3-
approximate randomized core-set for

monotone f, and (1/3-1/3m)-approximate for
non-monotone f.

Family of B-nice algorithms

* ALGis B-niceif foranysetT

and element xe T \ ALG(T) we have:

— ALG(T) = ALG(T\{x})

— A(x, ALG(T)) is at most Bf(ALG(T))/k

where A(x, A) is the marginal value of adding x to set A,
i.e. A(x, A) = f(AU{x})-f(A)

* Theorem: A B-nice algorithm is (1/(2+B))-approx

randomized composable core-sets for monotone
fand ((1-1/m)/(2+B))-approx for non-monotone.

Greedy Algorithm

* Given input set T, Greedy returns a size k
output set S as follows:

— Start with an empty set

For k iterations, find an item x e T with maximum
marginal value to S, A(x, S), and add x to S.

 Remark: Greedy is a 1-nice algorithm.

* |n the rest, we analyze algorithm Greedy for a
monotone submodular function f.

Analysis

e Let OPT be the subset of size k with maximum
value of f.

* Let OPT' be OPT N (S,US, ...US), and OPT” be
OPT\OPT’

 We prove that
E[max{f(OPT’), (S,) , f(S,), ..., f(S..)}] = f(OPT)/3

Linearizing marginal contributions of

elements in OPT
* Consider an arbitrary permutation 1t on
elements of OPT

 For each x € OPT, define OPTX to be elements
of OPT that appear before x in 1t

* By definition of A values, we have:
f(OPT) =2, _op7 A(X, OPT¥)

Lower bounding f(OPT>)

f(OPT’) is 2, _ opr A(X, OPT*NOPT’)

Using submodularity, we have:

A(x, OPT*N OPT’) > A(x, OPTX)

Therefore: f(OPT) 22 _,pr A(X, OPTX)

It suffices to upper bound X _,prr A(x, OPTX)

Proof Scheme

Goal: Lower bound max{f(OPT’), f(S,), f(S,), ..., f(S,,)}

OPT’ > Exeow A(x, OPT¥)
Selected

f(OPT) =E <« opt DX, OPT)

OPT) Suffices to upper bound EX copr DX, OPTX)

For each xin T,[1OPT” : A(x, S,) < f(S.)/k
Not Selected
[OPT” Elsis m Exin o (i DX, S;) < max; {f(S;)}

How large can A(x, OPT*) - A(x, S,) be?

Upper bounding A reductions
A(x, OPT*) - A(x, S;)) < A(x, OPT¥) - A(x, OPT* US))

EX . op A(X, OPT*) - A(x, OPT*{JS;) = f(OPT) — (f(OPTUS;) — (S;)) < f(S))

inworst case: 2 ..o D oprry AX, OPTY) - A(X, S) € Dy .. £(S)

in expectation: ElsiSm Exin oet A1 DX, OPTX) - A(x, S,) < Elsis f(S,)/m

Conclusion: E[f(OPT’)] = f(OPT) - max. {f(S;)} — Average, {f(S.)}

Greedy is a 1/3-approximate randomized core-set

Distributed Approximation Factor

Input Set N

Run Greedy in each machine

. Machine 1 |
T Run Greedy to find the
1 > final size k output set
with value > (1-1/e)f(OPT)/3
Machine 2 | (1-1/e)fl)/
T, S, Selected output
. elements / set
S, There exists a solution
T with f(OPT)/3 value.
m
' Machinem |

Take the maximum of max; {f(S;)} and Greedy(S,US,U ...US,,)

to achieve 0.27 approximation factor

Improving Approximation Factors
for Monotone Submodular Functions?

 Hardness Result [M, ZadiMoghaddam]: With
output sizes (|S;|) < k, Greedy, and locally
optimum algorithms are not better than)

approximate randomized core-sets.

 Can we increase the output sizes and get
better results?

Summary of Results
[M. ZadiMoghaddam — STOC’15]

1. A class of 0.33-approximate randomized
composable core-sets of size k for non-
monotone submodular maximization.

2. Hard to go beyond 72 approximation with size
k. Impossible to get better than 1-1/e.

3. 0.58-approximate randomized composable
core-set of size 4k for monotone f. Results in
0.54-approximate distributed algorithm.

4. For small-size composable core-sets of k’
less than k: sgrt{k’/k}-approximate
randomized composable core-set.

Improved Distributed Approximation Factor

Run Greedy, and return 4k items in each machine

Machine 1

Run PseudoGreedy to find the
final size k output set with value
> 0.545f(OPT)

Machine 2

Selected
elements

©00

There exists a size k
subset with value
> 0.585f(OPT)

Machine m

(2-+/2)»approximate Randomized Core-set

e Positive Result [M, ZadiMoghaddam]: If we
increase the output sizes to be 4k, Greedy will
be (2-V2)-0(1) = 0.585-approximate
randomized core-set for a monotone
submodular function.

* Remark: In this result, we send each item to C
random machines instead of one. As a result,
the approximation factors are reduced by a

O(In(C)/C) term.

Algorithm PseudoGreedy

* Forall1<K,<k
— SetK' :=K, /4
— Set K, :=k—K,
— Partition the first 8K’ items of S, into sets {A,, ..., Ag}
— Foreach Lc({], ..., 8}

* Let S’ be union of A, whereiisinlL
* Among selected items, insert K; + (4 - |L|)K’ items to S’ greedily

— If (f(S") > f(S)) then S := S’
e ReturnS

Small-size core-sets

e So far we have discussed core-sets of size k for
problems with output size of k. What if k is too large
and we need a core-set of size k” which is less than k?

* Problem: (Randomized) Composable core-sets for
small-size core-sets for diversity and submodular
maximization.

Small-size core-sets: Some results

* Problem: (Randomized) Composable core-sets for
small-size core-sets for diversity and submodular
maximization.

 Theorem (M.ZadiMoghaddam): There exists a sqrt{k’/k}-
approximate randomized composable core-set for coverage
and submodular maximization of size k’. For non-
randomized core-sets there is a hardness result of k’/k.

Summary: Composable Core-sets

Composable core-set framework

 Divide data into m parts (at random)

 Solve independently for each part

e Combine solutions and solve on the union of these solutions

Also works for streaming and nearest neighbor search

Solves diversity maximization and Balanced clustering (k-
center, k-median and k-means)

Coverage and Submodular maximization

* Impossible for non-randomized composable core-set but
solved via randomized core-sets

Apply to other ML & Graph algorithmic problems: Edges are
partitioned into m parts or edges arrive in a stream (e.g.
random order)

e Maximum and Minimum and Weighted Matching Cut Problems

e Correlation Clustering

e ML problems: Subset column selection

Google NYC Large-scale Graph Mining

1. Algorithms/Tools: Ranking, Pairwise Similarity, Graph
Clustering, Balanced Partitioning, Embedding...
® Aim for scale - Solve for XXXB edges

2. Help product groups use our tools e.g.,
® Ads, Search, Social, YouTube, Maps.

3. Compare MR+DHT, Flume, Pregel, ASYMP:
® Compare for fault-tolerance and scalability
® Public/private real data, synthetic data

4. Algorithmic Research:
® Combined system/algorithms research
® Streaming & local algorithms
® Distributed Optimization e.g. core-sets

Examples of Research done’14 & 15

Algorithms Research, e.g.
® MapReduce/Streaming Algorithmics: Minimize #rounds
® Randomized core-sets for distributed computation ...
Local clustering beyond Cheeger’s Inequality (ICML’13)
Reduce & Aggregate for Personalized Search @ WWW’14
Graph Alignment @VLDB’ 14
Fast algorithms for Public/Private Graphs @KDD’15
Combined system + algorithms research:
® Algorithmic models for MR+DHT, ASYMP
® ASYMP: New graph mining framework

® Based on “ASYnchronous Message Passing”

® Compare with MR, Pregel

® Study its fault-tolerance, and scalability

Graph Mining Frameworks

Applying various frameworks to graph algorithmic
problems

* Iterative MapReduce (Flume):
o More widely fault-tolerant available tool
o Can be optimized with algorithmic tricks
® |Iterative. MapReduce + DHT Service (Flume
o Better speed compared to MR
* Pregel:
o Good for synch. computation w/ many rounds
® ASYMP (ASYnchronous Message-Passing):

o More scalable/More efficient use of CPU
o Asych. self-stabilizing algorithms

e.g. Connected Components

* Connected Components in MR & MR+DHT
* Simple, local algorithms with O(log? n) round complexity
 Communication efficient (#edges non-increasing)

e Use Distributed HashTable Service (DHT) to improve

rounds to O~(log n) [from ~20 to ~5]
e Data: Graphs with ~“XT edges. Public data with 10B edges
* Results:
* MapReduce: 10-20 times faster than Hash-to-Min
* MR+DHT: 20-40 times faster than Hash-to-Min
* ASYMP: A simple algorithm in ASYMP: 25-55 times faster
than Hash-to-Min

KiverisLattanziM.RastogiVassilivitskii: SOCC’14:

ASYMP: Graph Processing via

ASYnchronous Message Passing
® ASYMP: New graph mining framework

® Compare with MapReduce, Pregel
® Computation does not happen in a synchronize
number of rounds
® Fault-tolerance implementation is also
asynchronous
®* More efficient use of CPU cycles
® We study its fault-tolerance and scalability
® |Impressive performance: Simple implementations
of connected component

Ongoing work joint with Fleury and Lattanzi

Algorithms for Public/Private Graphs

* Given: a public graph G(V, E)
 Each node v also has a set of private edges G, not
known to the rest of nodes
* Problem: Solve for each nodevon G, e.g.
* For each v, compute similar nodestovin G, : e.g,
topK nodes based on #common neighbors or PPR
* For each v, compute the cluster that v belongs to
in G,
* Goal: Solve the problem for G first. Then for each v,
post-process in time proportional to /G, /

KDD’15: Chierchetti-Epasto-Kumar-Lattanzi-M.

Concluding Remarks

« Composable Core-sets are useful
* Diversity Maximization: Composable Core-sets
* Clustering Problems: Mapping Core-set
* Submodular/Coverage Maximization: Randomized
Composable Core-sets
* Large-scale Graph Mining
*Modern Graph Algorithms Frameworks:
* E.g. Connected Components in MR and MR+DHT
* ASYMP: Asynchronous Message Passing

* Problems inspired by specific Applications
e E.g. Algorithms for public-private graphs

Applications of composable core-sets

* Distributed Approximation:
— Distribute input between m machines,
— ALG selects set S, = ALG(T,) in machine 1 <i<m,

— Gather the union of selected items, S,US,U..US,,
on a single machine, and select k elements.

e Streaming Models: Partition the sequence of
elements, and simulate the above procedure.

* A class of nearest neighbor search problems

Modern Distributed Algorithmics

* Communication
o Can be the overwhelming cost
o In practice constant factors matter a lot
®* Data Skew:
o Most datasets are heavily tailed
o Naive data distributions can be disastrous
o In synchronous environments must wait for slowest
shard: “The curse of reducer”

* Algorithmic techniques:
o Embarasssingly parallel may still be slow
o Techniques to minimize communication & skew

Core-Set Definition

* Setup

— Set of n points P in d-dimensional
space

— Optimize a function f

Core-Set Definition

* Setup

— Setof n points P in d-dimensional
space

— Optimize a function f

e c-Core-set: Small subset of pointsS c P

which suffices to c-approximate the optimal
solution

fopt(P)
c

* Maximization: < fopt(S) < fopt(P)

Core-Set Definition

Setup

— Set of n points P in d-dimensional
space

— Optimize a function f

c-Core-set: Small subset of pointsS c P
which suffices to c-approximate the optimal
solution

fopel®) fopt (8) < fope(P)

c —_

Maximization:

Example

— Optimization Function: Distance of
the two farthest points

Core-Set Definition

Setup

— Set of n points P in d-dimensional
space

— Optimize a function f

c-Core-set: Small subset of pointsS c P
which suffices to c-approximate the optimal
solution

fopt(P)

Maximization: < fopt(S) < fope(P)

Example

— Optimization Function: Distance of
the two farthest points

— 1-Core-set: Points on the convex hull.

Composable Core-sets

* Setup

— P4,P,, .., P, are set of pointsin ®
d-dimensional space ® ®

— Optimize a function f over their ®
union P. ®

©
® @
&)

Composable Core-sets

Setup

— P4, Py, ..., P, are set of pointsin O
d-dimensional space ¢ ® ®

Optimize a function f over their ®
union P. P ®

c-Composable Core-sets: Subsets of
pointsS; € P;,S, € P,, ...,S, € P,
points such that the solution of the unio ® o
of the core-sets approximates the solutic ®
of the point sets.

* Maximization:

1
ZfOpt(Pl U---uU Pm) < fopt(Sl U---U Sm) = fopt(Pl U---U Pm)

Composable Core-sets

Setup

— P4, Py, ..., P, are set of points in
d-dimensional space

Optimize a function f over their
union P.

c-Composable Core-sets: Subsets of
pointsS; € P;,S, € P,, ..., Sy, € Py,
points such that the solution of the unic
of the core-sets approximates the solutic
of the point sets.

* Maximization:

1
Zfopt(Pl U---uU Pm) < fopt(Sl U---U Sm) = fopt(Pl U---U Pm)

Example: two farthest points

Composable Core-sets

Setup

— P4, Py, ..., P, are set of points in
d-dimensional space

Optimize a function f over their
union P.

c-Composable Core-sets: Subsets of
pointsS; € P;,S, € P,, ..., Sy, € Py,
points such that the solution of the unioc

of the core-sets approximates the solutic
of the point sets.
* Maximization:

1
ZfoPt(Pl U---uU Pm) < fopt(Sl U---U Sm) = fopt(Pl U---U Pm)

Example: two farthest points

Composable Core-sets

* Setup
— P4, Py, ..., P, are set of points in O
d-dimensional space ®
— Optimize a function f over their ®
union P.

* c-Composable Core-sets: Subsets of ° ®
pointsS; € P;,S, € P,,...,S,, C B,
points such that the solution of the unio
of the core-sets approximates the solutic
of the point sets.

* Maximization:

1
EfOPt(Pl U---uU Pm) < fopt(Sl U---U Sm) < fopt(Pl U---U Pm)

 Example: two farthest points

