Randomized Composable Core-sets for Distributed Optimization

Vahab Mirrokni
Google Research, New York

Based on the following papers:
1) Diversity Maximization @PODS’14: w/ Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian
2) Balanced Clustering @NIPS’14: w/ Hossein Bateni, Aditya Bhaskara, Silvio Lattanzi
3) Submodular Maximization @STOC’15: w/ Morteza ZadiMoghaddam
Google NYC Large-scale Graph Mining

1. Algorithms/Tools: Ranking, Pairwise Similarity, Graph Clustering, Balanced Partitioning, Embedding...
 • Aim for scale - Solve for XXXB edges

2. Help product groups use our tools e.g.,
 • Ads, Search, Social, YouTube, Maps.

3. Compare MR+DHT, Flume, Pregel, ASYMP:
 • Compare for fault-tolerance and scalability
 • Public/private real data, synthetic data

4. Algorithmic Research:
 • Combined system/algorithms research
 • Streaming & local algorithms
 • Distributed Optimization e.g. core-sets
Outline of this Talk

• Composable Core-sets are useful
 • Diversity Maximization: Composable Core-sets
 • Clustering Problems: Mapping Core-set
 • Submodular/Coverage Maximization: Randomized Composable Core-sets

• Large-scale Graph Mining
 • Modern Graph Algorithms Frameworks:
 • E.g. Connected Components in MR and MR+DHT
 • ASYMP: ASYnchronous Message Passing
 • Problems inspired by specific Applications
 • E.g. Algorithms for public-private graphs
Processing Big Data

• Extract and process a compact representation of data. Examples:
 – Sampling: focus only on a small subset of data
 – Sketching: compute a small summary of data, e.g. mean, variance, ...
 – Mergeable Summaries: if multiple summaries can be merged while preserving accuracy [Agarwal et al. 2012].

• Composable core-sets [Indyk et al. 2014]
Distributed Optimization Framework

Input Set N

Run ALG in each machine

Machine 1
- T_1
- S_1

Machine 2
- T_2
- S_2

Selected elements
- S_m

output set

Run ALG’ to find the final size k output set
Executive Summary: Composable Core-sets

- Technique for effective distributed algorithm
 - One or Two rounds of Computation
 - Minimal Communication Complexity

- Problems
 - Diversity Maximization
 - Composable Core-sets
 - Clustering Problems
 - Mapping Core-sets
 - Submodular/Coverage Maximization:
 - Randomized Composable Core-sets
Core-sets

Input: A set of points P

Goal: Optimize some function f

For instance find the farthest distance pair of points

Core-set: A subset of points that preserves the optimal solution

For instance Convex hull is a 1-core-set because the farthest pair of points are in the convex hull

In general, we are looking for a small α-core-set S, in other words, a small S with the guarantee $f(S) \geq \alpha f(P)$
Composable Core-sets

- Partition input into several parts T_1, T_2, \ldots, T_m
- In each part, select a subset $S_i \subseteq T_i$
- Take the union of selected sets: $S = S_1 \cup S_2 \cup \ldots \cup S_m$
- Solve the problem on S
- Evaluation: We want set S to represent the original big input well, and preserve the optimum solution approximately.
Formal Definition of Composable Core-sets

• Define $f_k(S') \overset{\text{def}}{=} \max_{S' \subseteq S, |S'| \leq k} f(S')$, e.g. $f_k(N)$ is the value of the optimum solution.

• ALG(T) is the output of algorithm ALG on input set T. Suppose $|\text{ALG}(T)|$ is at most k.

• ALG is α-approximate composable core-set iff for any collection of sets $T_1, T_2, ..., T_m$ we have $f_k(\text{ALG}(T_1) \cup \ldots \cup \text{ALG}(T_m)) \geq \alpha f_k(T_1 \cup \ldots \cup T_m)$
Applications – Streaming Computation

• **Streaming Computation:**
 – Processing sequence of n data elements “on the fly”
 – limited Storage

• **c-Composable Core-set of size k**
 – Chunks of size \sqrt{nk}, thus number of chunks = $\sqrt{n/k}$
Applications – Streaming Computation

• **Streaming Computation:**
 – Processing sequence of n data elements “on the fly”
 – limited Storage

• **c-Composable Core-set of size k**
 – Chunks of size \sqrt{nk}, thus number of chunks = $\sqrt{n/k}$
 – Core-set for each chunk
 – Total Space: $k\sqrt{n/k} + \sqrt{nk} = O(\sqrt{nk})$
Applications – Distributed Systems

• **Streaming Computation**

• **Distributed System:**
 – Each machine holds a block of data.
 – A composable core-set is computed and sent to the server
Applications – Distributed Systems

- Streaming Computation
- Distributed System:
 - Each machine holds a block of data.
 - A composable core-set is computed and sent to the server
- Map-Reduce Model:
 - One round of Map-Reduce
 - $\sqrt{n/k}$ mappers each getting $\sqrt{n}k$ points
 - Mapper computes a composable core-set of size k
 - Will be passed to a single reducer
Problems considered

• **Diversity Maximization**: Find a set S of k points and maximize the sum of pairwise distances i.e. $\text{diversity}(S)$.

• **Capacitated/Balanced Clustering**: Find a set S of k centers and cluster nodes around them while minimizing the sum of distances to S.

• **Coverage/submodular Maximization**: Find a set S of k items & maximize $f(S)$.
Diversity Maximization Problem

• Given: n points in a metric space
• Find a set S of k points
• Goal:

maximize $\text{diversity}(S)$ i.e.

$\text{diversity}(S) = \text{sum of pairwise distances of points in } S.$

• Background: Max Dispersion
 – Halldorson et al studied 7 variants
 – Recently studied by Borodin et al, Abbassi et al’13.
Local Search for Diversity Maximization (KDD’13)

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n} \right)$
 » Perform the swap
- For Remote-Clique
 - Number of rounds: $\log_{1+\frac{\epsilon}{n}} k^2 = O\left(\frac{n}{\epsilon} \log k \right)$
 - Approximation factor is constant.
Local Search for Diversity Maximization (KDD’13)

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of \((1 + \frac{\epsilon}{n}) \)
 » Perform the swap
- For Remote-Clique
 - Number of rounds: \(\log_{\frac{1+\epsilon}{n}} k^2 = O\left(\frac{n}{\epsilon} \log k\right) \)
 - Approximation factor is constant.
Composable Core-sets for Diversity Maximization

• Theorem(IndykMahabadiMahdianM.’14): A local search algorithm computes a constant-factor composable core-set for maximizing sum of pairwise distances.

• Thm(IMMM’14): Greedy Algorithm Computes a 3-composable core-set for maximizing the minimum pairwise distance.
Proof Idea

Let P_1, \ldots, P_m be the set of points, $P = \cup P_i$

Let S_1, \ldots, S_m be their core-sets, $S = \cup S_i$

Let $OPT = \{o_1, \ldots, o_k\}$ be the optimal solution

Let r be their maximum diversity, $r = \max_i \text{div}(S_i)$

Goal: $\text{div}_k(S) \geq \text{div}_k(P) / c$

Goal: $\text{div}_k(S) \geq \text{div}(OPT) / c$

Note: $\text{div}_k(S) \geq r$
Proof Idea

Let P_1, \ldots, P_m be the set of points, $P = \cup P_i$.

Let S_1, \ldots, S_m be their core-sets, $S = \cup S_i$.

Let $OPT = \{o_1, \ldots, o_k\}$ be the optimal solution.

Let r be their maximum diversity, $r = \max_i div(S_i)$.

Goal: $div_k(S) \geq div_k(P) / c$

Goal: $div_k(S) \geq div(OPT) / c$

Note: $div_k(S) \geq r$

Case 1: one of S_i has diversity as good as the optimum: $r \geq O(div(OPT))$

Case 2: $r \leq O(div(OPT))$

- find a one-to-one mapping μ from $OPT = \{o_1, \ldots, o_k\}$ to $S = S_1 \cup \cdots \cup S_m$ s.t.

 \[\text{dist}(o_i, \mu(o_i)) \leq O(r) \]

- Replacing o_i with $\mu(o_i)$ has still large diversity.

- $div(\{\mu(o_i)\})$ is approximately as good as $div(\{o_i\})$.
Proof Idea

Let P_1, \ldots, P_m be the set of points, $P = \bigcup P_i$

Let S_1, \ldots, S_m be their core-sets, $S = \bigcup S_i$

Let $OPT = \{o_1, \ldots, o_k\}$ be the optimal solution

Let r be their maximum diversity, $r = \max_i \text{div}(S_i)$,

Goal: $\text{div}_k(S) \geq \text{div}_k(P) / c$

Goal: $\text{div}_k(S) \geq \text{div}(OPT) / c$

Note: $\text{div}_k(S) \geq r$

Case 1: one of S_i has diversity as good as the optimum: $r \geq O(\text{div}(OPT))$

Case 2: $r \leq O(\text{div}(OPT))$

- find a **one-to-one** mapping μ from $OPT = \{o_1, \ldots, o_k\}$ to $S = S_1 \cup \cdots \cup S_m$ s.t.

 $\text{dist}(o_i, \mu(o_i)) \leq O(r)$

- Replacing o_i with $\mu(o_i)$ has still large diversity
- $\text{div}(\{\mu(o_i)\})$ is approximately as good as $\text{div}(\{o_i\})$
Distributed Clustering

Clustering: Divide data into groups containing “nearby” points

Minimize:

- **k-center:** $\max_{i} \max_{u \in S_i} d(u, c_i)$
- **k-means:** $\sum_{i} \sum_{u \in S_i} d(u, c_i)^2$
- **k-median:** $\sum_{i} \sum_{u \in S_i} d(u, c_i)$

 Metric space (d, X)

 α-approximation algorithm: cost less than $\alpha*OPT$
Clustering via Composable Core-sets

Goal: Find k clusters (and centers) to minimize objective

1. partition points into m machines
2. solve on machines separately
3. cluster the centers obtained ($k' * m$)
4. assign points to closest chosen centers
Mapping Core-sets Framework

- How can we ensure cluster sizes are bounded?

1. partition points into m machines
2. “map” points in machine to a small #points (k')
3. create a “multi-set” instance
4. solve multi-set instance efficiently
Balanced/Capacitated Clustering

Theorem (BhaskaraBateniLattanziM. NIPS’14): distributed balanced clustering with

- approx. ratio: (small constant) * (best “single machine” ratio)
- rounds of MapReduce: constant (2)
- memory: \(\sim (n/m)^2 \) with \(m \) machines

Works for all \(L_p \) **objectives.** (includes k-means, k-median, k-center)

Improving Previous Work
- Bahmani, Kumar, Vassilivitskiiii, Vattani: Parallel K-means++
- Balcan, Enrich, Liang: Core-sets for k-median and k-center
Experiments

Aim: Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Setup: Two “base” instances and subsamples (used $k=1000$, #machines = 200)

<table>
<thead>
<tr>
<th></th>
<th>size of seq. inst.</th>
<th>increase in OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>1/300</td>
<td>1.52</td>
</tr>
<tr>
<td>World</td>
<td>1/1000</td>
<td>1.58</td>
</tr>
</tbody>
</table>

US graph: $N = x0$ Million
World graph: $N = x00$ Million

Accuracy: analysis pessimistic

Scaling: sub-linear
Submodular Functions

• A non-negative set function f defined on subsets of a ground set N, i.e. $f: 2^N \rightarrow \mathbb{R}^+ \cup \{0\}$

• f is submodular iff for any two subsets A and B
 \[f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \]

• Alternative definition: f is submodular iff for any two subsets $A \subseteq B$, and element x:
 \[f(A \cup \{x\}) - f(A) \geq f(B \cup \{x\}) - f(B) \]
Coverage/Submodular Maximization

Submodular Maximization:
• Given: k and a submodular function f
• Goal: Find a set S of k elements & maximize $f(S)$.

Max-Coverage (special case):
• Given: k & family of subsets $V_1 \ldots V_n$
• Goal: Choose k subsets $V'_1 \ldots V'_k$ with the maximum cardinality of union.
Submodular Maximization: Applications

• Many applications for maximizing coverage: Data summarization, data clustering, column selection, diversity maximization in search.

• Machine Learning Applications: Exemplar based clustering, active set selections, graph cuts and others in [Mirzasoleiman, Karbasi, Sarkar, Krause NIPS’13]
Application e.g. Exemplar Sampling

\[k\text{-median-cost}(S) = \text{sum of distances of points to their closest centers in } S \]

\[f(S) = k\text{-median-cost}(\text{empty set}) - k\text{-median-cost}(S) \]

\(f \) is a submodular function

Instead of minimizing median cost, maximize \(f \)
Bad News!

• Theorem[IndykMahabadiMahdianM PODS’14] There exists no better than $\frac{\log k}{\sqrt{k}}$ approximate composable core-set for submodular maximization.
Submodular Maximization: Related Work

Submodular/coverage maximization in MapReduce:
- ChierchettiKumarTomkins’09: Polylog #rounds
- CoromodeKarloffWirth’10: Better communication in poly log # rounds
- Belloch et al’13: $log^2 n$ #rounds
- KumarMoselyVassilivitskiiVattani (SPAA’13): log #rounds or constant #rounds with log communication overhead
- Mirzasoleiman, Karbasi, Sarkar, Kraus, NIPS’13: Greedy algorithm works in two rounds (for special submodular functions)

Q: is it possible to solve this in one or two rounds of MapReduce without space/communication overhead?
- IMMM’14 shows that it’s not doable via core-sets.
Randomization comes to rescue

• Instead of working with worst case partitioning to sets T_1, T_2, \ldots, T_m, suppose we have a random partitioning of the input.

• We say alg is α-approximate randomized composable core-set iff

$$\mathbb{E}[f_k(\text{ALG}(T_1) \cup \ldots \cup \text{ALG}(T_m))] \geq \alpha \cdot \mathbb{E}[f_k(T_1 \cup \ldots \cup T_m)]$$

where the expectation is taken over the random choice of $\{T_1, T_2, \ldots, T_m\}$
General Framework

Input Set N

Machine 1

T₁

Selected elements

S₁

Machine 2

T₂

Run ALG in each machine

Run ALG’ to find the final size k output set

Machine m

Tₘ

S₂

Sₘ

Output set
Good news!

[M. ZadiMoghaddam – STOC’15]

• Theorem [M., ZadiMoghaddam]: There exists a class of $O(1)$-approximate randomized composable core-sets for monotone and non-monotone submodular maximization.

• In particular, algorithm Greedy is $\frac{1}{3}$-approximate randomized core-set for monotone f, and $(\frac{1}{3} - \frac{1}{3m})$-approximate for non-monotone f.
Family of β-nice algorithms

- ALG is β-nice if for any set T and element $x \in T \setminus \text{ALG}(T)$ we have:
 - $\text{ALG}(T) = \text{ALG}(T\setminus\{x\})$
 - $\Delta(x, \text{ALG}(T))$ is at most $\beta f(\text{ALG}(T))/k$
 where $\Delta(x, A)$ is the marginal value of adding x to set A, i.e. $\Delta(x, A) = f(A\cup\{x\})-f(A)$

- Theorem: A β-nice algorithm is $(1/(2+\beta))$-approx randomized composable core-sets for monotone f and $((1-1/m)/(2+\beta))$-approx for non-monotone.
Greedy Algorithm

• Given input set T, Greedy returns a size k output set S as follows:
 – Start with an empty set
 For k iterations, find an item $x \in T$ with maximum marginal value to S, $\Delta(x, S)$, and add x to S.

• Remark: Greedy is a 1-nice algorithm.

• In the rest, we analyze algorithm Greedy for a monotone submodular function f.
Analysis

- Let OPT be the subset of size k with maximum value of f.
- Let $OPT’$ be $OPT \cap (S_1 \cup S_2 \ldots \cup S_m)$, and $OPT’’$ be $OPT \setminus OPT’$
- We prove that
 \[E[\max\{f(OPT’), f(S_1), f(S_2), \ldots, f(S_m)\}] \geq f(OPT)/3 \]
Linearizing marginal contributions of elements in OPT

• Consider an arbitrary permutation \(\pi \) on elements of OPT
• For each \(x \in OPT \), define \(OPT^x \) to be elements of OPT that appear before \(x \) in \(\pi \)
• By definition of \(\Delta \) values, we have:
\[
f(OPT) = \sum_{x \in OPT} \Delta(x, OPT^x)
\]
Lower bounding $f(\text{OPT}^S)$

- $f(\text{OPT}')$ is $\sum_{x \in \text{OPT}'} \Delta(x, \text{OPT}^x \cap \text{OPT}')$
- Using submodularity, we have:
 $\Delta(x, \text{OPT}^x \cap \text{OPT}') \geq \Delta(x, \text{OPT}^x)$
- Therefore: $f(\text{OPT}') \geq \sum_{x \in \text{OPT}'} \Delta(x, \text{OPT}^x)$
- It suffices to upper bound $\sum_{x \in \text{OPT}''} \Delta(x, \text{OPT}^x)$
Goal: Lower bound $\max\{f(OPT'), f(S_1), f(S_2), ..., f(S_m)\}$

$\geq \sum_{x \in OPT'} \Delta(x, OPT^x)$

$f(OPT) = \sum_{x \in OPT} \Delta(x, OPT^x)$

Suffices to upper bound $\sum_{x \in OPT''} \Delta(x, OPT^x)$

For each x in $T_i \cap OPT'' : \Delta(x, S_i) \leq f(S_i)/k$

$\sum_{1 \leq i \leq m} \sum_{x \in OPT'' \cap T_i} \Delta(x, S_i) \leq \max_i \{f(S_i)\}$

How large can $\Delta(x, OPT^x) - \Delta(x, S_i)$ be?
Upper bounding Δ reductions

$$\Delta(x, \text{OPT}^x) - \Delta(x, S_i) \leq \Delta(x, \text{OPT}^x) - \Delta(x, \text{OPT}^x \cup S_i)$$

$$\sum_{x \text{ in OPT}} \Delta(x, \text{OPT}^x) - \Delta(x, \text{OPT}^x \cup S_i) = f(\text{OPT}) - (f(\text{OPT} \cup S_i) - f(S_i)) \leq f(S_i)$$

in worst case: $$\sum_{1 \leq i \leq m} \sum_{x \text{ in OPT'' \cap Ti}} \Delta(x, \text{OPT}^x) - \Delta(x, S_i) \leq \sum_{1 \leq i \leq m} f(S_i)$$

in expectation: $$\sum_{1 \leq i \leq m} \sum_{x \text{ in OPT'' \cap Ti}} \Delta(x, \text{OPT}^x) - \Delta(x, S_i) \leq \sum_{1 \leq i \leq m} f(S_i)/m$$

Conclusion: $$E[f(\text{OPT'})] \geq f(\text{OPT}) - \max_i \{f(S_i)\} - \text{Average}_i \{f(S_i)\}$$

Greedy is a $1/3$-approximate randomized core-set
Distributed Approximation Factor

Run Greedy in each machine

Machine 1

Machine 2

Machine m

Input Set N

Run Greedy to find the final size k output set with value ≥ (1-1/e)f(OPT)/3

Selected elements

output set

There exists a solution with f(OPT)/3 value.

Take the maximum of max_i {f(S_i)} and Greedy(S_1 \cup S_2 \cup \ldots \cup S_m) to achieve 0.27 approximation factor.
Improving Approximation Factors for Monotone Submodular Functions?

• Hardness Result [M, ZadiMoghaddam]: With output sizes ($|S_i|$) ≤ k, Greedy, and locally optimum algorithms are not better than $\frac{1}{2}$ approximate randomized core-sets.

• Can we increase the output sizes and get better results?
Summary of Results

[M. ZadiMoghaddam – STOC’15]

1. A class of 0.33-approximate randomized composable core-sets of size k for non-monotone submodular maximization.

2. Hard to go beyond $\frac{1}{2}$ approximation with size k. Impossible to get better than $1-{1/e}$.

3. 0.58-approximate randomized composable core-set of size $4k$ for monotone f. Results in 0.54-approximate distributed algorithm.

4. For small-size composable core-sets of k' less than k: $\sqrt{\frac{k'}{k}}$-approximate randomized composable core-set.
Improved Distributed Approximation Factor

Run Greedy, and return 4k items in each machine

There exists a size k subset with value $\geq 0.585f(OPT)$

Run PseudoGreedy to find the final size k output set with value $\geq 0.545f(OPT)$
(2 - \sqrt{2})\text{-approximate Randomized Core-set}

• Positive Result [M, ZadiMoghaddam]: If we increase the output sizes to be 4k, Greedy will be (2 - \sqrt{2})-o(1) \geq 0.585\text{-approximate randomized core-set for a monotone submodular function.}

• Remark: In this result, we send each item to C random machines instead of one. As a result, the approximation factors are reduced by a \text{O}(\ln(C)/C) term.
Algorithm PseudoGreedy

• Forall $1 \leq K_2 \leq k$
 – Set $K' := K_2 / 4$
 – Set $K_1 := k - K_2$
 – Partition the first $8K'$ items of S_1 into sets $\{A_1, \ldots, A_8\}$
 – For each $L \subseteq \{1, \ldots, 8\}$
 • Let S' be union of A_i where i is in L
 • Among selected items, insert $K_1 + (4 - |L|)K'$ items to S' greedily
 – If ($f(S') > f(S)$) then $S := S'$

• Return S
Small-size core-sets

• So far we have discussed core-sets of size k for problems with output size of k. What if k is too large and we need a core-set of size k' which is less than k?

• Problem: (Randomized) Composable core-sets for small-size core-sets for diversity and submodular maximization.
Small-size core-sets: Some results

• Problem: (Randomized) Composable core-sets for small-size core-sets for diversity and submodular maximization.

• Theorem (M.ZadiMoghaddam): There exists a $\sqrt{k'/k}$-approximate randomized composable core-set for coverage and submodular maximization of size k'. For non-randomized core-sets there is a hardness result of k'/k.
Summary: Composable Core-sets

• Composable core-set framework
 • Divide data into m parts (at random)
 • Solve independently for each part
 • Combine solutions and solve on the union of these solutions
• Also works for *streaming* and nearest neighbor search
• Solves diversity maximization and Balanced clustering (k-center, k-median and k-means)
• Coverage and Submodular maximization
 • Impossible for non-randomized composable core-set but solved via randomized core-sets
• Apply to other ML & Graph algorithmic problems: Edges are partitioned into m parts or edges arrive in a stream (e.g. random order)
 • Maximum and Minimum and Weighted Matching Cut Problems
 • Correlation Clustering
 • ML problems: Subset column selection
Google NYC Large-scale Graph Mining

1. Algorithms/Tools: Ranking, Pairwise Similarity, Graph Clustering, Balanced Partitioning, Embedding...
 • Aim for scale - Solve for XXXB edges

2. Help product groups use our tools e.g.,
 • Ads, Search, Social, YouTube, Maps.

3. Compare MR+DHT, Flume, Pregel, ASYMP:
 • Compare for fault-tolerance and scalability
 • Public/private real data, synthetic data

4. Algorithmic Research:
 • Combined system/algorithms research
 • Streaming & local algorithms
 • Distributed Optimization e.g. core-sets
Examples of Research done’14 & ’15

Algorithms Research, e.g.
- MapReduce/Streaming Algorithmics: Minimize # rounds
- Randomized core-sets for distributed computation ...
- Local clustering beyond Cheeger’s Inequality (ICML’13)
- Reduce & Aggregate for Personalized Search @WWW’14
- Graph Alignment @VLDB’14
- Fast algorithms for Public/Private Graphs @KDD’15

Combined system + algorithms research:
- Algorithmic models for MR+DHT, ASYMP
- ASYMP: New graph mining framework
 - Based on “ASYnchronous Message Passing”
 - Compare with MR, Pregel
 - Study its fault-tolerance, and scalability
Graph Mining Frameworks

Applying various frameworks to graph algorithmic problems

• Iterative MapReduce (Flume):
 o More widely fault-tolerant available tool
 o Can be optimized with algorithmic tricks

• Iterative. MapReduce + DHT Service (Flume):
 o Better speed compared to MR

• Pregel:
 o Good for synch. computation w/ many rounds

• ASYMP (ASYnchronous Message-Passing):
 o More scalable/More efficient use of CPU
 o Asych. self-stabilizing algorithms
e.g. Connected Components

- Connected Components in MR & MR+DHT
 - Simple, local algorithms with $O(\log^2 n)$ round complexity
 - Communication efficient (#edges non-increasing)
- Use Distributed HashTable Service (DHT) to improve
 # rounds to $O(\~ \log n)$ [from ~ 20 to ~ 5]
- Data: Graphs with $\sim XT$ edges. Public data with 10B edges
- Results:
 - MapReduce: 10-20 times faster than Hash-to-Min
 - MR+DHT: 20-40 times faster than Hash-to-Min
 - ASYMP: A simple algorithm in ASYMP: 25-55 times faster than Hash-to-Min

KiverisLattanziM.RastogiVassilivitskii: SOCC’14:
ASYMP: Graph Processing via ASYNchronous Message Passing

• ASYMP: New graph mining framework
• Compare with MapReduce, Pregel
 • Computation does not happen in a synchronize number of rounds
 • Fault-tolerance implementation is also asynchronous
• More efficient use of CPU cycles
• We study its fault-tolerance and scalability
• Impressive performance: Simple implementations of connected component

Ongoing work joint with Fleury and Lattanzi
Algorithms for Public/Private Graphs

• Given: a public graph $G(V, E)$
• Each node v also has a set of private edges G_v not known to the rest of nodes
• Problem: Solve for each node v on G_v, e.g.
 • For each v, compute similar nodes to v in G_v: e.g., topK nodes based on #common neighbors or PPR
 • For each v, compute the cluster that v belongs to in G_v
• Goal: Solve the problem for G first. Then for each v, post-process in time proportional to $|G_v|$

KDD’15: Chierchetti-Epasto-Kumar-Lattanzi-M.
Concluding Remarks

• **Composable Core-sets are useful**
 • Diversity Maximization: Composable Core-sets
 • Clustering Problems: Mapping Core-set
 • Submodular/Coverage Maximization: Randomized Composable Core-sets

• **Large-scale Graph Mining**
 • Modern Graph Algorithms Frameworks:
 • E.g. Connected Components in MR and MR+DHT
 • ASYMP: Asynchronous Message Passing
 • Problems inspired by specific Applications
 • E.g. Algorithms for public-private graphs
Applications of composable core-sets

• Distributed Approximation:
 – Distribute input between m machines,
 – ALG selects set $S_i = \text{ALG}(T_i)$ in machine $1 \leq i \leq m$,
 – Gather the union of selected items, $S_1 \cup S_2 \cup \ldots \cup S_m$, on a single machine, and select k elements.

• Streaming Models: Partition the sequence of elements, and simulate the above procedure.

• A class of nearest neighbor search problems
Modern Distributed Algorithmics

• Communication
 o Can be the overwhelming cost
 o In practice constant factors matter a lot

• Data Skew:
 o Most datasets are heavily tailed
 o Naïve data distributions can be disastrous
 o In synchronous environments must wait for slowest shard: “The curse of reducer”

• Algorithmic techniques:
 o Embarassingly parallel may still be slow
 o Techniques to minimize communication & skew
Core-Set Definition

• **Setup**
 – Set of n points P in d-dimensional space
 – Optimize a function f
Core-Set Definition

• **Setup**
 - Set of n points P in d-dimensional space
 - Optimize a function f

• **c-Core-set:** Small subset of points $S \subset P$ which suffices to c-approximate the optimal solution

• Maximization: $\frac{f_{opt}(P)}{c} \leq f_{opt}(S) \leq f_{opt}(P)$
Core-Set Definition

- **Setup**
 - Set of \(n \) points \(P \) in \(d \)-dimensional space
 - Optimize a function \(f \)

- **c-Core-set:** Small subset of points \(S \subseteq P \) which suffices to \(c \)-approximate the optimal solution

- Maximization: \(\frac{f_{opt}(P)}{c} \leq f_{opt}(S) \leq f_{opt}(P) \)

- **Example**
 - Optimization Function: Distance of the two farthest points
Core-Set Definition

- **Setup**
 - Set of \(n \) points \(P \) in \(d \)-dimensional space
 - Optimize a function \(f \)

- **c-Core-set:** Small subset of points \(S \subset P \) which suffices to \(c \)-approximate the optimal solution

- Maximization: \(\frac{f_{opt}(P)}{c} \leq f_{opt}(S) \leq f_{opt}(P) \)

- **Example**
 - Optimization Function: Distance of the two farthest points
 - 1-Core-set: Points on the convex hull.
Composable Core-sets

- **Setup**
 - $P_1, P_2, ..., P_m$ are set of points in d-dimensional space
 - Optimize a function f over their union P.
Composable Core-sets

• **Setup**
 - $P_1, P_2, ..., P_m$ are set of points in d-dimensional space
 - Optimize a function f over their union P.

• **c-Composable Core-sets:** Subsets of points $S_1 \subseteq P_1, S_2 \subseteq P_2, ..., S_m \subseteq P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.

• Maximization:

\[
\frac{1}{c} f_{opt}(P_1 \cup \cdots \cup P_m) \leq f_{opt}(S_1 \cup \cdots \cup S_m) \leq f_{opt}(P_1 \cup \cdots \cup P_m)
\]
Composable Core-sets

• **Setup**
 - \(P_1, P_2, \ldots, P_m \) are set of points in \(d \)-dimensional space
 - Optimize a function \(f \) over their union \(P \).

• **\(c \)-Composable Core-sets:** Subsets of points \(S_1 \subset P_1, S_2 \subset P_2, \ldots, S_m \subset P_m \) points such that the solution of the union of the core-sets approximates the solution of the point sets.
 - Maximization:
 \[
 \frac{1}{c} f_{\text{opt}}(P_1 \cup \cdots \cup P_m) \leq f_{\text{opt}}(S_1 \cup \cdots \cup S_m) \leq f_{\text{opt}}(P_1 \cup \cdots \cup P_m)
 \]
 - **Example:** two farthest points
Composable Core-sets

- **Setup**
 - $P_1, P_2, ..., P_m$ are set of points in d-dimensional space
 - Optimize a function f over their union P.

- **c-Composable Core-sets:** Subsets of points $S_1 \subseteq P_1, S_2 \subseteq P_2, ..., S_m \subseteq P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.

- Maximization:
 \[
 \frac{1}{c} f_{opt}(P_1 \cup \cdots \cup P_m) \leq f_{opt}(S_1 \cup \cdots \cup S_m) \leq f_{opt}(P_1 \cup \cdots \cup P_m)
 \]

- **Example:** two farthest points
Composable Core-sets

- **Setup**
 - P_1, P_2, \ldots, P_m are set of points in d-dimensional space
 - Optimize a function f over their union P.

- **c-Composable Core-sets:** Subsets of points $S_1 \subseteq P_1$, $S_2 \subseteq P_2$, \ldots, $S_m \subseteq P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.

- Maximization:
 \[
 \frac{1}{c} f_{opt}(P_1 \cup \cdots \cup P_m) \leq f_{opt}(S_1 \cup \cdots \cup S_m) \leq f_{opt}(P_1 \cup \cdots \cup P_m)
 \]

- **Example:** two farthest points