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“640k ought to be enough for anybody.”
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Graph mining challenges

Can be implicitly defined
* Similarities

Nodes/edges can change
* Social connections

Can have special properties
* Heavy-tailed, small-world, bipartite, ...

Can be noisy
* Some edges missing, some spurious




kaj are gratpks hard?

Poor locality of memory access

* Neighbors of a node can be arbitrarily located in
memory

Degree of parallelism change during execution
* Can depend on sub-graph structures

Nodes by themselves do not do much work

* Edge interactions form the bulk of many graph
algorithms




Graph skream

Graph arrives as an edge stream
* No random access to graph
* Can be new edge or updates to existing edges

Typically single CPU

Very limited amount of RAM
* Some cases, only Mb even for Tb+ data

°* May not be able to store any portion of the graph in
memory

* Graph size may be infinite/unknown in advance

Ideally, make a single pass over the graph
* In some cases, can take multiple rounds




Gr&yh clustering

How to solve large-scale clustering problems on
graphs?

Many flavors of clustering definitions

* k-means, k-median, densest subgraphs, correlation
clustering, ..

Focus on algorithms
* with provable guarantees
* that run in a small number of rounds




1. Correlation clustering (CC)

Given a complete graph where each edge 1s +1 or -1,
partition the nodes to minimize the total number of
mistakes

|[Bansal, A. Blum, Chawla]
Number of clusters not specified a priori
Often, missing edges are interpreted -1

Machine learning / data mining applications
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The Pivot algorithm

A simple 1iterative algorithm
Pick a node p uniformly at random

Create a cluster around p by including all nodes connected
top by a +1 edge

Delete the nodes in this cluster

Repeat with the remaining graph

|Ailon, Charikar, Newman]




Eq: Plvol Algorithm
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Eq: Pivol Algorithm
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Bad btriangles
O

@,

A bad triangle 1s a triple of nodes
— with two positive edges and one
( ) negative edge




‘Prapm&es

Claim [ACN]. Pivot gives (1in expectation) a 3-
approximation to minimizing the number of
mistakes

Proof focuses on bad triangles and uses LP duality

The algorithm 1s inherently sequential




A bad example

P1ivot takes €2(n) rounds




Parallel Pivot

A parallel version of Pivot Algorithm
* runs in O(log? n) rounds
® obtains a 3+& approximation

|Chierichetti, Dalvi, Kumar]

Easily implemented 1n streaming (also Map-Reduce,
Preoelisse)




Parallel Pivot Algorithm

While the graph is not empty
Let D* be the current maximum positive degree
Activate each node independently wp &/D*

Deactivate nodes connected to other active nodes by
+1 edges

The remaining nodes are pivots
Create cluster around each pivot as before
Remove the clusters
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‘Propm&es

Claim. Parallel Pivot halves the maximum degree D~
after (1/€) log n rounds

Algorithm terminates in (1/€) (log n) (log D) rounds

Claim. Induces a close to uniform marginal
distribution of the pivots

Can extend the LP dual-based proof of [ACN]| to show
3 + & approximation




Halving max deqree

Event e(v): exactly one positive neighbor w of node v
gets activated and no positive neighbor of w gets
activated

* w becomes a pivot and hence v 1s removed
Key property: Prle(v)] > €/8 if deg™(v) > D*/2

After logarithmic number of rounds, either v’s
positive degree halves or v will end up 1n a cluster




Different sampling?

Other natural sampling methods can produce a non-

constant approximation
node u is activated wp deg(u)
® Eg, star of degree n

node u 1s activated wp 1/deg(u) [Luby]

® Eg, a clique matched to an independent set of nodes
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Different sampling?

Other uniform sampling approaches might require

more rounds

node u 1s activated wp << 1/D*

® few active nodes, few pivots, many rounds
node u 1s activated wp >> 1/D"

® many active nodes, few pivots, many rounds

® pivots far from uniform distribution
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2. Densest subgraph (DSG)

Find densest subgraph in undirected graphs

* Density of a subgraph 1s the ratio of the number of
edges to the number of nodes

* Motivation: Community finding

* c-approximation = when density is at most ¢ times
worse then the best density

Density(@ =5/4=1.2




Complexity of DSG

DSG can be computed 1n polynomaial time
* Using parametric flows or LP relaxation

Natural variants of DSG are hard
* k-DSG, subgraph with exactly k nodes

Charikar’s 2-approximation algorithm

* Iteratively remove the lowest degree node until the
graph becomes empty

* One of the intermediate graphs 1s a 2-approx.

These algorithms are hard to scale




DSG: Algorithm

A simple 1iterative algorithm
Compute the average degree
Delete all nodes whose degree is (1+&) below the average
Keep track of the density at each step
Output the densest graph seen during the iteration

|[Bahmani, Kumar, Vassilvitskii]




DSCr: Exam[pt@.

density = 16/11 = 1.45; average degree = 2*density = 2.90
Best density = 1.45




DSG: Example (conkd)

density = 16/11 = 1.45; average degree = 2*density = 2.90
Best density = 1.45




DSG: Example (conkd)

density = 9/5 = 1.8; average degree = 2*density = 3.6
Best density = 1.8




DSG: Example (conkd)

density = 9/5 = 1.8; average degree = 2*density = 3.6
Best density = 1.8




DSG: Example (contd)

density = 3/3 = 1; average degree = 2*density = 2
Best density = 1.8




DSG: Example (contd)

Best density = 1.8




Remaining nodes

DSGr: Performance
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‘Propm&es

Claim. Algorithm makes O(log,, ¢ n) passes and uses O(n)
memory

Use an averaging argument

Claim. Output is a (2+&)-approx.

* = optimal induced subgraph, p* =
density(V*)

Each node in V* has degree at least p”
(optimality)

V’ = first subgraph where we are about
to remove a node in V*




Concluding thoughts

Non-traditional computational models are key to
managing big graphs

* Novel algorithmic i1deas

* New programming paradigms

Round complexity is important

® One-pass 2-approximation algorithm for DSG
[Bhattacharya, Henzinger, Nanongkai, Tsourakakis]

* Correlation clustering?
* k-means**?

Managing heavy tail, data skew, asynchrony,
communication, ...




Questions/Comments

ravi.k93 @ gmail




