Clustering in a Few Rounds

Ravi Kumar Google

Data

Graph mining challenges

- Can be implicitly defined
 - Similarities
- Nodes/edges can change
 - Social connections
- Can have special properties
 - Heavy-tailed, small-world, bipartite, ...
- Can be noisy
 - Some edges missing, some spurious

Why are graphs hard?

- Poor locality of memory access
 - Neighbors of a node can be arbitrarily located in memory
- Degree of parallelism change during execution
 - Can depend on sub-graph structures
- Nodes by themselves do not do much work
 - Edge interactions form the bulk of many graph algorithms

Graph stream

- Graph arrives as an edge stream
 - No random access to graph
 - Can be new edge or updates to existing edges
- Typically single CPU
- Very limited amount of RAM
 - Some cases, only Mb even for Tb+ data
 - May not be able to store any portion of the graph in memory
 - Graph size may be infinite/unknown in advance
- Ideally, make a single pass over the graph
 - In some cases, can take multiple rounds

Graph clustering

- How to solve large-scale clustering problems on graphs?
- Many flavors of clustering definitions
 - k-means, k-median, densest subgraphs, correlation clustering, ..
- Focus on algorithms
 - with provable guarantees
 - that run in a small number of rounds

1. Correlation clustering (CC)

• Given a complete graph where each edge is +1 or -1, partition the nodes to minimize the total number of mistakes

[Bansal, A. Blum, Chawla]

- Number of clusters not specified a priori
- Often, missing edges are interpreted -1
- Machine learning / data mining applications

Eg: 0 mistakes

Eg: 1 mistake

The Pivot algorithm

A simple iterative algorithm

Pick a node p uniformly at random

Create a cluster around p by including all nodes connected to p by a +1 edge

Delete the nodes in this cluster

Repeat with the remaining graph

[Ailon, Charikar, Newman]

Bad triangles

Properties

Claim [ACN]. Pivot gives (in expectation) a 3-approximation to minimizing the number of mistakes

Proof focuses on bad triangles and uses LP duality

The algorithm is inherently sequential

A bad example

Pivot takes $\Omega(n)$ rounds

Parallel Pivot

- A parallel version of Pivot Algorithm
 - runs in O(log² n) rounds
 - obtains a 3+E approximation

[Chierichetti, Dalvi, Kumar]

• Easily implemented in streaming (also Map-Reduce, Pregel, ...)

Parallel Pivot Algorithm

While the graph is not empty

- Let D⁺ be the current maximum positive degree
- Activate each node independently wp E/D+
- Deactivate nodes connected to other active nodes by +1 edges
- The remaining nodes are pivots
- Create cluster around each pivot as before
- Remove the clusters

 $D^{+} = 2$

Properties

Claim. Parallel Pivot halves the maximum degree D^+ after (1/ ϵ) log n rounds

Algorithm terminates in $(1/\xi)$ (log n) (log D⁺) rounds

Claim. Induces a close to uniform marginal distribution of the pivots

Can extend the LP dual-based proof of [ACN] to show 3 + E approximation

Halving max degree

- Event e(v): exactly one positive neighbor w of node v gets activated and no positive neighbor of w gets activated
 - w becomes a pivot and hence v is removed
- Key property: $Pr[e(v)] > \varepsilon/8$ if $deg^+(v) > D^+/2$
- After logarithmic number of rounds, either v's positive degree halves or v will end up in a cluster

Different sampling?

Other natural sampling methods can produce a nonconstant approximation

- node u is activated wp deg(u)
 - Eg, star of degree n
- node u is activated wp 1/deg(u) [Luby]
 - Eg, a clique matched to an independent set of nodes

Eg. inverse degree

Algorithm vs Optimum

Different sampling?

Other uniform sampling approaches might require more rounds

- node u is activated wp << 1/D+
 - few active nodes, few pivots, many rounds
- node u is activated wp >> 1/D+
 - many active nodes, few pivots, many rounds
 - pivots far from uniform distribution

Twitter Dataset

2. Densest subgraph (DSG)

- Find densest subgraph in undirected graphs
 - Density of a subgraph is the ratio of the number of edges to the number of nodes
 - Motivation: Community finding
 - c-approximation = when density is at most c times worse then the best density

Density(\bigcirc) = 5/4 = 1.2

Complexity of DSG

- DSG can be computed in polynomial time
 - Using parametric flows or LP relaxation
- Natural variants of DSG are hard
 - k-DSG, subgraph with exactly k nodes
- Charikar's 2-approximation algorithm
 - Iteratively remove the lowest degree node until the graph becomes empty
 - One of the intermediate graphs is a 2-approx.
- These algorithms are hard to scale

DSG: Algorithm

A simple iterative algorithm

Compute the average degree

Delete all nodes whose degree is (1+E) below the average

Keep track of the density at each step

Output the densest graph seen during the iteration

[Bahmani, Kumar, Vassilvitskii]

DSG: Example

density = 16/11 = 1.45; average degree = 2*density = 2.90 Best density = 1.45

density = 16/11 = 1.45; average degree = 2*density = 2.90 Best density = 1.45

density = 9/5 = 1.8; average degree = 2*density = 3.6Best density = 1.8

density = 9/5 = 1.8; average degree = 2*density = 3.6 Best density = 1.8

density = 3/3 = 1; average degree = 2*density = 2 Best density = 1.8

Best density = 1.8

DSG: Performance

Properties

Claim. Algorithm makes $O(\log_{1+\xi} n)$ passes and uses O(n) memory

Use an averaging argument

Claim. Output is a $(2+\xi)$ -approx.

V* = optimal induced subgraph, p* = density(V*)

Each node in V* has degree at least p* (optimality)

V' = first subgraph where we are about to remove a node in V*

Concluding thoughts

- Non-traditional computational models are key to managing big graphs
 - Novel algorithmic ideas
 - New programming paradigms
- Round complexity is important
 - One-pass 2-approximation algorithm for DSG [Bhattacharya, Henzinger, Nanongkai, Tsourakakis]
 - Correlation clustering?
 - k-means++?
- Managing heavy tail, data skew, asynchrony, communication, ...

Thank you!

Questions/Comments

ravi.k53@gmail