

Capacity (GB)

“640k ought to be enough for anybody.”

10000 g T

1000

100

10

0.1

0.01

1985.1

1990.1

1995.1

2000.1

2005.1

2010.1

2015.:

Graph mining challenges

Can be implicitly defined
* Similarities

Nodes/edges can change
* Social connections

Can have special properties
* Heavy-tailed, small-world, bipartite, ...

Can be noisy
* Some edges missing, some spurious

kaj are gratpks hard?

Poor locality of memory access

* Neighbors of a node can be arbitrarily located in
memory

Degree of parallelism change during execution
* Can depend on sub-graph structures

Nodes by themselves do not do much work

* Edge interactions form the bulk of many graph
algorithms

Graph skream

Graph arrives as an edge stream
* No random access to graph
* Can be new edge or updates to existing edges

Typically single CPU

Very limited amount of RAM
* Some cases, only Mb even for Tb+ data

°* May not be able to store any portion of the graph in
memory

* Graph size may be infinite/unknown in advance

Ideally, make a single pass over the graph
* In some cases, can take multiple rounds

Gr&yh clustering

How to solve large-scale clustering problems on
graphs?

Many flavors of clustering definitions

* k-means, k-median, densest subgraphs, correlation
clustering, ..

Focus on algorithms
* with provable guarantees
* that run in a small number of rounds

1. Correlation clustering (CC)

Given a complete graph where each edge 1s +1 or -1,
partition the nodes to minimize the total number of
mistakes

|[Bansal, A. Blum, Chawla]
Number of clusters not specified a priori
Often, missing edges are interpreted -1

Machine learning / data mining applications

© miskalees

’.
o

N a
N
"l
7

-
“

|III-I..'

1 mistalee

’.
o

S #
-
7l
7

The Pivot algorithm

A simple 1iterative algorithm
Pick a node p uniformly at random

Create a cluster around p by including all nodes connected
top by a +1 edge

Delete the nodes in this cluster

Repeat with the remaining graph

|Ailon, Charikar, Newman]

Eq: Plvol Algorithm

Eq: Plvol Algorithm

Eq: Pivol Algorithm

O O

Eq: Pivol Algorithm

Eq: Pivol Algorithm

Eq: Pivol Algorithm

Eq: Pivol Algorithm

Bad btriangles
O

@,

A bad triangle 1s a triple of nodes
— with two positive edges and one
() negative edge

‘Prapm&es

Claim [ACN]. Pivot gives (1in expectation) a 3-
approximation to minimizing the number of
mistakes

Proof focuses on bad triangles and uses LP duality

The algorithm 1s inherently sequential

A bad example

P1ivot takes €2(n) rounds

Parallel Pivot

A parallel version of Pivot Algorithm
* runs in O(log? n) rounds
® obtains a 3+& approximation

|Chierichetti, Dalvi, Kumar]

Easily implemented 1n streaming (also Map-Reduce,
Preoelisse)

Parallel Pivot Algorithm

While the graph is not empty
Let D* be the current maximum positive degree
Activate each node independently wp &/D*

Deactivate nodes connected to other active nodes by
+1 edges

The remaining nodes are pivots
Create cluster around each pivot as before
Remove the clusters

£ Xan PL@.

CO—C)
O O

£ Xan PL@.

O—CQ)
O O

£ Xan PL@.

CO—C)
O O

Exam[yt@.

29

E:xamlat@.

I.‘ 4 ~~
% ' “~~
' DR .
1 'S
1 T~
~.
1 P ol i
1
]
[] I iy
I 4'——
L 4
[] S 4
P
! P 14
’ 4 oh 4
2 J %
8 p 4’

‘Propm&es

Claim. Parallel Pivot halves the maximum degree D~
after (1/€) log n rounds

Algorithm terminates in (1/€) (log n) (log D) rounds

Claim. Induces a close to uniform marginal
distribution of the pivots

Can extend the LP dual-based proof of [ACN]| to show
3 + & approximation

Halving max deqree

Event e(v): exactly one positive neighbor w of node v
gets activated and no positive neighbor of w gets
activated

* w becomes a pivot and hence v 1s removed
Key property: Prle(v)] > €/8 if deg™(v) > D*/2

After logarithmic number of rounds, either v’s
positive degree halves or v will end up 1n a cluster

Different sampling?

Other natural sampling methods can produce a non-

constant approximation
node u is activated wp deg(u)
® Eg, star of degree n

node u 1s activated wp 1/deg(u) [Luby]

® Eg, a clique matched to an independent set of nodes

£q. inverse degree

OO

e vie
R0

OO

Algorithm vs Optimum

1 2o
A v_._.~A v-
|
[} J
U
’
. & &
’ 1
' 7

Different sampling?

Other uniform sampling approaches might require

more rounds

node u 1s activated wp << 1/D*

® few active nodes, few pivots, many rounds
node u 1s activated wp >> 1/D"

® many active nodes, few pivots, many rounds

® pivots far from uniform distribution

Remaining Elements

45M

40M

35M

30M

25M

20M

15M

10M

5M

oM

Twitkter Dakasekt

41M nodes, 2.5B positive edges

20 40 60 80 100 120
Ilteration

140

2. Densest subgraph (DSG)

Find densest subgraph in undirected graphs

* Density of a subgraph 1s the ratio of the number of
edges to the number of nodes

* Motivation: Community finding

* c-approximation = when density is at most ¢ times
worse then the best density

Density(@ =5/4=1.2

Complexity of DSG

DSG can be computed 1n polynomaial time
* Using parametric flows or LP relaxation

Natural variants of DSG are hard
* k-DSG, subgraph with exactly k nodes

Charikar’s 2-approximation algorithm

* Iteratively remove the lowest degree node until the
graph becomes empty

* One of the intermediate graphs 1s a 2-approx.

These algorithms are hard to scale

DSG: Algorithm

A simple 1iterative algorithm
Compute the average degree
Delete all nodes whose degree is (1+&) below the average
Keep track of the density at each step
Output the densest graph seen during the iteration

|[Bahmani, Kumar, Vassilvitskii]

DSCr: Exam[pt@.

density = 16/11 = 1.45; average degree = 2*density = 2.90
Best density = 1.45

DSG: Example (conkd)

density = 16/11 = 1.45; average degree = 2*density = 2.90
Best density = 1.45

DSG: Example (conkd)

density = 9/5 = 1.8; average degree = 2*density = 3.6
Best density = 1.8

DSG: Example (conkd)

density = 9/5 = 1.8; average degree = 2*density = 3.6
Best density = 1.8

DSG: Example (contd)

density = 3/3 = 1; average degree = 2*density = 2
Best density = 1.8

DSG: Example (contd)

Best density = 1.8

Remaining nodes

DSGr: Performance

1e+09 ¢
1e+08 |
1e+07 |
1€+06 |
100000 }
10000 |
1000 }
100 |

10

N

IM: Remaining graph vs iterations

I |

|

6 8

itaratinne

10

12

‘Propm&es

Claim. Algorithm makes O(log,, ¢ n) passes and uses O(n)
memory

Use an averaging argument

Claim. Output is a (2+&)-approx.

* = optimal induced subgraph, p* =
density(V*)

Each node in V* has degree at least p”
(optimality)

V’ = first subgraph where we are about
to remove a node in V*

Concluding thoughts

Non-traditional computational models are key to
managing big graphs

* Novel algorithmic i1deas

* New programming paradigms

Round complexity is important

® One-pass 2-approximation algorithm for DSG
[Bhattacharya, Henzinger, Nanongkai, Tsourakakis]

* Correlation clustering?
* k-means**?

Managing heavy tail, data skew, asynchrony,
communication, ...

Questions/Comments

ravi.k93 @ gmail

