
Clustering
in a Few
Rounds

Ravi Kumar
Google

Data
“640k ought to be enough for anybody.”

Mb

Gb

Tb

Pb

Graph mining challenges

• Can be implicitly defined
• Similarities

• Nodes/edges can change
• Social connections

• Can have special properties
• Heavy-tailed, small-world, bipartite, ...

• Can be noisy
• Some edges missing, some spurious

3

Why are graphs hard?
• Poor locality of memory access

• Neighbors of a node can be arbitrarily located in
memory

• Degree of parallelism change during execution
• Can depend on sub-graph structures

• Nodes by themselves do not do much work
• Edge interactions form the bulk of many graph

algorithms

4

Graph stream
• Graph arrives as an edge stream

• No random access to graph
• Can be new edge or updates to existing edges

• Typically single CPU

• Very limited amount of RAM
• Some cases, only Mb even for Tb+ data
• May not be able to store any portion of the graph in

memory
• Graph size may be infinite/unknown in advance

• Ideally, make a single pass over the graph
• In some cases, can take multiple rounds

Graph clustering
• How to solve large-scale clustering problems on

graphs?

• Many flavors of clustering definitions
• k-means, k-median, densest subgraphs, correlation

clustering, ..

• Focus on algorithms
• with provable guarantees
• that run in a small number of rounds

6

1. Correlation clustering (CC)

• Given a complete graph where each edge is +1 or -1,
partition the nodes to minimize the total number of
mistakes
[Bansal, A. Blum, Chawla]

• Number of clusters not specified a priori

• Often, missing edges are interpreted -1

• Machine learning / data mining applications

7

Eg: 0 mistakes

8

Eg: 1 mistake

9

The Pivot algorithm
A simple iterative algorithm

Pick a node p uniformly at random
Create a cluster around p by including all nodes connected
to p by a +1 edge
Delete the nodes in this cluster
Repeat with the remaining graph

[Ailon, Charikar, Newman]

10

Eg: Pivot Algorithm

11

Eg: Pivot Algorithm

p

12

Eg: Pivot Algorithm

13

p

Eg: Pivot Algorithm

14

p

Eg: Pivot Algorithm

15

p

Eg: Pivot Algorithm

16

Eg: Pivot Algorithm

17

Bad triangles

18

A bad triangle is a triple of nodes
with two positive edges and one
negative edge

Properties
Claim [ACN]. Pivot gives (in expectation) a 3-
approximation to minimizing the number of
mistakes

Proof focuses on bad triangles and uses LP duality

The algorithm is inherently sequential

19

A bad example

20

Pivot takes Ω(n) rounds

• A parallel version of Pivot Algorithm
• runs in O(log2 n) rounds
• obtains a 3+Ɛ approximation

[Chierichetti, Dalvi, Kumar]

• Easily implemented in streaming (also Map-Reduce,
Pregel, ...)

Parallel Pivot

21

Parallel Pivot Algorithm

While the graph is not empty
Let D+ be the current maximum positive degree
Activate each node independently wp Ɛ/D+

Deactivate nodes connected to other active nodes by
+1 edges
The remaining nodes are pivots
Create cluster around each pivot as before
Remove the clusters

22

Example

23

Example

24

D+ = 2

Example

25

Example

26

Example

27

Example

28

Example

29

Example

30

Example

31

Claim. Parallel Pivot halves the maximum degree D+

after (1/Ɛ) log n rounds

Algorithm terminates in (1/Ɛ) (log n) (log D+) rounds

Claim. Induces a close to uniform marginal

distribution of the pivots

Can extend the LP dual-based proof of [ACN] to show

3 + Ɛ approximation

Properties

32

Halving max degree
• Event e(v): exactly one positive neighbor w of node v

gets activated and no positive neighbor of w gets
activated
• w becomes a pivot and hence v is removed

• Key property: Pr[e(v)] > Ɛ/8 if deg+(v) > D+/2

• After logarithmic number of rounds, either v’s
positive degree halves or v will end up in a cluster

33

Other natural sampling methods can produce a non-

constant approximation

• node u is activated wp deg(u)

• Eg, star of degree n

• node u is activated wp 1/deg(u) [Luby]

• Eg, a clique matched to an independent set of nodes

Different sampling?

34

Eg. inverse degree

35

Algorithm vs Optimum

36

47

vs

Other uniform sampling approaches might require

more rounds

• node u is activated wp << 1/D+

• few active nodes, few pivots, many rounds

• node u is activated wp >> 1/D+

• many active nodes, few pivots, many rounds

• pivots far from uniform distribution

Different sampling?

37

Twitter Dataset

0M

5M

10M

15M

20M

25M

30M

35M

40M

45M

 0 20 40 60 80 100 120 140

R
e
m

a
in

in
g
 E

le
m

e
n
ts

Iteration
38

41M nodes, 2.5B positive edges

2. Densest subgraph (DSG)
• Find densest subgraph in undirected graphs

• Density of a subgraph is the ratio of the number of
edges to the number of nodes

• Motivation: Community finding
• c-approximation = when density is at most c times

worse then the best density

Density() = 5/4 = 1.2

Complexity of DSG
• DSG can be computed in polynomial time

• Using parametric flows or LP relaxation

• Natural variants of DSG are hard
• k-DSG, subgraph with exactly k nodes

• Charikar’s 2-approximation algorithm
• Iteratively remove the lowest degree node until the

graph becomes empty
• One of the intermediate graphs is a 2-approx.

• These algorithms are hard to scale
40

DSG: Algorithm
A simple iterative algorithm

Compute the average degree

Delete all nodes whose degree is (1+Ɛ) below the average
Keep track of the density at each step
Output the densest graph seen during the iteration

[Bahmani, Kumar, Vassilvitskii]

DSG: Example

density = 16/11 = 1.45; average degree = 2*density = 2.90
Best density = 1.45

DSG: Example (contd)

density = 16/11 = 1.45; average degree = 2*density = 2.90
Best density = 1.45

DSG: Example (contd)

density = 9/5 = 1.8; average degree = 2*density = 3.6
Best density = 1.8

DSG: Example (contd)

density = 9/5 = 1.8; average degree = 2*density = 3.6
Best density = 1.8

DSG: Example (contd)

density = 3/3 = 1; average degree = 2*density = 2
Best density = 1.8

DSG: Example (contd)

Best density = 1.8

DSG: Performance

Properties

Claim. Output is a (2+Ɛ)-approx.

V* = optimal induced subgraph, p* =
density(V*)

Each node in V* has degree at least p*
(optimality)

V’ = first subgraph where we are about
to remove a node in V*

Claim. Algorithm makes O(log1+Ɛ n) passes and uses O(n)
memory

Use an averaging argument

 V*

V’

Concluding thoughts
• Non-traditional computational models are key to

managing big graphs
• Novel algorithmic ideas
• New programming paradigms

• Round complexity is important
• One-pass 2-approximation algorithm for DSG

[Bhattacharya, Henzinger, Nanongkai, Tsourakakis]
• Correlation clustering?
• k-means++?

• Managing heavy tail, data skew, asynchrony,
communication, …

Thank you!

Questions/Comments

ravi.k53 @ gmail

