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Data
“640k ought to be enough for anybody.”
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Graph mining challenges

• Can be implicitly defined
• Similarities

• Nodes/edges can change
• Social connections

• Can have special properties
• Heavy-tailed, small-world, bipartite, ...

• Can be noisy
• Some edges missing, some spurious
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Why are graphs hard?
• Poor locality of  memory access

• Neighbors of  a node can be arbitrarily located in 
memory

• Degree of  parallelism change during execution
• Can depend on sub-graph structures

• Nodes by themselves do not do much work
• Edge interactions form the bulk of  many graph 

algorithms

4



Graph stream
• Graph arrives as an edge stream  

• No random access to graph
• Can be new edge or updates to existing edges

• Typically single CPU

• Very limited amount of  RAM
• Some cases, only Mb even for Tb+ data
• May not be able to store any portion of  the graph in 

memory
• Graph size may be infinite/unknown in advance

• Ideally, make a single pass over the graph
• In some cases, can take multiple rounds



Graph clustering
• How to solve large-scale clustering problems on 

graphs?

• Many flavors of  clustering definitions
• k-means, k-median, densest subgraphs, correlation 

clustering, ..

• Focus on algorithms
• with provable guarantees
• that run in a small number of  rounds
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1. Correlation clustering (CC)

• Given a complete graph where each edge is +1 or -1, 
partition the nodes to minimize the total number of  
mistakes
[Bansal, A. Blum, Chawla]

• Number of  clusters not specified a priori

• Often, missing edges are interpreted -1

• Machine learning / data mining applications
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Eg: 0 mistakes
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Eg: 1 mistake
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The Pivot algorithm
A simple iterative algorithm

Pick a node p uniformly at random
Create a cluster around p by including all nodes connected 
to p by a +1 edge
Delete the nodes in this cluster
Repeat with the remaining graph

[Ailon, Charikar, Newman]
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Eg: Pivot Algorithm
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Eg: Pivot Algorithm

p
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Eg: Pivot Algorithm
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Eg: Pivot Algorithm
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Eg: Pivot Algorithm
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Eg: Pivot Algorithm
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Eg: Pivot Algorithm
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Bad triangles
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A bad triangle is a triple of  nodes 
with two positive edges and one 
negative edge



Properties
Claim [ACN].  Pivot gives (in expectation) a 3-
approximation to minimizing the number of  
mistakes

Proof  focuses on bad triangles and uses LP duality

The algorithm is inherently sequential
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A bad example
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Pivot takes Ω(n) rounds



• A parallel version of  Pivot Algorithm
• runs in O(log2 n) rounds
• obtains a 3+Ɛ approximation

[Chierichetti, Dalvi, Kumar]

• Easily implemented in streaming (also Map-Reduce, 
Pregel, ...)

Parallel Pivot
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Parallel Pivot Algorithm

While the graph is not empty
Let D+ be the current maximum positive degree
Activate each node independently wp Ɛ/D+

Deactivate nodes connected to other active nodes by 
+1 edges
The remaining nodes are pivots
Create cluster around each pivot as before
Remove the clusters
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Example
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Example
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D+ = 2



Example
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Example
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Example
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Example
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Example
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Example
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Example
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Claim.  Parallel Pivot halves the maximum degree D+ 

after (1/Ɛ) log n rounds

Algorithm terminates in (1/Ɛ) (log n) (log D+) rounds

Claim. Induces a close to uniform marginal 

distribution of  the pivots

Can extend the LP dual-based proof  of  [ACN] to show 

3 + Ɛ approximation

Properties
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Halving max degree
• Event e(v): exactly one positive neighbor w of  node v 

gets activated and no positive neighbor of  w gets 
activated
• w becomes a pivot and hence v is removed

• Key property: Pr[e(v)] > Ɛ/8 if  deg+(v) > D+/2

• After logarithmic number of  rounds, either v’s 
positive degree halves or v will end up in a cluster
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Other natural sampling methods can produce a non-

constant approximation

• node u is activated wp deg(u)

• Eg, star of  degree n

• node u is activated wp 1/deg(u) [Luby]

• Eg, a clique matched to an independent set of  nodes

Different sampling?
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Eg. inverse degree
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Algorithm vs Optimum
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Other uniform sampling approaches might require 

more rounds

• node u is activated wp << 1/D+

• few active nodes, few pivots, many rounds          

• node u is activated wp >> 1/D+

• many active nodes, few pivots, many rounds

• pivots far from uniform distribution

Different sampling?
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Twitter Dataset
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41M nodes, 2.5B positive edges



2. Densest subgraph (DSG)
• Find densest subgraph in undirected graphs

• Density of  a subgraph is the ratio of  the number of  
edges to the number of  nodes

• Motivation: Community finding
• c-approximation = when density is at most c times 

worse then the best density

Density(   ) = 5/4 = 1.2



Complexity of DSG
• DSG can be computed in polynomial time

• Using parametric flows or LP relaxation

• Natural variants of  DSG are hard
• k-DSG, subgraph with exactly k nodes

• Charikar’s 2-approximation algorithm
• Iteratively remove the lowest degree node until the 

graph becomes empty
• One of  the intermediate graphs is a 2-approx.

• These algorithms are hard to scale
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DSG: Algorithm
A simple iterative algorithm

Compute the average degree

Delete all nodes whose degree is (1+Ɛ) below the average
Keep track of  the density at each step
Output the densest graph seen during the iteration

[Bahmani, Kumar, Vassilvitskii]



DSG: Example

density = 16/11 = 1.45; average degree = 2*density = 2.90
Best density = 1.45 



DSG: Example (contd)

density = 16/11 = 1.45; average degree = 2*density = 2.90
Best density = 1.45 



DSG: Example (contd)

density = 9/5 = 1.8; average degree = 2*density = 3.6
Best density = 1.8 



DSG: Example (contd)

density = 9/5 = 1.8; average degree = 2*density = 3.6
Best density = 1.8 



DSG: Example (contd)

density = 3/3 = 1; average degree = 2*density = 2
Best density = 1.8 



DSG: Example (contd)

Best density = 1.8 



DSG: Performance



Properties

Claim. Output is a (2+Ɛ)-approx.

V* = optimal induced subgraph, p* = 
density(V*)

Each node in V* has degree at least p* 
(optimality)

V’ = first subgraph where we are about 
to remove a node in V*

Claim. Algorithm makes O(log1+Ɛ n) passes and uses O(n) 
memory

Use an averaging argument

 V*

V’



Concluding thoughts
• Non-traditional computational models are key to 

managing big graphs
• Novel algorithmic ideas
• New programming paradigms

• Round complexity is important
• One-pass 2-approximation algorithm for DSG 

[Bhattacharya, Henzinger, Nanongkai, Tsourakakis]
• Correlation clustering?
• k-means++?

• Managing heavy tail, data skew, asynchrony, 
communication, … 



Thank you!

Questions/Comments

ravi.k53 @ gmail


