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Modern applications: massive amounts of data 

distributed  across multiple locations. 

Distributed Machine Learning 
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• scientific data 

Key new resource communication. 

• video data 

E.g., 

Modern applications: massive amounts of data 

distributed  across multiple locations. 

Distributed Machine Learning 



This talk: models and algorithms for reasoning 

about communication complexity issues. 

[Balcan-Ehrlich-Liang, NIPS 2013]  

[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]  

• Supervised  Learning 

• Clustering, Unsupervised Learning 

[Balcan-Blum-Fine-Mansour, COLT 2012] Runner UP Best Paper 



Supervised Learning 
• E.g., which emails are spam and which are important. 

• E.g., classify objects as chairs vs non chairs. 

Not chair chair 

Not spam spam 



   Labeled Examples   

Statistical / PAC learning model 

Learning 
Algorithm 

Expert / Oracle 

Data Source 

Alg.outputs 

Distribution D on X 

c* : X ! {0,1} 

(x1,c*(x1)),…, (xm,c*(xm)) 

h : X ! {0,1} 
+ 
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   Labeled Examples   

Learning 
Algorithm 

Expert / Oracle 

Data Source 

Alg.outputs C* : X ! {0,1} 
h : X ! {0,1} 

(x1,c*(x1)),…, (xk,c*(xm)) 

• Algo sees (x1,c*(x1)),…, (xk,c*(xm)), xi i.i.d. from D 

Distribution D on X 

Statistical / PAC learning model 

+ 

+ 

- - 
+ 
+ - - 

- 

  err(h)=Prx 2 D(h(x)  c*(x)) 

•  Do optimization over S, find hypothesis h 2 C. 

•  Goal:  h has small error over D. 

• c* in C, realizable case; else agnostic  
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Two Main Aspects in Classic Machine Learning 

Algorithm Design. How to optimize? 

Automatically generate rules that do well on observed data. 

Generalization Guarantees, Sample Complexity 

Confidence for rule effectiveness on future data. 

E.g., Boosting, SVM,  etc. 
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Distributed Learning 
Many ML problems today involve massive amounts of data 
distributed across multiple locations. 

Often would like low error hypothesis wrt the overall distrib. 
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Distributed Learning 

E.g., medical data 

Data distributed across multiple locations. 



Distributed Learning 

E.g., scientific data 

Data distributed across multiple locations. 



Distributed Learning 

• Data distributed across multiple locations.  

• Each has a piece of the overall data pie. 

Important question: how much communication? 
 

Plus, privacy & incentives. 

• To learn over the combined D, must communicate. 



Distributed PAC learning 

• Fix C of VCdim d. Assume s << d. 
 

Goal: learn good h over D,  as little communication as possible 

• Total communication (bits, examples, hypotheses) 

• X – instance space. s players. 

• Player i can sample from Di, samples labeled by c*. 
 • Goal: find h that approximates c* w.r.t. D=1/s (D1 + … + Ds) 

 

• Rounds of communication. 

Efficient algos for problems when centralized algos exist. 

[realizable: c* ∈ C, agnostic:c*∉C ] 

[Balcan-Blum-Fine-Mansour,COLT 2012] 



Interesting special case to think about 

s=2. One has the positives and one has the negatives. 

• How much communication, e.g., for linear separators? 

Player 1                                                     Player 2  
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Overview of Our Results 

• Generic bounds on communication. 

• Tight results for interesting cases (conjunctions,  parity 
fns,  decision lists, linear separators over “nice” distrib). 

Analysis of privacy guarantees achievable. 

• Broadly applicable communication efficient distributed 
boosting. 

Introduce and analyze Distributed PAC learning. 



Some simple communication baselines. 

D1              D2              …              Ds 

• Each player sends  d/(²s) log(1/²) examples to player 1.   

• Player 1 finds consistent h 2 C, whp error · ² wrt D 

Baseline #1 

d/² log(1/²) examples, 1 round of communication 



Some simple communication baselines. 

• In each round player 1 broadcasts its current hypothesis. 

Baseline #2 (based on Mistake Bound algos):  

M rounds, M examples & hyp,  M is mistake-bound of C. 

• If any player has a counterexample, it sends it to player 1. 
If not, done. Otherwise, repeat. 

D1              D2              …              Ds 



Some simple communication baselines. 

• All players maintain same state of an algo A with MB M.   

Baseline #2 (based on Mistake Bound algos):  

M rounds, M examples,  M is mistake-bound of C. 

• If any player has an example on which A is incorrect, it 
announces it to the group. 

D1              D2              …              Ds 



Improving the Dependence on 1/² 

Baselines provide linear dependence in d and 1/², or M 
and no dependence on 1/². 

D1              D2              …              Ds 

Can get  better O(d log 1/²) examples of communication!  



Recap of Adaboost 

• Boosting: algorithmic technique for turning a weak 
learning algorithm into a strong (PAC) learning one. 



Recap of Adaboost 

• For t=1,2, … ,T 

 • Construct Dt on {x1, …, xm} 

• Run A on Dt producing ht 

• Weak learning algorithm A. 

+ 
+ + 

+ 

+ 
+ + 

+ 

- - 

- 
- 

- - 

- 
- 

ht 

• Boosting: turns a weak algo into a strong (PAC) learner. 

• Output H_final=sgn(  𝛼𝑡 ℎ𝑡) 

 

Input: S={(x1,𝑦1), …,(xm,𝑦m)}; weak learner A 



Recap of Adaboost 

• For t=1,2, … ,T 

 • Construct 𝐃𝐭 on {𝐱𝟏, …, 𝒙𝐦} 

• Run A on Dt producing ht 

• D1 uniform on {x1, …, xm} 

 • Dt+1 increases weight on xi if ht 
incorrect on xi ; decreases it on 
xi if ht  correct. 

• Weak learning algorithm A. 

Key points: 

+ 
+ + 

+ 

+ 
+ + 

+ 

- - 

- 
- 

- - 

- 
- 

ht−1 

•  Dt+1(xi) depends on h1(xi),…,ht(xi) and normalization factor 
that can be communicated efficiently. 

•  To achieve weak learning it suffices to use O(d) examples.   

𝐷𝑡+1𝑖=
𝐷𝑡𝑖

𝑍𝑡
 e−𝛼𝑡   if 𝑦𝑖=ℎ𝑡𝑥𝑖  

 𝐷𝑡+1𝑖=
𝐷𝑡𝑖

𝑍𝑡
 e𝛼𝑡   if 𝑦𝑖≠ℎ𝑡𝑥𝑖  

 



Distributed Adaboost 

• For t=1,2, … ,T 

 

• Each player i has a sample Si from Di. 

• Player 1 broadcasts ht to other players. 

• Each player sends player 1, enough 
data to produce weak hyp ht.  
[For t=1, O(d/s) examples each.] 

Si Sj 

ht 
ht 

ht 

Sk 

ht 



Distributed Adaboost 

• For t=1,2, … ,T 

 

• Each player i has a sample Si from Di. 

• Player 1 broadcasts ht to other players. 

• Each player sends player 1, enough 
data to produce weak hyp ht.  
[For t=1, O(d/s) examples each.] 

Si Sj 

ht 
ht 

ht 

Sk 

ht • Each player i reweights its own 
distribution on Si using ht and sends 
the sum of its weights wi,t to player 1. 

wi,t wj,t 

wk,t 

• Player 1 determines the #of samples to 
request from each i [samples O(d) times from the 
multinomial given by wi,t/Wt]. 

nj,t+1 

nk,t+1 

ni,t+1 



Distributed Adaboost 

Can learn any class C with O(log(1/²)) rounds using O(d) 
examples + O(s log d) bits per round.  

• Per round: O(d) examples, O(s log d) extra   bits 
for weights,  1 hypothesis. 

• As in Adaboost, O(log 1/²) rounds to achieve error 𝜖. 

 [efficient if can efficiently weak-learn from O(d) examples] 

Proof: 



Dependence on 1/², Agnostic learning 

Distributed implementation of Robust halving [Balcan-Hanneke’12]. 

D1              D2              …              Dk 

• error O(OPT)+𝜖 using only  O(s log|C| log(1/²))  examples. 

Not computationally efficient in general, but says 
O(log(1/²)) possible in principle. 



Better results for special cases 

+ 
+ + 

+ 

- 
- 

- 
- 

- - 

- 
- 

C is intersection-closed, then C can be learned in one round 
and s hypotheses of total communication. 

• Each  i draws Si of size O(d/² log(1/²)), finds smallest hi in C 
consistent with Si and sends hi to player 1. 

Intersection-closed when fns can 
be described compactly .  

Algorithm: 

hi, h never make mistakes on negatives, and on positives h could 
only be better than hi (errDih≤errDihi≤ϵ) 
 

Key point: 

• Player 1 computes smallest h s.t. hi µ h for all i. 



E.g., conjunctions over {0,1}d  [f(x) = x2x5x9x15 ] 

Better results for special cases 

[Generic methods O(d) examples, or O(d2) bits total.] 

• Each entity intersects its positives.   

• Sends to player 1. 

• Player 1 intersects & broadcasts. 

• Only O(s) examples sent, O(sd) bits.  

1101111011010111 

1111110111001110 

1100110011001111 

1100110011000110 

 

 



Interesting class: parity functions 

• Classic CC lower bound: Ω(d2) bits LB for proper learning. 

• s=2,X= 0,1d, C = parity fns, fx=xi1XOR  xi2… XOR xil 

 Improperly learn C with O(d) bits of communication! 

• Can properly PAC-learn C.  
[Given dataset S of size O(d/²), just solve the linear system] 

• Can non-properly learn C in reliable-useful  
manner [RS’88]  

Key points: 

S h 2 C 

S 

x 
f(x) 

?? 
[if x in subspace spanned by S, predict accordingly, else say “?”]  

• Generic methods: O(d) examples, O(d2) bits. 



Interesting class: parity functions 

• Player i properly PAC-learns over Di to get parity hi.  Also 
improperly R-U learns to get rule gi.  Sends hi to player j. 

• Player i uses rule Ri: “if gi predicts, use it; else use hj“ 

Algorithm: 

 Improperly learn C with O(d) bits of communication! 

hi 

hj 

gi gj 

Use my reliable 
rule first, else 
other guy’s rule 

Use my reliable 
rule first, else 
other guy’s rule 

Key point: low error under Dj because hj has low error under Dj  and 
since gi never makes a mistake putting it in front does not hurt. 

 



Distributed PAC learning: Summary 

• First time consider communication as a 
fundamental resource. 

• General bounds on communication, communication-efficient 
distributed boosting. 

• Improved bounds for special classes (intersection-closed, 
parity fns, and linear separators over nice distributions). 



Distributed Clustering 
[Balcan-Ehrlich-Liang, NIPS 2013]  

z   x 

y 
c1 c2 

s c3 

[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]  



Center Based Clustering 

Key idea: use coresets.   

k-median: find center pts c1, c2, …, ck to minimize x mini d(x,ci) 

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci) 

z   x 

y 
c1 c2 

s c3 

Coresets short summaries capturing relevant info w.r.t. all 
clusterings.   

1−ϵcostS,𝐜≤ wpcostp,𝐜p∈D ≤ 1+ϵcostS,𝐜 

Def: An ϵ-coreset for a set of pts S is a set of points S  s.t. 
and weights w: S  → R s.t. for any sets of centers c: 

• Find a coreset S  of S. Run an approx. algorithm on S  . 

Algorithm (centralized) 



Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]  

• Key idea: use coresets, short summaries capturing relevant 
info w.r.t. all clusterings.   

k-median: find center pts c1, c2, …, ck to minimize x mini d(x,ci) 

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci) 

•  [Feldman-Langberg STOC’11]  show that in centralized setting one 
can construct a coreset of size O(kd/ϵ2)   

• By combining local coresets,  get a global coreset; the  size 
goes up multiplicatively by s.  

• In  [Balcan-Ehrlich-Liang, NIPS 2013]  show a two round procedure 
with communication only O(kd/ϵ2+sk)  

[As opposed to O(s kd/ϵ2)] 



1. Find a constant factor approx. B, add its centers to coreset 
             [this is already a  very coarse coreset] 
 

2. Sample O(kd/ϵ2) pts according to their contribution to the 
cost of that approximate clustering B. 

[FL’11]  construct in centralized cases a coreset of size O(kd/ϵ2).  

Clustering, Coresets [Feldman-Langberg’11] 

• For any set of centers 𝐜, penalty we pay for point p under any set of 
centers c, fp=costp,𝐜−cost(bp,𝐜) 

• Note fp∈−costp,bp,costp,bp .  

     This motivates sampling according to costp,bp   

Key idea: one way to think about this construction 

• Upper bound penalty we pay for p under any set of centers c 
by distance between p and its closest center bp in B 



1. Each player, finds a local constant factor approx. Bi and 
sends cost(Bi ,Pi) and the centers to the center. 

Feldman-Langberg’11  show that in centralized setting one 
can construct a coreset of size O(kd/ϵ2) .  

Key idea: in distributed case,  show how to do this using only 
local constant factor approx. 

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]  

2. Center sample n=O(kd/ϵ2) pts n=n1+⋯+ns from 
multinomial given by these costs. 

3. Each player i sends ni points from Pi sampled according to 
their contribution to the local approx. 



Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]  

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci) 



Open questions (Learning and Clustering) 

• Efficient algorithms in noisy settings; handle failures, delays. 

• Even better dependence on 1/𝜖 for communication 
efficiency for clustering via boosting style ideas. 

• More refined trade-offs between communication complexity, 
computational complexity, and sample complexity. 

• Can use distributed dimensionality reduction to 
reduce dependence on d. [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]  


