
Distributed Machine Learning

Maria-Florina Balcan

Carnegie Mellon University

Modern applications: massive amounts of data

distributed across multiple locations.

Distributed Machine Learning

http://cdn.wikimg.net/strategywiki/images/f/fa/Globe.svg

• scientific data

Key new resource communication.

• video data

E.g.,

Modern applications: massive amounts of data

distributed across multiple locations.

Distributed Machine Learning

This talk: models and algorithms for reasoning

about communication complexity issues.

[Balcan-Ehrlich-Liang, NIPS 2013]

[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

• Supervised Learning

• Clustering, Unsupervised Learning

[Balcan-Blum-Fine-Mansour, COLT 2012] Runner UP Best Paper

Supervised Learning
• E.g., which emails are spam and which are important.

• E.g., classify objects as chairs vs non chairs.

Not chair chair

Not spam spam

 Labeled Examples

Statistical / PAC learning model

Learning
Algorithm

Expert / Oracle

Data Source

Alg.outputs

Distribution D on X

c* : X ! {0,1}

(x1,c*(x1)),…, (xm,c*(xm))

h : X ! {0,1}
+

+

- -
+
+ - -

-

 Labeled Examples

Learning
Algorithm

Expert / Oracle

Data Source

Alg.outputs C* : X ! {0,1}
h : X ! {0,1}

(x1,c*(x1)),…, (xk,c*(xm))

• Algo sees (x1,c*(x1)),…, (xk,c*(xm)), xi i.i.d. from D

Distribution D on X

Statistical / PAC learning model

+

+

- -
+
+ - -

-

 err(h)=Prx 2 D(h(x)  c*(x))

• Do optimization over S, find hypothesis h 2 C.

• Goal: h has small error over D.

• c* in C, realizable case; else agnostic

8

Two Main Aspects in Classic Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Generalization Guarantees, Sample Complexity

Confidence for rule effectiveness on future data.

E.g., Boosting, SVM, etc.

O
1

ϵ
VCdimClog

1

ϵ
+log

1

δ

Distributed Learning
Many ML problems today involve massive amounts of data
distributed across multiple locations.

Often would like low error hypothesis wrt the overall distrib.

http://cdn.wikimg.net/strategywiki/images/f/fa/Globe.svg

Distributed Learning

E.g., medical data

Data distributed across multiple locations.

Distributed Learning

E.g., scientific data

Data distributed across multiple locations.

Distributed Learning

• Data distributed across multiple locations.

• Each has a piece of the overall data pie.

Important question: how much communication?

Plus, privacy & incentives.

• To learn over the combined D, must communicate.

Distributed PAC learning

• Fix C of VCdim d. Assume s << d.

Goal: learn good h over D, as little communication as possible

• Total communication (bits, examples, hypotheses)

• X – instance space. s players.

• Player i can sample from Di, samples labeled by c*.
 • Goal: find h that approximates c* w.r.t. D=1/s (D1 + … + Ds)

• Rounds of communication.

Efficient algos for problems when centralized algos exist.

[realizable: c* ∈ C, agnostic:c*∉C]

[Balcan-Blum-Fine-Mansour,COLT 2012]

Interesting special case to think about

s=2. One has the positives and one has the negatives.

• How much communication, e.g., for linear separators?

Player 1 Player 2

+
+ +

+

+
+ +

+

- -

-
-

- -

-
- - -

-
-

- -

-
-

+
+ +

+

+
+ +

+

Overview of Our Results

• Generic bounds on communication.

• Tight results for interesting cases (conjunctions, parity
fns, decision lists, linear separators over “nice” distrib).

Analysis of privacy guarantees achievable.

• Broadly applicable communication efficient distributed
boosting.

Introduce and analyze Distributed PAC learning.

Some simple communication baselines.

D1 D2 … Ds

• Each player sends d/(²s) log(1/²) examples to player 1.

• Player 1 finds consistent h 2 C, whp error · ² wrt D

Baseline #1

d/² log(1/²) examples, 1 round of communication

Some simple communication baselines.

• In each round player 1 broadcasts its current hypothesis.

Baseline #2 (based on Mistake Bound algos):

M rounds, M examples & hyp, M is mistake-bound of C.

• If any player has a counterexample, it sends it to player 1.
If not, done. Otherwise, repeat.

D1 D2 … Ds

Some simple communication baselines.

• All players maintain same state of an algo A with MB M.

Baseline #2 (based on Mistake Bound algos):

M rounds, M examples, M is mistake-bound of C.

• If any player has an example on which A is incorrect, it
announces it to the group.

D1 D2 … Ds

Improving the Dependence on 1/²

Baselines provide linear dependence in d and 1/², or M
and no dependence on 1/².

D1 D2 … Ds

Can get better O(d log 1/²) examples of communication!

Recap of Adaboost

• Boosting: algorithmic technique for turning a weak
learning algorithm into a strong (PAC) learning one.

Recap of Adaboost

• For t=1,2, … ,T

 • Construct Dt on {x1, …, xm}

• Run A on Dt producing ht

• Weak learning algorithm A.

+
+ +

+

+
+ +

+

- -

-
-

- -

-
-

ht

• Boosting: turns a weak algo into a strong (PAC) learner.

• Output H_final=sgn(𝛼𝑡 ℎ𝑡)

Input: S={(x1,𝑦1), …,(xm,𝑦m)}; weak learner A

Recap of Adaboost

• For t=1,2, … ,T

 • Construct 𝐃𝐭 on {𝐱𝟏, …, 𝒙𝐦}

• Run A on Dt producing ht

• D1 uniform on {x1, …, xm}

 • Dt+1 increases weight on xi if ht
incorrect on xi ; decreases it on
xi if ht correct.

• Weak learning algorithm A.

Key points:

+
+ +

+

+
+ +

+

- -

-
-

- -

-
-

ht−1

• Dt+1(xi) depends on h1(xi),…,ht(xi) and normalization factor
that can be communicated efficiently.

• To achieve weak learning it suffices to use O(d) examples.

𝐷𝑡+1𝑖=
𝐷𝑡𝑖

𝑍𝑡
 e−𝛼𝑡 if 𝑦𝑖=ℎ𝑡𝑥𝑖

 𝐷𝑡+1𝑖=
𝐷𝑡𝑖

𝑍𝑡
 e𝛼𝑡 if 𝑦𝑖≠ℎ𝑡𝑥𝑖

Distributed Adaboost

• For t=1,2, … ,T

• Each player i has a sample Si from Di.

• Player 1 broadcasts ht to other players.

• Each player sends player 1, enough
data to produce weak hyp ht.
[For t=1, O(d/s) examples each.]

Si Sj

ht
ht

ht

Sk

ht

Distributed Adaboost

• For t=1,2, … ,T

• Each player i has a sample Si from Di.

• Player 1 broadcasts ht to other players.

• Each player sends player 1, enough
data to produce weak hyp ht.
[For t=1, O(d/s) examples each.]

Si Sj

ht
ht

ht

Sk

ht • Each player i reweights its own
distribution on Si using ht and sends
the sum of its weights wi,t to player 1.

wi,t wj,t

wk,t

• Player 1 determines the #of samples to
request from each i [samples O(d) times from the
multinomial given by wi,t/Wt].

nj,t+1

nk,t+1

ni,t+1

Distributed Adaboost

Can learn any class C with O(log(1/²)) rounds using O(d)
examples + O(s log d) bits per round.

• Per round: O(d) examples, O(s log d) extra bits
for weights, 1 hypothesis.

• As in Adaboost, O(log 1/²) rounds to achieve error 𝜖.

 [efficient if can efficiently weak-learn from O(d) examples]

Proof:

Dependence on 1/², Agnostic learning

Distributed implementation of Robust halving [Balcan-Hanneke’12].

D1 D2 … Dk

• error O(OPT)+𝜖 using only O(s log|C| log(1/²)) examples.

Not computationally efficient in general, but says
O(log(1/²)) possible in principle.

Better results for special cases

+
+ +

+

-
-

-
-

- -

-
-

C is intersection-closed, then C can be learned in one round
and s hypotheses of total communication.

• Each i draws Si of size O(d/² log(1/²)), finds smallest hi in C
consistent with Si and sends hi to player 1.

Intersection-closed when fns can
be described compactly .

Algorithm:

hi, h never make mistakes on negatives, and on positives h could
only be better than hi (errDih≤errDihi≤ϵ)

Key point:

• Player 1 computes smallest h s.t. hi µ h for all i.

E.g., conjunctions over {0,1}d [f(x) = x2x5x9x15]

Better results for special cases

[Generic methods O(d) examples, or O(d2) bits total.]

• Each entity intersects its positives.

• Sends to player 1.

• Player 1 intersects & broadcasts.

• Only O(s) examples sent, O(sd) bits.

1101111011010111

1111110111001110

1100110011001111

1100110011000110

Interesting class: parity functions

• Classic CC lower bound: Ω(d2) bits LB for proper learning.

• s=2,X= 0,1d, C = parity fns, fx=xi1XOR xi2… XOR xil

 Improperly learn C with O(d) bits of communication!

• Can properly PAC-learn C.
[Given dataset S of size O(d/²), just solve the linear system]

• Can non-properly learn C in reliable-useful
manner [RS’88]

Key points:

S h 2 C

S

x
f(x)

??
[if x in subspace spanned by S, predict accordingly, else say “?”]

• Generic methods: O(d) examples, O(d2) bits.

Interesting class: parity functions

• Player i properly PAC-learns over Di to get parity hi. Also
improperly R-U learns to get rule gi. Sends hi to player j.

• Player i uses rule Ri: “if gi predicts, use it; else use hj“

Algorithm:

 Improperly learn C with O(d) bits of communication!

hi

hj

gi gj

Use my reliable
rule first, else
other guy’s rule

Use my reliable
rule first, else
other guy’s rule

Key point: low error under Dj because hj has low error under Dj and
since gi never makes a mistake putting it in front does not hurt.

Distributed PAC learning: Summary

• First time consider communication as a
fundamental resource.

• General bounds on communication, communication-efficient
distributed boosting.

• Improved bounds for special classes (intersection-closed,
parity fns, and linear separators over nice distributions).

Distributed Clustering
[Balcan-Ehrlich-Liang, NIPS 2013]

z x

y
c1 c2

s c3

[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

Center Based Clustering

Key idea: use coresets.

k-median: find center pts c1, c2, …, ck to minimize x mini d(x,ci)

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci)

z x

y
c1 c2

s c3

Coresets short summaries capturing relevant info w.r.t. all
clusterings.

1−ϵcostS,𝐜≤ wpcostp,𝐜p∈D ≤ 1+ϵcostS,𝐜

Def: An ϵ-coreset for a set of pts S is a set of points S s.t.
and weights w: S → R s.t. for any sets of centers c:

• Find a coreset S of S. Run an approx. algorithm on S .

Algorithm (centralized)

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

• Key idea: use coresets, short summaries capturing relevant
info w.r.t. all clusterings.

k-median: find center pts c1, c2, …, ck to minimize x mini d(x,ci)

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci)

• [Feldman-Langberg STOC’11] show that in centralized setting one
can construct a coreset of size O(kd/ϵ2)

• By combining local coresets, get a global coreset; the size
goes up multiplicatively by s.

• In [Balcan-Ehrlich-Liang, NIPS 2013] show a two round procedure
with communication only O(kd/ϵ2+sk)

[As opposed to O(s kd/ϵ2)]

1. Find a constant factor approx. B, add its centers to coreset
 [this is already a very coarse coreset]

2. Sample O(kd/ϵ2) pts according to their contribution to the
cost of that approximate clustering B.

[FL’11] construct in centralized cases a coreset of size O(kd/ϵ2).

Clustering, Coresets [Feldman-Langberg’11]

• For any set of centers 𝐜, penalty we pay for point p under any set of
centers c, fp=costp,𝐜−cost(bp,𝐜)

• Note fp∈−costp,bp,costp,bp .

 This motivates sampling according to costp,bp

Key idea: one way to think about this construction

• Upper bound penalty we pay for p under any set of centers c
by distance between p and its closest center bp in B

1. Each player, finds a local constant factor approx. Bi and
sends cost(Bi ,Pi) and the centers to the center.

Feldman-Langberg’11 show that in centralized setting one
can construct a coreset of size O(kd/ϵ2) .

Key idea: in distributed case, show how to do this using only
local constant factor approx.

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

2. Center sample n=O(kd/ϵ2) pts n=n1+⋯+ns from
multinomial given by these costs.

3. Each player i sends ni points from Pi sampled according to
their contribution to the local approx.

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci)

Open questions (Learning and Clustering)

• Efficient algorithms in noisy settings; handle failures, delays.

• Even better dependence on 1/𝜖 for communication
efficiency for clustering via boosting style ideas.

• More refined trade-offs between communication complexity,
computational complexity, and sample complexity.

• Can use distributed dimensionality reduction to
reduce dependence on d. [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

