Parallel Algorithms for Graphs on a Very Large Number of Nodes

Krzysztof Onak
IBM T.J. Watson Research Center
Outline

1. Model of Computation
2. Sample Algorithms and Their Limitations
3. Efficiently Estimating MST Weight
4. Computing MST in Geometric Setting
Model: Massive Parallel Computation

[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; …]

n items on input m machines

- Initially: each machine receives n/m items
- Single round:
 1. Each machine performs computation
 2. Each machine sends and receives at most $O(s)$ data
Model: Massive Parallel Computation

[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; …]

\(n \) items on input \(m \) machines

Space per machine: \(s = \frac{n}{m} \cdot \text{small-factor} \)

- Initially: each machine receives \(\frac{n}{m} \) items
- Single round:
 1. Each machine performs computation
 2. Each machine sends and receives at most \(O(s) \) data
Model: Massive Parallel Computation

[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; …]

- n items on input
- m machines

Space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

- Initially: each machine receives $\frac{n}{m}$ items
Model: Massive Parallel Computation

[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; ...]

\[n \text{ items on input} \quad m \text{ machines} \]

space per machine: \(s = \frac{n}{m} \cdot \text{small-factor} \)

- Initially: each machine receives \(n/m \) items
- Single round:
 1. Each machine performs computation
 2. Each machine sends and receives at most \(O(s) \) data
Resources

- **n** items on input
- **m** machines

Space per machine:

\[
s = \frac{n}{m} \cdot \text{small-factor}
\]

- Popular assumption: \(m = O(n^{\alpha}) \) for \(\alpha \in (0, 1) \) ⇒ \(s = \Omega(1) \)

- Likely to happen: \(s \gg m \)

- Goals:
 - Minimize the number of rounds
 - Optimize running time
 - Use amount of memory as close to linear as possible
Resources

- n items on input
- m machines
- space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

- Popular assumption:

 $m = O(n^\alpha)$ for $\alpha \in (0, 1) \implies s = n^{\Omega(1)}$
Resources

n items on input m machines

space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

- Popular assumption:
 $$m = O(n^\alpha) \text{ for } \alpha \in (0, 1) \quad \implies \quad s = n^{\Omega(1)}$$

- Likely to happen:
 $s \gg m$
Resources

\[n \text{ items on input} \quad m \text{ machines} \]

space per machine: \(s = \frac{n}{m} \cdot \text{small-factor} \)

- Popular assumption:
 \[m = O(n^\alpha) \text{ for } \alpha \in (0, 1) \quad \implies \quad s = n^{\Omega(1)} \]

- Likely to happen:
 \[s \gg m \]

Goals:
- Minimize the number of rounds
Resources

\[n \text{ items on input} \quad m \text{ machines} \]
\[\text{space per machine: } s = \frac{n}{m} \cdot \text{small-factor} \]

- Popular assumption:
 \[m = O(n^\alpha) \text{ for } \alpha \in (0, 1) \quad \implies \quad s = n^{\Omega(1)} \]

- Likely to happen:
 \[s \gg m \]

Goals:
- Minimize the number of rounds
- Optimize running time
Resources

n items on input \quad m machines

\text{space per machine: } s = \frac{n}{m} \cdot \text{small-factor}

- Popular assumption:
 \[m = O(n^\alpha) \text{ for } \alpha \in (0, 1) \implies s = n^{\Omega(1)} \]

- Likely to happen: \[s \gg m \]

Goals:
- Minimize the number of rounds
- Optimize running time
- Use amount of memory as close to linear as possible
Comparison to PRAM

- **PRAM**: classic parallel model
 - m processors
 - processors access common memory

Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM.

Example: computing XOR of n bits requires $\Omega(\log n / \log \log n)$ time in the strongest PRAM model (Beame, Håstad 1989).
Comparison to PRAM

- **PRAM**: classic parallel model
 - m processors
 - processors access common memory
- Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM

Example: computing XOR of n bits requires $\Omega(\log n / \log \log n)$ time in strongest PRAM model [Beame, Håstad 1989]
Comparison to PRAM

- **PRAM**: classic parallel model
 - m processors
 - processors access common memory
- Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM

Example: computing XOR of n bits requires $\Omega(\log n / \log \log n)$ time in strongest PRAM model [Beame, Håstad 1989]
Comparison to PRAM

- **PRAM**: classic parallel model
 - m processors
 - processors access common memory
- Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM

 Example: computing XOR of n bits requires $\Omega(\log n / \log \log n)$ time in strongest PRAM model [Beame, Håstad 1989]

- Our model: $O(\log_s n)$ rounds for XOR
Comparison to PRAM

- **PRAM**: classic parallel model
 - m processors
 - processors access common memory
- Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM

 Example: computing XOR of n bits requires $\Omega(\log n / \log \log n)$ time in strongest PRAM model [Beame, Håstad 1989]
- Our model: $O(\log s n)$ rounds for XOR

 If $s = n^{\Omega(1)}$, number of rounds is constant
Comparison to PRAM

- **PRAM**: classic parallel model
 - m processors
 - processors access common memory
- Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM

 Example: computing XOR of n bits requires $\Omega(\log n / \log \log n)$ time in strongest PRAM model [Beame, Håstad 1989]
- **Our model**: $O(\log s n)$ rounds for XOR

 If $s = n^{\Omega(1)}$, number of rounds is constant
- **Our goal**: constant number of communication rounds
Outline

1. Model of Computation
2. Sample Algorithms and Their Limitations
3. Efficiently Estimating MST Weight
4. Computing MST in Geometric Setting
Main Subject of Study: Minimum Spanning Tree

Select the subset of edges of minimum weight that connects all vertices
Filtering Technique

[Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

• Input: weighted edges of a graph on N vertices

• Main idea:
 1. Find minimum spanning forest for subset of edges
 2. Remove edges not in the forest

• Algorithm: repeat the process until problem solved

• Caveat: $\geq N$ space per machine required

• Complexity: $s = N^{1+\Omega(1)} \Rightarrow O(1)$ rounds
Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

- **Input**: weighted edges of a graph on N vertices
Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

- **Input**: weighted edges of a graph on N vertices
- **Main idea**:
 1. Find minimum spanning forest for subset of edges
 2. Remove edges not in the forest

Caveat: $≥ N$ space per machine required

Complexity: $s = \frac{1}{N} + Ω\left(\frac{1}{N}\right)$ $⇒ O\left(\frac{1}{N}\right)$ rounds
Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

- **Input**: weighted edges of a graph on N vertices
- **Main idea**:
 1. Find minimum spanning forest for subset of edges
 2. Remove edges not in the forest
- **Algorithm**: repeat the process until problem solved
Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

- **Input:** weighted edges of a graph on N vertices
- **Main idea:**
 1. Find minimum spanning forest for subset of edges
 2. Remove edges not in the forest
- **Algorithm:** repeat the process until problem solved

- **Caveat:** $\geq N$ space per machine required
Filtering Technique

[Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

• **Input:** weighted edges of a graph on N vertices

• **Main idea:**
 1. Find minimum spanning forest for subset of edges
 2. Remove edges not in the forest

• **Algorithm:** repeat the process until problem solved

• **Caveat:** $\geq N$ space per machine required

• **Complexity:** $s = N^{1+\Omega(1)} \implies O(1)$ rounds
$N^{1-\Omega(1)}$ Space in $O(1)$ Rounds?

• Unlikely to be possible in general
• Can reduce from Sparse Connectivity: Do edges span a connected graph?
• Conjecture: superconstant number of rounds with $N^{1-\Omega(1)}$ memory
• Is this instance hard? (solvable in $O(\log N)$ rounds)

• Reduction: connect select vertex to all vertices with heavy edges
• This talk: algorithms with $O(N^{\epsilon})$ space per machine
\(N^{1-\Omega(1)} \) Space in \(O(1) \) Rounds?

- Unlikely to be possible in general
$N^{1-\Omega(1)}$ Space in $O(1)$ Rounds?

- Unlikely to be possible in general
- Can reduce from Sparse Connectivity:
 Do edges span a connected graph?
$N^{1-\Omega(1)}$ Space in $O(1)$ Rounds?

- Unlikely to be possible in general
- Can reduce from Sparse Connectivity:
 Do edges span a connected graph?
- Conjecture: superconstant number of rounds with $N^{1-\Omega(1)}$ memory
$N^{1 - \Omega(1)}$ Space in $O(1)$ Rounds?

- Unlikely to be possible in general
- Can reduce from Sparse Connectivity: Do edges span a connected graph?
- Conjecture: superconstant number of rounds with $N^{1 - \Omega(1)}$ memory
- Is this instance hard?

\[\text{vs.} \]

\[\text{vs.} \]
$N^{1-\Omega(1)}$ Space in $O(1)$ Rounds?

- Unlikely to be possible in general
- Can reduce from Sparse Connectivity: Do edges span a connected graph?
- Conjecture: superconstant number of rounds with $N^{1-\Omega(1)}$ memory
- Is this instance hard? (solvable in $O(\log N)$ rounds)

![Graph Comparison](image-url)
\(N^{1-\Omega(1)} \) Space in \(O(1) \) Rounds?

- Unlikely to be possible in general
- Can reduce from \textbf{Sparse Connectivity}:
 Do edges span a connected graph?
- **Conjecture**: superconstant number of rounds with \(N^{1-\Omega(1)} \) memory
- Is this instance hard? (solvable in \(O(\log N) \) rounds)

- **Reduction**: connect select vertex to all vertices with heavy edges
$N^{1-\Omega(1)}$ Space in $O(1)$ Rounds?

- Unlikely to be possible in general
- Can reduce from Sparse Connectivity: Do edges span a connected graph?
- Conjecture: superconstant number of rounds with $N^{1-\Omega(1)}$ memory
- Is this instance hard? (solvable in $O(\log N)$ rounds)
- Reduction: connect select vertex to all vertices with heavy edges
- This talk: algorithms with $O(N^\epsilon)$ space per machine
Outline

1. Model of Computation
2. Sample Algorithms and Their Limitations
3. Efficiently Estimating MST Weight
4. Computing MST in Geometric Setting
Result

[Łącki, Mądry, Mitrović, O., Sankowski]

- **Input**: M edges, weights in $\{1, 2, \ldots, W\}$
 ($\#\text{nodes } N \leq \#\text{edges } M$)
Result

[Łącki, Mądry, Mitrović, O., Sankowski]

- **Input:** M edges, weights in $\{1, 2, \ldots, W\}$

 (#nodes $N \leq$ #edges M)

- **Algorithm:**
 - Computes $(1 + \epsilon)$-approximation to MST weight
Result

[Łącki, Mądry, Mitrović, O., Sankowski]

• Input: M edges, weights in $\{1, 2, \ldots, W\}$
 (#nodes $N \leq$ #edges M)

• Algorithm:
 • Computes $(1 + \epsilon)$-approximation to MST weight
 • Space per machine:
 $$O\left(\frac{M}{m} + \frac{N}{m} \cdot \left(\frac{W}{\epsilon}\right)^2\right) \text{ for } M/m = M^{\Omega(1)}$$
Result

[Łącki, Mądry, Mitrović, O., Sankowski]

- **Input:** M edges, weights in $\{1, 2, \ldots, W\}$
 (#nodes $N \leq$ #edges M)

- **Algorithm:**
 - Computes $(1 + \epsilon)$-approximation to MST weight
 - Space per machine:
 $$O\left(\frac{M}{m} + \frac{N}{m} \cdot \left(\frac{W}{\epsilon}\right)^2\right)$$
 for $M/m = M^{\Omega(1)}$
 - Number of rounds: $O(\log(W/\epsilon))$
Result

[Łącki, Mądry, Mitrović, O., Sankowski]

• **Input:** \(M \) edges, weights in \(\{1, 2, \ldots, W\} \)
 (#nodes \(N \leq \text{#edges} \ M \))

• **Algorithm:**
 • Computes \((1 + \epsilon)\)-approximation to MST weight
 • Space per machine:
 \[
 \mathcal{O}\left(\frac{M}{m} + \frac{N}{m} \cdot \left(\frac{W}{\epsilon}\right)^2\right) \quad \text{for} \quad M/m = M^{\Omega(1)}
 \]
 • Number of rounds: \(O(\log(W/\epsilon)) \)

• **Note:** No dependence on \(W \) would disprove Sparse Connectivity Conjecture
Approach

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- $G_i =$ graph restricted to edges of weight $< i$
- $T_i =$ number of connected components in G_i
- Number of edges of weight $\geq i$ in MST = $T_i - 1$
 \Rightarrow weight (MST) = $\sum_{i=1}^{W} (T_i - 1)$
- $C_i(v) =$ size of the component of v in G_i
- $T_i = \sum_v 1 / C_i(v)$

Good approximation:
- Compute sizes of small components
- Replace $1 / C_i(v)$ with 0 if $C_i(v) \geq W/\epsilon$
Approach

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- \(G_i \) = graph restricted to edges of weight \(< i \)

- Number of edges of weight \(\geq i \) in MST = \(T_i - 1 \)

- \(W \sum_{i=1}^{\infty} (T_i - 1) \)

- \(C_i(v) = \) size of the component of \(v \) in \(G_i \)

- \(T_i = \sum_{v \in C_i(v)} \frac{1}{C_i(v)} \)

- Good approximation:
 - Compute sizes of small components
 - Replace \(\frac{1}{C_i(v)} \) with 0 if \(C_i(v) \geq W/\epsilon \)
Approach

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- $G_i =$ graph restricted to edges of weight $< i$
- $T_i =$ #connected components in G_i
Approach

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- $G_i =$ graph restricted to edges of weight $< i$
- $T_i =$ #connected components in G_i
- Number of edges of weight $\geq i$ in MST $= T_i - 1$
Approach

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- $G_i =$ graph restricted to edges of weight $< i$
- $T_i =$ #connected components in G_i
- Number of edges of weight $\geq i$ in MST $= T_i - 1$

\Rightarrow weight(MST) $= \sum_{i=1}^{W} (T_i - 1)$
Approach

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- G_i = graph restricted to edges of weight $< i$
- T_i = #connected components in G_i
- Number of edges of weight $\geq i$ in MST = $T_i - 1$

\[\Rightarrow \quad \text{weight(MST)} = \sum_{i=1}^{W} (T_i - 1) \]

- $C_i(v) =$ size of the component of v in G_i

\[T_i = \sum_{v} 1/C_i(v) \]
Approach

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- \(G_i = \) graph restricted to edges of weight \(< i \)
- \(T_i = \) number of connected components in \(G_i \)
- Number of edges of weight \(\geq i \) in MST = \(T_i - 1 \)

\[\Rightarrow \quad \text{weight(MST)} = \sum_{i=1}^{W} (T_i - 1) \]

- \(C_i(v) = \) size of the component of \(v \) in \(G_i \)

\[T_i = \sum_{v} 1 / C_i(v) \]

- Good approximation:
 - Compute sizes of small components
 - Replace \(1 / C_i(v) \) with 0 if \(C_i(v) \geq W / \epsilon \)
Implementation

- Reachability sets R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges

Use QuickSort-like sorting algorithm of Goodrich, Sitchinava, Zhang (2011) to organize communication.
• Reachability sets R_v for each node v:
 • Set of W/ϵ nodes accessible via cheapest edges
 • Initially: collect cheapest incident edges
Implementation

- **Reachability sets** R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges
 - **Initially**: collect cheapest incident edges
 - Repeat $O(\log(W/\epsilon))$ times:
 - Ask nodes u on R_v for their R_u and update

ϵ-reachability sets help in exploring useful nodes up to distance W/ϵ. Usage of the QuickSort-like sorting algorithm by Goodrich, Sitchinava, Zhang (2011) organizes communication.
Implementation

- Reachability sets R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges
 - Initially: collect cheapest incident edges
 - Repeat $O(\log(W/\epsilon))$ times:
 Ask nodes u on R_v for their R_u and update

- $O(\log(W/\epsilon))$ updates suffice to explore useful nodes up to distance W/ϵ
Implementation

- **Reachability sets** R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges
 - Initially: collect cheapest incident edges
 - Repeat $O(\log(W/\epsilon))$ times:
 Ask nodes u on R_v for their R_u and update

- $O(\log(W/\epsilon))$ updates suffice to explore useful nodes up to distance W/ϵ

- Use QuickSort-like sorting algorithm of Goodrich, Sitchinava, Zhang (2011) to organize communication
Outline

1. Model of Computation
2. Sample Algorithms and Their Limitations
3. Efficiently Estimating MST Weight
4. Computing MST in Geometric Setting
Geometric Setting

Input: set of points in low dimensional metric space
Geometric Setting

Input: set of points in low dimensional metric space

- Points induce a weighted graph

![Graph Diagram]

- Graph problems to consider:
 - Minimum Spanning Tree
 - Earth Mover Distance
 - Transportation Problem
 - Travelling Salesman Problem
 - ...
Geometric Setting

Input: set of points in low dimensional metric space

- Points induce a *weighted graph*
- **Graph problems to consider:**
 - Minimum Spanning Tree
 - Earth Mover Distance
 - Transportation Problem
 - Travelling Salesman Problem
 - ...
Result

[Andoni, Nikolov, O., Yaroslavtsev 2014]

- **Input:** N points in low dimensional metric space
 - **Example:** \mathbb{R}^2
 - Generalizes to bounded doubling dimension
Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

• **Input:** N points in low dimensional metric space
 • Example: \mathbb{R}^2
 • Generalizes to **bounded doubling dimension**

• **Algorithm:**
 • Computes $(1 + \epsilon)$-approximate MST
Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

- **Input:** N points in low dimensional metric space
 - Example: \mathbb{R}^2
 - Generalizes to bounded doubling dimension

- **Algorithm:**
 - Computes $(1 + \epsilon)$-approximate MST
 - Space per machine: roughly $O(N/m)$
 (as long as it fits subproblems)
Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

- **Input**: \(N \) points in low dimensional metric space
- **Example**: \(\mathbb{R}^2 \)
- **Generalizes to bounded doubling dimension**

Algorithm:
- Computes \((1 + \epsilon)\)-approximate MST
- **Space per machine**: roughly \(O(N/m) \)
 (as long as it fits subproblems)
- **Number of rounds**: \(O(1) \)
Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

• **Input:** N points in low dimensional metric space
 • **Example:** \mathbb{R}^2
 • Generalizes to **bounded doubling dimension**

• **Algorithm:**
 • Computes $(1 + \epsilon)$-approximate MST
 • Space per machine: roughly $O(N/m)$
 (as long as it fits subproblems)
 • Number of rounds: $O(1)$
 • Running time: near-linear
Random Gridding

We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid
Random Gridding

We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid
Random Gridding

We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid
Random Gridding

We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid
Random Gridding

We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid

Key property: cell of side Δ separates points x and y w.p. $O(1) \cdot \frac{\rho(x,y)}{\Delta}$
Using Random Gridding

Typical usage: **Recursive dynamic program**
for approximately solving problem
Using Random Gridding

Typical usage: Recursive dynamic program for approximately solving problem
Using Random Gridding

Typical usage: Recursive dynamic program for approximately solving problem
Using Random Gridding

Typical usage: **Recursive dynamic program**
for approximately solving problem
Using Random Gridding

Typical usage: **Recursive dynamic program**
for approximately solving problem
Using Random Gridding

Typical usage: Recursive dynamic program
for approximately solving problem
Using Random Gridding

Typical usage: Recursive dynamic program for approximately solving problem

Can partially isolate what happens inside a cell
Our Algorithm

- Connect points closer than \(\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N} \) arbitrarily
Our Algorithm

- Connect points closer than \(\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N} \) arbitrarily
- Sub-solution for cell of side \(\Delta \):
 \(\epsilon^2 \Delta \)-covering with induced components
Our Algorithm

- Connect points closer than $\frac{\varepsilon \cdot \text{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ:
 $\varepsilon^2 \Delta$-covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal’s algorithm
Our Algorithm

- Connect points closer than \(\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N} \) arbitrarily
- Sub-solution for cell of side \(\Delta \):
 \(\epsilon^2 \Delta \)-covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal’s algorithm
 1. Find two closest clusters
Our Algorithm

- Connect points closer than $\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ:
 $\epsilon^2 \Delta$-covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal’s algorithm
 1. Find two closest clusters
 2. If their distance less than $\epsilon \Delta$, connect them
Our Algorithm

- Connect points closer than \(\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N} \) arbitrarily
- Sub-solution for cell of side \(\Delta \):
 \(\epsilon^2 \Delta \)-covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal’s algorithm
 1. Find two closest clusters
 2. If their distance less than \(\epsilon \Delta \), connect them
Our Algorithm

- Connect points closer than $\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ:
 $\epsilon^2 \Delta$-covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal’s algorithm
 1. Find two closest clusters
 2. If their distance less than $\epsilon \Delta$, connect them and repeat
Our Algorithm

- Connect points closer than $\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ:
 $\epsilon^2 \Delta$-covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal’s algorithm

 1. Find two closest clusters
 2. If their distance less than $\epsilon \Delta$, connect them and repeat
- Pass up $\epsilon^2 \Delta$-covering with information about connected components
Our Algorithm

- Connect points closer than $\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ:
 $\epsilon^2 \Delta$-covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal’s algorithm
 1. Find two closest clusters
 2. If their distance less than $\epsilon \Delta$, connect them and repeat
- Pass up $\epsilon^2 \Delta$-covering with information about connected components
Our Algorithm

- Connect points closer than $\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ:
 $\epsilon^2 \Delta$-covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 1. Find two closest clusters
 2. If their distance less than $\epsilon \Delta$, connect them and repeat
- Pass up $\epsilon^2 \Delta$-covering with information about connected components
Our Algorithm

- Connect points closer than $\frac{\epsilon \cdot \text{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ:
 - $\epsilon^2 \Delta$-covering with induced components
- Combining sub-solutions:
 - Truncated version of Kruskal’s algorithm
 1. Find two closest clusters
 2. If their distance less than $\epsilon \Delta$, connect them and repeat
- Pass up $\epsilon^2 \Delta$-covering with information about connected components
- Expected cost of solution: optimum $\cdot (1 + \epsilon \cdot \#\text{levels})$
Select Implementation Details

- Merge $N^{\Omega(1)} \times N^{\Omega(1)}$ cells at once
Select Implementation Details

- Merge $N^{\Omega(1)} \times N^{\Omega(1)}$ cells at once

- Sub-solutions for all subcells should fit on a single machine
Select Implementation Details

- Merge $N^\Omega(1) \times N^\Omega(1)$ cells at once
- Sub-solutions for all subcells should fit on a single machine
- Use sorting [Goodrich, Sitchinava, Zhang 2011] for grouping points and subcells that are close
Select Implementation Details

- Merge $N^{\Omega(1)} \times N^{\Omega(1)}$ cells at once

- Sub-solutions for all subcells should fit on a single machine

- Use sorting [Goodrich, Sitchinava, Zhang 2011] for grouping points and subcells that are close

- Near-linear time:
 - Relax Kruskal’s algorithm
 - Efficient nearest neighbor data structure [Krauthgamer, Lee 2004], [Cole, Gottlieb 2006]
Lower Bounds for MST

• Natural questions to ask:
 • Can generalize to unbounded dimension?
 • Can compute exact solution?
Lower Bounds for MST

• Natural questions to ask:
 • Can generalize to unbounded dimension?
 • Can compute exact solution?

• Query complexity:
 • Model: distance queries
 • Our algorithm can be adapted to arbitrary bounded doubling dimensional metric in this model
 • Lower bound: $N^{\Omega(1)}$ rounds
Lower Bounds for MST

- **Natural questions to ask:**
 - Can generalize to unbounded dimension?
 - Can compute exact solution?

- **Query complexity:**
 - **Model:** distance queries
 - Our algorithm can be adapted to arbitrary bounded doubling dimensional metric in this model
 - **Lower bound:** $N^{\Omega(1)}$ rounds

- We give a conditional lower bound based on Sparse Connectivity
Reduction

In constant number of rounds:

Computing exact MST in ℓ^d_∞ for $d = 100 \log N$

\Rightarrow deciding Sparse Connectivity
Reduction

In constant number of rounds:

Computing exact MST in ℓ^d_∞ for $d = 100 \log N$

\Rightarrow deciding Sparse Connectivity

Construction:

- For each vertex, pick a random vector v_i in $\{-1, +1\}^d$
- For each edge $e = (i, j)$, add point $f(e) = v_i + v_j$
Reduction

In constant number of rounds:

Computing exact MST in ℓ^d_∞ for $d = 100 \log N$
\Rightarrow deciding Sparse Connectivity

Construction:

- For each vertex, pick a random vector ν_i in $\{-1, +1\}^d$
- For each edge $e = (i, j)$, add point $f(e) = \nu_i + \nu_j$

Distances (whp.):

- Adjacent edges: $\|f(e) - f(e')\|_\infty \leq 2$
- Non-adjacent edges: $\|f(e) - f(e')\|_\infty = 4$
Reduction

In constant number of rounds:

Computing exact MST in ℓ^d_{∞} for $d = 100 \log N$

\Rightarrow deciding Sparse Connectivity

Construction:

- For each vertex, pick a random vector v_i in $\{-1, +1\}^d$
- For each edge $e = (i, j)$, add point $f(e) = v_i + v_j$

Distances (whp.):

- Adjacent edges: $\|f(e) - f(e')\|_{\infty} \leq 2$
- Non-adjacent edges: $\|f(e) - f(e')\|_{\infty} = 4$

MST weight:

- Connected: $\leq 2(M - 1)$
- Not connected: $\geq 2M$
Other Results
[Andoni, Nikolov, O., Yaroslavtsev 2014]

- Algorithm for approximating Earth-Mover Distance
- A new way of partitioning the instance into subproblems
- Resolves an open question of Sharathkumar & Agarwal (2012) about the transportation problem:
 First near-linear time algorithm
Summary

- Main goal:

 Efficient algorithms for the Massive Parallel Computation Model
Summary

• Main goal: Efficient algorithms for the Massive Parallel Computation Model

• Important efficiency measure: number of rounds
 When can it be made $O(1)$ with low memory?
Summary

• Main goal:

 Efficient algorithms for the Massive Parallel Computation Model

• Important efficiency measure: number of rounds
 When can it be made $O(1)$ with low memory?

• Well known obstacle: Sparse Connectivity
Summary

• Main goal:

Efficient algorithms for the Massive Parallel Computation Model

• Important efficiency measure: number of rounds
 When can it be made $O(1)$ with low memory?

• Well known obstacle: Sparse Connectivity

• This talk: efficient algorithms for MST
Summary

• Main goal:
 Efficient algorithms for the Massive Parallel Computation Model

• Important efficiency measure: number of rounds
 When can it be made $O(1)$ with low memory?

• Well known obstacle: Sparse Connectivity

• This talk: efficient algorithms for MST

• Future research:
 • More such algorithms
 • Better understanding of our limitations
Questions?