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Online Ad Allocation

Ad | [Ad ] [Ad ] el

b(i,a) = bid

http://... http://...

ces pageviews arrive online o

» When a page arrives, assign an eligible ad.
» revenue from assigning page i to ad a: bj,
» Budgeted Allocation ["AdWords" (AW)] problem:

» Maximize revenue of ads served: max Zi.a biaXis
» Budget of ad a: Z,EA(Q) bisxia < B,



General Form of LP

max E ViaXia

i,a

Y xia <1 (¥ §)
Z siaxia < G, (V a)
Xia Z 0 (V i, a)

Online Matching:
Via=Sia =1

Disp. Ads (DA): | AdWords (AW):

Sp=1 Sia = Via
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» Weighted: 0.66-competitive [HaeuplerMZ]
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Primal-dual Algorithms

» AdWords Problem: [MSVV05] The following is a 1 — L-aprx:
Assign impression to an advertiser a:
spent, 1
maximizing bj,(1 —e B ),
» Display Ads problem:
Assign impression to an advertiser a:
maximizing (imp. value - 3,),
» Greedy: 8, = min. impression assigned to a.
» Better (pd-avg): S, = average value of top C, impressions
assigned to a.

» Optimal (pd-exp): order value of edges assigned to a:
v(l) > v(2)... > v(G):

C
1 2 1 ..
= —— N1+ =)L
e, >+ gy
» Thm: pd-exp achieves optimal competitive Ratio: 1 — = — ¢ if

C, > O(%). [FKMMP09)]



Dual-base Algorithm For Random Order

max E ViaXia
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Dual-base Algorithm For Random Order

max i723 ViaXia min Z Caﬁa n Z Z
d X <1 (Vi) Z
d xia <G (V a)

Xia > 0 (\V/ iva)

Fact: If opt. 3% are known, assigning i to argmax(vj; — 33) is OPT.

» Proof: Comp. slackness. Given 3%, compute x* as follows:
* H — . *
xi =1if a = argmax(vi, — 53).



Dual-base Algorithm For Random Order

max Z ViaXia min Z Caﬁa n Z Z

i,a

d X <1 (Vi) Z

> Via—fa (Vi a)
i:x;a - c v 3 Barzi > 0 (Vi, a)
| Xia > 0 (Y i,a)
Algorithm:

> Learn a dual variable 3, for each ad a, by solving the dual
program on a sample, e.g., sample first € fraction sample of
page-views.

» Assign each impression i to ad a that maximizes v;, — [3,.



Experiments: setup

v

Real ad impression data from several large publishers

v

200k - 1.5M impressions in simulation period
100 - 2600 advertisers
Edge weights = predicted click probability

v

v

v

Algorithms:

» greedy: maximum marginal value
pd-avg, pd-exp: pure online primal-dual from [FKMMPQ9].
dualbase: training-based primal-dual [FHKMS10]
hybrid: convex combo of training based, pure online.
Ip-weight: optimum efficiency

vV vy VvYy



Experimental Evaluation: Summary

Algorithm | Avg Efficiency% | Provable Ratio
opt 100 1
greedy 69 1/2
pd-avg 77 1/2
pd-exp 82 1-1/e
dualbase 87 1—ce¢
hybrid 89 ?
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In Production

>

Algorithms inspired by these techniques are in use at Google
DoubleClick display ad serving system, delivering billions of
ads per day.

Smooth Delivery of Display Ads (Bhalgat, Feldman, M.)

» Model this with multiple nested capacity constraints.
Page-based Ad Allocation (Korula, M., Yan)

» Assign multiple ads per page with configuration constraints.
Display Ad Allocation with Ad Exchange (Balseiro, Feldman,
M., Muthukrishnan)

» Maximize quality of reservation ads and revenue of Ad

Exchange.

Final Algorithm: Adversarial or Stochastic? = hybrid.
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In practice: Adversarial or Stochastic?

» Stochastic? No. Traffic spikes contradict with the simple
random arrival assumption.

» Adversarial? No. Too pessimistic. Some forecasts are useful.

» In practice, hybrid algorithms are used:

» Use some stochastic predictions,
» but adapt if predictions fail!

» Simultaneous Approximation: Adversarial algorithms that are
robust against traffic spikes and perform better when the
stochastic information is valid.

» (a,b)-approximation:

» a-competitive for adversarial.
» b-competitive for random order.

» Dealing with Traffic Spikes: Primal and Dual techniques fail in
the adversarial models = (0, b) — approximation.
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Simultaneous adversarial & stochastic optimization

» (a,b)-approximation:
» a-competitive for adversarial.
» b-competitive for random order.

v

Assuming C, > maxs;,, are there algorithms that achieve
good approximation factors for both adversarial and stochastic
models simultaneously?

Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)

v

» PD-EXP algorithm achieves (1 — ¢, 1 — 1)-approximation.
No for weighted edges! (M.,OveisGharan,ZadiMoghaddam)

> Achieving (0.97, 1 — 1)-approximation is impossible.
» PD-EXP achieves (0.76,1 — 1)-approximation.

e

v



Hardness Result

» Any 1 — e-competitive algorithm for stochastic input can not
have a competitive ratio better than 4./€ in the adversarial
model.

» Achieving (4./¢, 1 — ¢)-approximation is impossible.

» In particular, any 1 — 1/e competitive algorithm in the
adversarial case has competitive ratio at most 97.6% for the
random order.



Hardness Result Idea

» We have two ads (bins) with the same capacity of 10, generate
a random permutation of 100 blue balls and 10 red balls.

» The optimum offline solution fills up both bins completely.
Cap:10 Cap:10



Hardness Result Idea

> Look at the first 10 balls of the random permutation.

e OF

> Adversarial Input : Stochastic Input

.,.,,
“.




PD-EXP Algorithm for AdWords

> Let
f(r(x)) =1— e,
to each advertiser x where r(x) = speg:c(x).

» Allocate a new arrived online node y to the advertiser x
maximizing that

w(x, y)F(r(x)) = wlx,y)(1 — e'®1).

» [MSVV]: PD-EXP is a 1 — 1/e-competitive algorithm for the
worst-case scenario, i.e., adversarial model.



PD-EXP in random order

» PD-EXP has a scoring function (r(x)) for different bins.
» Define a potential function to be the sum of capacities times

the anti-derivative of function f for all bins:

-r(t,x)
o(t) =Y c(x) / F(r(x))dr = c(x)F(r(t,x)).

X Jr=0 X

where c(x) is the capacity of bin x and r(t, x) is the ratio of
the spent budget of x at time t.



Changes in Potential Function

> If we allocate item / to bin x with weight w(/. x) in this bin at
time t, ¢(t) changes as follows:
A(¢) = C(X)[d(/ (£, x)f(r(x)))/ drlA(r),

Jr=0

where /AA(r) is the change in the ratio of bin x.
So the total change is:

A(@) = c(x)f(r(t,x))w(i,x)/c(x) = w(i,x)f(r(t,x)).



Potential Function Interpretation of the Algorithm

» We conclude that algorithm PD-EXP is trying to greedily
maximize the increase in the potential function.

» So in each small fraction of time, the potential function is
increased at least as much as the increase in potential based
on the optimum solution assignment.



Factor-revealing Mathematical Program

» We have n balls, so t is in [n].

» [ is the antiderivative of f, and o; is how much value is
assigned to bin j in the optimum solution.

MP : minimize ﬁ ZJ- ri(n)c;

>, GF(r(6) = olt) vt e [l
€ Zj oif (ri((k + 1)ne)) < ¢((k + 1)ne) — ¢(kne) Yk € [% —1],
9 =6 vj & [m],

Zj 0 = OPT,

r(t) < r(t+1) Vj,t e [n—1],

ri(n) <1 vj € [m].



Converting Factor-revealing MP to Poly-size LP

> We discretize time and spent budget ratios into k parts, so we
have k variables for values of potential function at different
time intervals.

» We have variable c[r, t] that denotes the sum of capacities of
bins with rations in range [r,r + 1/k| at time t. Similarly we
define ofr. t].

PP 1 1 1/e—1 , re—1
LP minimize ;—/- {g)((—) — /V:/PO o, k(pe/e — ePs )}

~1/e—1 e

S couloe = =) < (k) vk € [1]

=i o, ka1 — Py > gk 4 1) — (k) vk e[t -1]

;;lk < IC, K Vp € [l — 1),k e [,]
Sl ok =1 vk e [L]:

TJe—1 _ 1 » i
Sl gk < E/ i ClLk+1 viel[l—1,ke[l -1



Converting Factor-revealing MP to poly-size LP

> It gets more work to design a factor revealing LP using this
mathematical program that yields 0.76 competitive ratio.

» We discretize both time and ratios into kK = (1 intervals. For
1 — 30, the LP proves 0.73 competitive ratio, for % = 250, it

—

proves 0.76.



Summary: Robust Models

» Summary: Simultaneous Approximations
» Unweighted: (1 —1/e,0.70) — (1 —1/e,1 —¢).
» Weighted: (1 —1/e,1—1/e) = (1 —1/e,0.76).
» Impossible to get (1 — 1/e,0.97) for weighted.
» Other robust stochastic models?
» Approximation factor as a function of accuracy of prediction?
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Other robust stochastic models?
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v

v

Adaptively increase/decrease [3's using a controller.
» Tan and Srikant show asymptotic optimality in an iid model.

v

Handling bursty random arrival models:
» Periodic re-optimization achieves constant-factor
approximation even in a bursty random arrival model [Ciacon
and Farias]
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Bicriteria Online Matching

» Multiple-Objective Optimization: Weight, Cardinality,
Revenue, Social Welfare.

» e.g. Two Objectives: Assign ads to impressions, maximizing
both weight and cardinality of the allocation respecting
capacities.

» Bicriteria Online Matching: («., 3)-approximation:

» a-competitive for weight: Online Weighted Matching (DA)
» [3-competitive for cardinality: Online Matching

» Simple Algorithm: with probability 1/2, optimize for one
objective: ((1 —1/e)/2,(1 —1/e)/2)-approximation.

» Korula, M., ZadiMoghaddam: Bicriteria Online Matching

» Improve to factor ((1 —1/e”)/2,(1 —1/e”)/2) for large
capacity, and to ((1 —1/e?)/2,(1 —1/e)/2) for small cap.
» The above result is almost tight.



Bicriteria Online Matching: (Korula, M.,
ZadiMoghaddam)
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The Red Upper Bound Curve

1—1/e
using Factor Revealing LP

0.509
= 2
1—12& ‘The Black Upper Bound Line
a+f=1-1/
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Upper Bound Curve
with different values

Our Algorithm ——————— of 4 and p

for Large Degrees

Our Algorithm ———
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Research Directions

» Open Problems:
» Compete with online DP in the iid model: PTAS?
» Small budgets and small degrees: Improve 1/2-approximation.
» Bicriteria approximation for two weight functions?
» Other robust stochastic models?
» Approximation factor as a function of accuracy of prediction?
» Online budget planning for repeated 2nd-price auctions?

» Incentive-compatiblity: Clinching Auctions (Goel, M., Paes
Leme, STOC12, SODA13)
» (mean-field) equilibria? extensive-form or Nash equilibria?



Algorithms Research at Google NYC
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Advertiser (Bid) Optimization
Online Stochastic Ad Allocation
Mechanism Design for Ad Exchanges

Large-scale Graph Mining

» Develop large-scale algorithms to mine graphs with
trillions of edges.

» Distributed Frameworks: Map-Reduce, Pregel, or
Asynchronous Message Passing.

Thank You
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