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Outline: Online Allocation

I Online Stochastic Assignment Problems
I Online Adversarial Arrival Model: Primal-Dual Algorithms
I Random Order: Dual Algorithms
I IID with known Distribution: Primal Algorithms
I Experimental Results

I Simultaneous Stochastic and Adversarial Approximations
I Motivation and Our Results
I Hardness Result
I Factor revealing LP approach

I Multi-objective (Bicriteria) Online Matching



Online Ad Allocation

I When a page arrives, assign an eligible ad.
I value of assigning page i to ad a: via

I Online Weighted Matching [Display Ads (DA)] problem:
I Maximize value of ads served: max

∑
i,a viaxia

I Capacity of ad a:
∑

i∈A(a) xia ≤ Ca
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Online Ad Allocation

I When a page arrives, assign an eligible ad.
I revenue from assigning page i to ad a: bia

I Budgeted Allocation [“AdWords” (AW)] problem:
I Maximize revenue of ads served: max

∑
i,a biaxia

I Budget of ad a:
∑

i∈A(a) biaxia ≤ Ba



General Form of LP

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

Online Matching:
via = sia = 1

Disp. Ads (DA):
sia = 1

AdWords (AW):
sia = via



Arrival Models

I Adversarial Arrival Model: Primal-dual Approach

“ALG is α-competitive?” if for each H, ALG(H)
OPT(H) ≥ α

I Random Order or IID with unknown dist.: Dual Approach

“ALG is α-approximation?” if w.h.p.,ALG(H)
OPT(H) ≥ α

or

“ALG is α-approximation?” if E [ALG(H)]
E [OPT(H)] ≥ α

I iid with known distributions: Primal Approach
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Arrival Models

I Adversarial Arrival Model: Primal-dual Approach
I Unweighted: 1-1/e-competitive algorithm [KarpVV]
I Weighted (Large Capacity): 1-1/e-competitive

algorithm[MehtaSVV]
I Extensions: BJN,FKMMP

I Random Order or IID with unknown dist.: Dual Approach
I Unweighted: 0.69-competitive algorithm [MahdianY]
I Weighted (Large Capacity): 1− ε-competitive by applying a

Dual Approach: learn dual variables and use them later
[DevanurH].

I Extensions: AWY,FHKMS,VJV

I iid with known distributions: Primal Approach
I Unweighted: 0.72-competitive [FeldmanMMM & ManshadiOS]
I Weighted: 0.66-competitive [HaeuplerMZ]
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Greedy Algorithm

Assign impression to an advertiser
maximizing Marginal Gain

I Competitive Ratio: 1/2. [NWF78]
I Follows from submodularity of the value function.

1

1 + ε

Ad 1: C1 = n

Ad 2: C2 = n
1

n copiesn copies

n copies
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Primal-dual Algorithms

I AdWords Problem: [MSVV05] The following is a 1− 1
e -aprx:

Assign impression to an advertiser a:

maximizing bia(1− e
spenta

Ba
−1),

I Display Ads problem:

Assign impression to an advertiser a:
maximizing (imp. value - βa),

I Greedy: βa = min. impression assigned to a.
I Better (pd-avg): βa = average value of top Ca impressions

assigned to a.
I Optimal (pd-exp): order value of edges assigned to a:

v(1) ≥ v(2) . . . ≥ v(Ca):

βa =
1

Ca(e − 1)

Ca∑
j=1

v(j)(1 +
1

Ca
)j−1.

I Thm: pd-exp achieves optimal competitive Ratio: 1− 1
e − ε if

Ca > O( 1
ε ). [FKMMP09]
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Dual-base Algorithm For Random Order

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

xia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑
a

Caβa +
∑
i

zi

zi ≥ via − βa (∀i , a)

βa, zi ≥ 0 (∀i , a)

Algorithm:
I Learn a dual variable βa for each ad a, by solving the dual

program on a sample, e.g., sample first ε fraction sample of
page-views.

I Assign each impression i to ad a that maximizes via − βa.
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Experiments: setup

I Real ad impression data from several large publishers

I 200k - 1.5M impressions in simulation period

I 100 - 2600 advertisers

I Edge weights = predicted click probability
I Algorithms:

I greedy: maximum marginal value
I pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
I dualbase: training-based primal-dual [FHKMS10]
I hybrid: convex combo of training based, pure online.
I lp-weight: optimum efficiency



Experimental Evaluation: Summary

Algorithm Avg Efficiency% Provable Ratio
opt 100 1

greedy 69 1/2
pd-avg 77 1/2
pd-exp 82 1-1/e

dualbase 87 1− ε
hybrid 89 ?



In Production
I Algorithms inspired by these techniques are in use at Google

DoubleClick display ad serving system, delivering billions of
ads per day.

I Smooth Delivery of Display Ads (Bhalgat, Feldman, M.)
I Model this with multiple nested capacity constraints.

I Page-based Ad Allocation (Korula, M., Yan)
I Assign multiple ads per page with configuration constraints.

I Display Ad Allocation with Ad Exchange (Balseiro, Feldman,
M., Muthukrishnan)

I Maximize quality of reservation ads and revenue of Ad
Exchange.

I Final Algorithm: Adversarial or Stochastic? ⇒ hybrid.
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In practice: Adversarial or Stochastic?

I Stochastic? No. Traffic spikes contradict with the simple
random arrival assumption.

I Adversarial? No. Too pessimistic. Some forecasts are useful.
I In practice, hybrid algorithms are used:

I Use some stochastic predictions,
I but adapt if predictions fail!

I Simultaneous Approximation: Adversarial algorithms that are
robust against traffic spikes and perform better when the
stochastic information is valid.

I (a,b)-approximation:
I a-competitive for adversarial.
I b-competitive for random order.

I Dealing with Traffic Spikes: Primal and Dual techniques fail in
the adversarial models ⇒ (0, b)− approximation.
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Simultaneous adversarial & stochastic optimization

I (a,b)-approximation:
I a-competitive for adversarial.
I b-competitive for random order.

I Assuming Ca � max sia, are there algorithms that achieve
good approximation factors for both adversarial and stochastic
models simultaneously?

I Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)

I PD-EXP algorithm achieves (1− ε, 1− 1
e )-approximation.

I No for weighted edges! (M.,OveisGharan,ZadiMoghaddam)
I Achieving (0.97, 1− 1

e )-approximation is impossible.
I PD-EXP achieves (0.76, 1− 1

e )-approximation.
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Hardness Result

I Any 1− ε-competitive algorithm for stochastic input can not
have a competitive ratio better than 4

√
ε in the adversarial

model.
I Achieving (4

√
ε, 1− ε)-approximation is impossible.

I In particular, any 1− 1/e competitive algorithm in the
adversarial case has competitive ratio at most 97.6% for the
random order.



Hardness Result Idea

I We have two ads (bins) with the same capacity of 10, generate
a random permutation of 100 blue balls and 10 red balls.

I The optimum offline solution fills up both bins completely.



Hardness Result Idea

I Look at the first 10 balls of the random permutation.

I Adversarial Input vs. Stochastic Input



PD-EXP Algorithm for AdWords

I Let
f (r(x)) = 1− er(x)−1,

to each advertiser x where r(x) =
spent(x)

Bx
.

I Allocate a new arrived online node y to the advertiser x
maximizing that

w(x , y)f (r(x)) = w(x , y)(1− er(x)−1).

I [MSVV]: PD-EXP is a 1− 1/e-competitive algorithm for the
worst-case scenario, i.e., adversarial model.



PD-EXP in random order

I PD-EXP has a scoring function f (r(x)) for different bins.

I Define a potential function to be the sum of capacities times
the anti-derivative of function f for all bins:

φ(t) :=
∑
x

c(x)

∫ r(t,x)

r=0
f (r(x))dr =

∑
x

c(x)F (r(t, x)).

where c(x) is the capacity of bin x and r(t, x) is the ratio of
the spent budget of x at time t.



Changes in Potential Function

I If we allocate item i to bin x with weight w(i , x) in this bin at
time t, φ(t) changes as follows:

∆(φ) = c(x)[d(

∫ r

r=0
(t, x)f (r(x)))/dr ]∆(r),

where ∆(r) is the change in the ratio of bin x .
So the total change is:

∆(φ) = c(x)f (r(t, x))w(i , x)/c(x) = w(i , x)f (r(t, x)).



Potential Function Interpretation of the Algorithm

I We conclude that algorithm PD-EXP is trying to greedily
maximize the increase in the potential function.

I So in each small fraction of time, the potential function is
increased at least as much as the increase in potential based
on the optimum solution assignment.



Factor-revealing Mathematical Program

I We have n balls, so t is in [n].

I F is the antiderivative of f , and oj is how much value is
assigned to bin j in the optimum solution.

MP : minimize 1

OPT
∑

j rj(n)cj∑
j cjF (rj(t)) = φ(t) ∀t ∈ [n],

ε
∑

j oj f (rj((k + 1)nε)) ≤ φ((k + 1)nε)− φ(knε) ∀k ∈ [ 1ε − 1],

oj ≤ cj ∀j ∈ [m],∑
j oj = OPT,

rj(t) ≤ rj(t + 1) ∀j , t ∈ [n − 1],
rj(n) ≤ 1 ∀j ∈ [m].



Converting Factor-revealing MP to Poly-size LP

I We discretize time and spent budget ratios into k parts, so we
have k variables for values of potential function at different
time intervals.

I We have variable c[r , t] that denotes the sum of capacities of
bins with rations in range [r , r + 1/k] at time t. Similarly we
define o[r , t].

LP minimize 1
1−1/e

{
φ( 1
ε
)−

∑1/ε−1
ρ=0 cρ,k (ρε/e − eρε−1)

}
∑1/ε−1
ρ=0 cρ,k (ρε− eρε−1) ≤ φ(k) ∀k ∈ [ 1

ε
]∑1/ε−1

ρ=0 εoρ,k+1(1− e(ρ+1)ε−1) ≥ φ(k + 1)− φ(k) ∀k ∈ [ 1
ε
− 1]

oρ,k ≤ cρ,k ∀ρ ∈ [ 1
ε
− 1], k ∈ [ 1

ε
]∑1/ε−1

i=0 oρ,k = 1 ∀k ∈ [ 1
ε
] :∑1/ε−1

l=i
cl,k ≤

∑1/ε−1
l=i

cl,k+1 ∀i ∈ [ 1
ε
− 1], k ∈ [ 1

ε
− 1]



Converting Factor-revealing MP to poly-size LP

I It gets more work to design a factor revealing LP using this
mathematical program that yields 0.76 competitive ratio.

I We discretize both time and ratios into k = 1
ε intervals. For

1
ε = 30, the LP proves 0.73 competitive ratio, for 1

ε = 250, it
proves 0.76.



Summary: Robust Models

I Summary: Simultaneous Approximations
I Unweighted: (1− 1/e, 0.70) → (1− 1/e, 1− ε).
I Weighted: (1− 1/e, 1− 1/e) → (1− 1/e, 0.76).
I Impossible to get (1− 1/e, 0.97) for weighted.

I Other robust stochastic models?
I Approximation factor as a function of accuracy of prediction?

I Adaptively increase/decrease β’s using a controller.
I Tan and Srikant show asymptotic optimality in an iid model.

I Handling bursty random arrival models:
I Periodic re-optimization achieves constant-factor

approximation even in a bursty random arrival model [Ciacon
and Farias]
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Bicriteria Online Matching

I Multiple-Objective Optimization: Weight, Cardinality,
Revenue, Social Welfare.

I e.g. Two Objectives: Assign ads to impressions, maximizing
both weight and cardinality of the allocation respecting
capacities.

I Bicriteria Online Matching: (α, β)-approximation:
I α-competitive for weight: Online Weighted Matching (DA)
I β-competitive for cardinality: Online Matching

I Simple Algorithm: with probability 1/2, optimize for one
objective: ((1− 1/e)/2, (1− 1/e)/2)-approximation.

I Korula, M., ZadiMoghaddam: Bicriteria Online Matching
I Improve to factor ((1− 1/e2)/2, (1− 1/e2)/2) for large

capacity, and to ((1− 1/e2)/2, (1− 1/e)/2) for small cap.
I The above result is almost tight.
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Bicriteria Online Matching: (Korula, M.,
ZadiMoghaddam)



Research Directions

I Open Problems:
I Compete with online DP in the iid model: PTAS?
I Small budgets and small degrees: Improve 1/2-approximation.
I Bicriteria approximation for two weight functions?

I Other robust stochastic models?
I Approximation factor as a function of accuracy of prediction?

I Online budget planning for repeated 2nd-price auctions?
I Incentive-compatiblity: Clinching Auctions (Goel, M., Paes

Leme, STOC12, SODA13)
I (mean-field) equilibria? extensive-form or Nash equilibria?



Algorithms Research at Google NYC

I Advertiser (Bid) Optimization

I Online Stochastic Ad Allocation

I Mechanism Design for Ad Exchanges
I Large-scale Graph Mining

I Develop large-scale algorithms to mine graphs with
trillions of edges.

I Distributed Frameworks: Map-Reduce, Pregel, or
Asynchronous Message Passing.

Thank You


