# Online Stochastic Ad Allocation: <br> Simultaneous and Bicriteria Approximations 

Vahab Mirrokni

December 13, 2013

Based on

- SODA'12 paper with Shayan OveisGharan (Stanford), Morteza ZadiMoghaddam (MIT),
- WINE'13 paper with Nitish Korula (Google Research) and Morteza ZadiMoghaddam(MIT).


## Outline: Online Allocation

- Online Stochastic Assignment Problems
- Online Adversarial Arrival Model: Primal-Dual Algorithms
- Random Order: Dual Algorithms
- IID with known Distribution: Primal Algorithms
- Experimental Results
- Simultaneous Stochastic and Adversarial Approximations
- Motivation and Our Results
- Hardness Result
- Factor revealing LP approach
- Multi-objective (Bicriteria) Online Matching


## Online Ad Allocation



- When a page arrives, assign an eligible ad.
- value of assigning page $i$ to ad $a: v_{i a}$


## Online Ad Allocation



- When a page arrives, assign an eligible ad.
- value of assigning page $i$ to ad $a: v_{i a}$
- Online Weighted Matching [Display Ads (DA)] problem:
- Maximize value of ads served: $\max \sum_{i, a} v_{i a} x_{i a}$
- Capacity of ad a: $\sum_{i \in A(a)} x_{i a} \leq C_{a}$


## Online Ad Allocation



- When a page arrives, assign an eligible ad.
- revenue from assigning page $i$ to ad $a: b_{i a}$
- Budgeted Allocation ["AdWords" (AW)] problem:
- Maximize revenue of ads served: $\max \sum_{i, a} b_{i a} x_{i a}$
- Budget of ad a: $\sum_{i \in A(a)} b_{i a} x_{i a} \leq B_{a}$


## General Form of LP

$$
\begin{array}{rlr|}
\hline \max \sum_{i, a} v_{i a} x_{i a} & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) \\
x_{i a} & \geq 0 & (\forall i, a) \\
\hline
\end{array}
$$

Online Matching: $\mid$ Disp. Ads (DA): $\mid$ AdWords (AW):
$v_{i a}=s_{i a}=1$
$s_{i a}=1$
$s_{i a}=v_{i a}$

## Arrival Models

- Adversarial Arrival Model: Primal-dual Approach "ALG is $\alpha$-competitive?" if for each $H, \frac{\operatorname{ALG}(H)}{\mathrm{OPT}(H)} \geq \alpha$


## Arrival Models

- Adversarial Arrival Model: Primal-dual Approach "ALG is $\alpha$-competitive?" if for each $H, \frac{\operatorname{ALG}(H)}{\operatorname{OPT}(H)} \geq \alpha$
- Random Order or IID with unknown dist.: Dual Approach "ALG is $\alpha$-approximation?" if w.h.p., $\frac{\operatorname{ALG}(H)}{\operatorname{OPT}(H)} \geq \alpha$ or
"ALG is $\alpha$-approximation?" if $\frac{E \operatorname{ALG}(H)]}{E[\operatorname{OPT}(H)]} \geq \alpha$


## Arrival Models

- Adversarial Arrival Model: Primal-dual Approach "ALG is $\alpha$-competitive?" if for each $H, \frac{\operatorname{ALG}(H)}{\mathrm{OPT}(H)} \geq \alpha$
- Random Order or IID with unknown dist.: Dual Approach "ALG is $\alpha$-approximation?" if w.h.p., $\frac{\operatorname{ALG}(H)}{\operatorname{OPT}(H)} \geq \alpha$ or

$$
\text { "ALG is } \alpha \text {-approximation?" if } \frac{E[\operatorname{ALG}(H)]}{E[\operatorname{OPT}(H)]} \geq \alpha
$$

- iid with known distributions: Primal Approach


## Arrival Models

- Adversarial Arrival Model: Primal-dual Approach
- Unweighted: 1-1/e-competitive algorithm [KarpVV]
- Weighted (Large Capacity): 1-1/e-competitive algorithm[MehtaSVV]
- Extensions: BJN,FKMMP


## Arrival Models

- Adversarial Arrival Model: Primal-dual Approach
- Unweighted: 1-1/e-competitive algorithm [KarpVV]
- Weighted (Large Capacity): 1-1/e-competitive algorithm[MehtaSVV]
- Extensions: BJN,FKMMP
- Random Order or IID with unknown dist.: Dual Approach
- Unweighted: 0.69-competitive algorithm [MahdianY]
- Weighted (Large Capacity): 1 - $\epsilon$-competitive by applying a Dual Approach: learn dual variables and use them later [DevanurH].
- Extensions: AWY,FHKMS,VJV


## Arrival Models

- Adversarial Arrival Model: Primal-dual Approach
- Unweighted: 1-1/e-competitive algorithm [KarpVV]
- Weighted (Large Capacity): 1-1/e-competitive algorithm[MehtaSVV]
- Extensions: BJN,FKMMP
- Random Order or IID with unknown dist.: Dual Approach
- Unweighted: 0.69-competitive algorithm [MahdianY]
- Weighted (Large Capacity): $1-\epsilon$-competitive by applying a Dual Approach: learn dual variables and use them later [DevanurH].
- Extensions: AWY,FHKMS,VJV
- iid with known distributions: Primal Approach
- Unweighted: 0.72-competitive [FeldmanMMM \& ManshadiOS]
- Weighted: 0.66-competitive [HaeuplerMZ]


## Greedy Algorithm

Assign impression to an advertiser
maximizing Marginal Gain

## Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.


## Greedy Algorithm

## Assign impression to an advertiser

 maximizing Marginal Gain- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.



## Greedy Algorithm

## Assign impression to an advertiser

 maximizing Marginal Gain- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.



## Greedy Algorithm

## Assign impression to an advertiser

 maximizing Marginal Gain- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.



## Primal-dual Algorithms

- AdWords Problem: [MSVV05] The following is a $1-\frac{1}{e}$-aprx:

Assign impression to an advertiser a:

$$
\text { maximizing } b_{i a}\left(1-e^{\frac{\text { spent }_{a}}{B_{a}}-1}\right) \text {, }
$$

## Primal-dual Algorithms

- AdWords Problem: [MSVV05] The following is a $1-\frac{1}{e}$-aprx:

Assign impression to an advertiser a:

$$
\text { maximizing } b_{i a}\left(1-e^{\frac{\text { spent }_{a}}{B_{a}}-1}\right)
$$

- Display Ads problem:

Assign impression to an advertiser a: maximizing (imp. value - $\beta_{a}$ ),

- Greedy: $\beta_{a}=\min$. impression assigned to a.
- Better (pd-avg): $\beta_{a}=$ average value of top $C_{a}$ impressions assigned to a.
- Optimal (pd-exp): order value of edges assigned to a:
$v(1) \geq v(2) \ldots \geq v\left(C_{a}\right):$

$$
\beta_{a}=\frac{1}{C_{a}(e-1)} \sum_{j=1}^{C_{a}} v(j)\left(1+\frac{1}{C_{a}}\right)^{j-1} .
$$

- Thm: pd-exp achieves optimal competitive Ratio: $1-\frac{1}{e}-\epsilon$ if $C_{a}>O\left(\frac{1}{\epsilon}\right) .[F K M M P 09]$


## Dual-base Algorithm For Random Order

$$
\left.\begin{array}{rlrl}
\max & \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a}
\end{array}\right) \sum_{i} z_{i} .
$$

## Dual-base Algorithm For Random Order

$$
\begin{array}{rlrlr}
\max \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a} & +\sum_{i} z_{i} & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) & z_{i} & \geq v_{i a}-\beta_{a} \\
\sum_{i} x_{i a} & \leq C_{a} & (\forall i, a) \\
x_{i a} & \geq 0 & (\forall a) & \beta_{a}, z_{i} & \geq 0
\end{array} \quad(\forall i, a)
$$

Fact: If opt. $\beta_{a}^{*}$ are known, assigning $i$ to $\operatorname{argmax}\left(v_{i a}-\beta_{a}^{*}\right)$ is OPT.

- Proof: Comp. slackness. Given $\beta_{a}^{*}$, compute $x^{*}$ as follows:

$$
x_{i a}^{*}=1 \text { if } a=\operatorname{argmax}\left(v_{i a}-\beta_{a}^{*}\right) .
$$

## Dual-base Algorithm For Random Order

$$
\begin{array}{rlrl}
\max \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a} & +\sum_{i} z_{i} \\
\sum_{a} x_{i a} \leq 1 & (\forall i) & z_{i} & \geq v_{i a}-\beta_{a} \\
\sum_{i} x_{i a} & \leq C_{a} & (\forall i, a) \\
x_{i a} & \geq 0 & \beta_{a}, z_{i} & \geq 0
\end{array} \quad(\forall i, a)
$$

Algorithm:

- Learn a dual variable $\beta_{a}$ for each ad $a$, by solving the dual program on a sample, e.g., sample first $\epsilon$ fraction sample of page-views.
- Assign each impression $i$ to ad a that maximizes $v_{i a}-\beta_{a}$.


## Experiments: setup

- Real ad impression data from several large publishers
- 200k - 1.5 M impressions in simulation period
- 100-2600 advertisers
- Edge weights = predicted click probability
- Algorithms:
- greedy: maximum marginal value
- pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
- dualbase: training-based primal-dual [FHKMS10]
- hybrid: convex combo of training based, pure online.
- Ip-weight: optimum efficiency


## Experimental Evaluation: Summary

| Algorithm | Avg Efficiency\% | Provable Ratio |
| :---: | :---: | :---: |
| opt | 100 | 1 |
| greedy | 69 | $1 / 2$ |
| pd-avg | 77 | $1 / 2$ |
| pd-exp | 82 | $1-1 / \mathrm{e}$ |
| dualbase | 87 | $1-\epsilon$ |
| hybrid | $\mathbf{8 9}$ | $?$ |

## In Production

- Algorithms inspired by these techniques are in use at Google DoubleClick display ad serving system, delivering billions of ads per day.


## In Production

- Algorithms inspired by these techniques are in use at Google DoubleClick display ad serving system, delivering billions of ads per day.
- Smooth Delivery of Display Ads (Bhalgat, Feldman, M.)
- Model this with multiple nested capacity constraints.
- Page-based Ad Allocation (Korula, M., Yan)
- Assign multiple ads per page with configuration constraints.
- Display Ad Allocation with Ad Exchange (Balseiro, Feldman, M., Muthukrishnan)
- Maximize quality of reservation ads and revenue of Ad Exchange.


## In Production

- Algorithms inspired by these techniques are in use at Google DoubleClick display ad serving system, delivering billions of ads per day.
- Smooth Delivery of Display Ads (Bhalgat, Feldman, M.)
- Model this with multiple nested capacity constraints.
- Page-based Ad Allocation (Korula, M., Yan)
- Assign multiple ads per page with configuration constraints.
- Display Ad Allocation with Ad Exchange (Balseiro, Feldman, M., Muthukrishnan)
- Maximize quality of reservation ads and revenue of Ad Exchange.
- Final Algorithm: Adversarial or Stochastic? $\Rightarrow$ hybrid.


## In practice: Adversarial or Stochastic?

- Stochastic? No. Traffic spikes contradict with the simple random arrival assumption.
- Adversarial? No. Too pessimistic. Some forecasts are useful.
- In practice, hybrid algorithms are used:
- Use some stochastic predictions,
- but adapt if predictions fail!


## In practice: Adversarial or Stochastic?

- Stochastic? No. Traffic spikes contradict with the simple random arrival assumption.
- Adversarial? No. Too pessimistic. Some forecasts are useful.
- In practice, hybrid algorithms are used:
- Use some stochastic predictions,
- but adapt if predictions fail!
- Simultaneous Approximation: Adversarial algorithms that are robust against traffic spikes and perform better when the stochastic information is valid.
- (a,b)-approximation:
- a-competitive for adversarial.
- b-competitive for random order.


## In practice: Adversarial or Stochastic?

- Stochastic? No. Traffic spikes contradict with the simple random arrival assumption.
- Adversarial? No. Too pessimistic. Some forecasts are useful.
- In practice, hybrid algorithms are used:
- Use some stochastic predictions,
- but adapt if predictions fail!
- Simultaneous Approximation: Adversarial algorithms that are robust against traffic spikes and perform better when the stochastic information is valid.
- (a,b)-approximation:
- a-competitive for adversarial.
- b-competitive for random order.
- Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models $\Rightarrow(0, b)$ - approximation.


## Simultaneous adversarial \& stochastic optimization

- (a,b)-approximation:
- a-competitive for adversarial.
- b-competitive for random order.
- Assuming $C_{a} \gg \max s_{i a}$, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?


## Simultaneous adversarial \& stochastic optimization

- (a,b)-approximation:
- a-competitive for adversarial.
- b-competitive for random order.
- Assuming $C_{a} \gg \max s_{i a}$, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?
- Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)
- PD-EXP algorithm achieves ( $1-\epsilon, 1-\frac{1}{e}$ )-approximation.


## Simultaneous adversarial \& stochastic optimization

- (a,b)-approximation:
- a-competitive for adversarial.
- b-competitive for random order.
- Assuming $C_{a} \gg \max s_{i a}$, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?
- Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)
- PD-EXP algorithm achieves $\left(1-\epsilon, 1-\frac{1}{e}\right)$-approximation.
- No for weighted edges! (M.,OveisGharan,ZadiMoghaddam)
- Achieving (0.97, $1-\frac{1}{e}$ )-approximation is impossible.
- PD-EXP achieves (0.76, $1-\frac{1}{e}$ )-approximation.


## Hardness Result

- Any $1-\epsilon$-competitive algorithm for stochastic input can not have a competitive ratio better than $4 \sqrt{\epsilon}$ in the adversarial model.
- Achieving $(4 \sqrt{\epsilon}, 1-\epsilon)$-approximation is impossible.
- In particular, any $1-1$ /e competitive algorithm in the adversarial case has competitive ratio at most $97.6 \%$ for the random order.


## Hardness Result Idea

- We have two ads (bins) with the same capacity of 10 , generate a random permutation of 100 blue balls and 10 red balls.
- The optimum offline solution fills up both bins completely.



## Hardness Result Idea

- Look at the first 10 balls of the random permutation.

- Adversarial Input
vs.
Stochastic Input



## PD-EXP Algorithm for AdWords

- Let

$$
f(r(x))=1-e^{r(x)-1}
$$

to each advertiser $x$ where $r(x)=\frac{\operatorname{spent}(x)}{B_{x}}$.

- Allocate a new arrived online node $y$ to the advertiser $x$ maximizing that

$$
w(x, y) f(r(x))=w(x, y)\left(1-e^{r(x)-1}\right)
$$

- [MSVV]: PD-EXP is a $1-1 /$ e-competitive algorithm for the worst-case scenario, i.e., adversarial model.


## PD-EXP in random order

- PD-EXP has a scoring function $f(r(x))$ for different bins.
- Define a potential function to be the sum of capacities times the anti-derivative of function $f$ for all bins:

$$
\phi(t):=\sum_{x} c(x) \int_{r=0}^{r(t, x)} f(r(x)) d r=\sum_{x} c(x) F(r(t, x)) .
$$

where $c(x)$ is the capacity of bin $x$ and $r(t, x)$ is the ratio of the spent budget of $x$ at time $t$.

## Changes in Potential Function

- If we allocate item $i$ to bin $x$ with weight $w(i, x)$ in this bin at time $t, \phi(t)$ changes as follows:

$$
\Delta(\phi)=c(x)\left[d\left(\int_{r=0}^{r}(t, x) f(r(x))\right) / d r\right] \Delta(r)
$$

where $\Delta(r)$ is the change in the ratio of bin $x$. So the total change is:

$$
\Delta(\phi)=c(x) f(r(t, x)) w(i, x) / c(x)=w(i, x) f(r(t, x)) .
$$

## Potential Function Interpretation of the Algorithm

- We conclude that algorithm PD-EXP is trying to greedily maximize the increase in the potential function.
- So in each small fraction of time, the potential function is increased at least as much as the increase in potential based on the optimum solution assignment.


## Factor-revealing Mathematical Program

- We have $n$ balls, so $t$ is in $[n]$.
- $F$ is the antiderivative of $f$, and $o_{j}$ is how much value is assigned to bin $j$ in the optimum solution.

$$
\begin{array}{ll}
\text { MP : minimize } \frac{1}{\mathrm{OPT}} \sum_{j} r_{j}(n) c_{j} & \\
\sum_{j} c_{j} F\left(r_{j}(t)\right)=\phi(t) & \forall t \in[n], \\
\epsilon \sum_{j} o_{j} f\left(r_{j}((k+1) n \epsilon)\right) \leq \phi((k+1) n \epsilon)-\phi(k n \epsilon) & \forall k \in\left[\frac{1}{\epsilon}-1\right], \\
o_{j} \leq c_{j} & \forall j \in[m], \\
\sum_{j} o_{j}=\text { OPT, } & \\
r_{j}(t) \leq r_{j}(t+1) & \forall j, t \in[n-1], \\
r_{j}(n) \leq 1 & \forall j \in[m] .
\end{array}
$$

## Converting Factor-revealing MP to Poly-size LP

- We discretize time and spent budget ratios into $k$ parts, so we have $k$ variables for values of potential function at different time intervals.
- We have variable $c[r, t]$ that denotes the sum of capacities of bins with rations in range $[r, r+1 / k]$ at time $t$. Similarly we define $o[r, t]$.

$$
\begin{array}{ll}
\text { LP minimize } \frac{1}{1-1 / e}\left\{\phi\left(\frac{1}{\epsilon}\right)-\sum_{\rho=0}^{1 / \epsilon-1} c_{\rho, k}\left(\rho \epsilon / e-e^{\rho \epsilon-1}\right)\right\} & \\
\sum_{\rho=0}^{1 / \epsilon-1} c_{\rho, k}\left(\rho \epsilon-e^{\rho \epsilon-1}\right) \leq \phi(k) & \forall k \in\left[\frac{1}{\epsilon}\right] \\
\sum_{\rho=0}^{1 / \epsilon-1} \epsilon o_{\rho, k+1}\left(1-e^{(\rho+1) \epsilon-1}\right) \geq \phi(k+1)-\phi(k) & \forall k \in\left[\frac{1}{\epsilon}-1\right] \\
o_{\rho, k} \leq c_{\rho, k} & \forall \rho \in\left[\frac{1}{\epsilon}-1\right], k \in\left[\frac{1}{\epsilon}\right] \\
\sum_{i=0}^{1 / \epsilon-1} o_{\rho, k}=1 & \forall k \in\left[\frac{1}{\epsilon}\right]: \\
\sum_{l=i}^{1 / \epsilon-1} c_{l, k} \leq \sum_{l=i}^{1 / \epsilon-1} c_{l, k+1} & \forall i \in\left[\frac{1}{\epsilon}-1\right], k \in\left[\frac{1}{\epsilon}-1\right]
\end{array}
$$

## Converting Factor-revealing MP to poly-size LP

- It gets more work to design a factor revealing LP using this mathematical program that yields 0.76 competitive ratio.
- We discretize both time and ratios into $k=\frac{1}{\epsilon}$ intervals. For $\frac{1}{\epsilon}=30$, the LP proves 0.73 competitive ratio, for $\frac{1}{\epsilon}=250$, it proves 0.76.


## Summary: Robust Models

- Summary: Simultaneous Approximations
- Unweighted: $(1-1 / e, 0.70) \rightarrow(1-1 / e, 1-\epsilon)$.
- Weighted: $(1-1 / e, 1-1 / e) \rightarrow(1-1 / e, 0.76)$.
- Impossible to get ( $1-1 / e, 0.97$ ) for weighted.
- Other robust stochastic models?
- Approximation factor as a function of accuracy of prediction?


## Summary: Robust Models

- Summary: Simultaneous Approximations
- Unweighted: $(1-1 / e, 0.70) \rightarrow(1-1 / e, 1-\epsilon)$.
- Weighted: $(1-1 / e, 1-1 / e) \rightarrow(1-1 / e, 0.76)$.
- Impossible to get ( $1-1 / e, 0.97$ ) for weighted.
- Other robust stochastic models?
- Approximation factor as a function of accuracy of prediction?
- Adaptively increase/decrease $\beta$ 's using a controller.
- Tan and Srikant show asymptotic optimality in an iid model.
- Handling bursty random arrival models:
- Periodic re-optimization achieves constant-factor approximation even in a bursty random arrival model [Ciacon and Farias]


## Bicriteria Online Matching

- Multiple-Objective Optimization: Weight, Cardinality, Revenue, Social Welfare.
- e.g. Two Objectives: Assign ads to impressions, maximizing both weight and cardinality of the allocation respecting capacities.


## Bicriteria Online Matching

- Multiple-Objective Optimization: Weight, Cardinality, Revenue, Social Welfare.
- e.g. Two Objectives: Assign ads to impressions, maximizing both weight and cardinality of the allocation respecting capacities.
- Bicriteria Online Matching: $(\alpha, \beta)$-approximation:
- $\alpha$-competitive for weight: Online Weighted Matching (DA)
- $\beta$-competitive for cardinality: Online Matching
- Simple Algorithm: with probability $1 / 2$, optimize for one objective: $((1-1 / e) / 2,(1-1 / e) / 2)$-approximation.


## Bicriteria Online Matching

- Multiple-Objective Optimization: Weight, Cardinality, Revenue, Social Welfare.
- e.g. Two Objectives: Assign ads to impressions, maximizing both weight and cardinality of the allocation respecting capacities.
- Bicriteria Online Matching: $(\alpha, \beta)$-approximation:
- $\alpha$-competitive for weight: Online Weighted Matching (DA)
- $\beta$-competitive for cardinality: Online Matching
- Simple Algorithm: with probability $1 / 2$, optimize for one objective: $((1-1 / e) / 2,(1-1 / e) / 2)$-approximation.
- Korula, M., ZadiMoghaddam: Bicriteria Online Matching
- Improve to factor $\left(\left(1-1 / e^{2}\right) / 2,\left(1-1 / e^{2}\right) / 2\right)$ for large capacity, and to $\left(\left(1-1 / e^{2}\right) / 2,(1-1 / e) / 2\right)$ for small cap.
- The above result is almost tight.


## Bicriteria Online Matching: (Korula, M., ZadiMoghaddam)



## Research Directions

- Open Problems:
- Compete with online DP in the iid model: PTAS?
- Small budgets and small degrees: Improve 1/2-approximation.
- Bicriteria approximation for two weight functions?
- Other robust stochastic models?
- Approximation factor as a function of accuracy of prediction?
- Online budget planning for repeated 2nd-price auctions?
- Incentive-compatiblity: Clinching Auctions (Goel, M., Paes Leme, STOC12, SODA13)
- (mean-field) equilibria? extensive-form or Nash equilibria?


## Algorithms Research at Google NYC

- Advertiser (Bid) Optimization
- Online Stochastic Ad Allocation
- Mechanism Design for Ad Exchanges
- Large-scale Graph Mining
- Develop large-scale algorithms to mine graphs with trillions of edges.
- Distributed Frameworks: Map-Reduce, Pregel, or Asynchronous Message Passing.


## Thank You

