OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings

Jelani Nelson
Harvard

September 27, 2013
based on joint work with Huy L. Nguyễn (Princeton)

- $A \in \mathbb{R}^{n \times d}, n \gg d, \operatorname{rank}(A)=r$
- tall, skinny matrix

Numerical linear algebra

- $A \in \mathbb{R}^{n \times d}, n \gg d, \operatorname{rank}(A)=r$

Numerical linear algebra

- $A \in \mathbb{R}^{n \times d}, n \gg d, \operatorname{rank}(A)=r$

Classical numerical linear algebra problems

- Compute the leverage scores of A, i.e. the ℓ_{2} norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.

Numerical linear algebra

- $A \in \mathbb{R}^{n \times d}, n \gg d, \operatorname{rank}(A)=r$

Classical numerical linear algebra problems

- Compute the leverage scores of A, i.e. the ℓ_{2} norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.
- Least squares regression: Given also $b \in \mathbb{R}^{n}$.

Compute $x^{*}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\|A x-b\|_{2}$

Numerical linear algebra

- $A \in \mathbb{R}^{n \times d}, n \gg d, \operatorname{rank}(A)=r$

Classical numerical linear algebra problems

- Compute the leverage scores of A, i.e. the ℓ_{2} norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.
- Least squares regression: Given also $b \in \mathbb{R}^{n}$.

Compute $x^{*}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\|A x-b\|_{2}$

- ℓ_{p} regression $(p \in[1, \infty)$):

$$
\text { Compute } x^{*}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\|A x-b\|_{p}
$$

Numerical linear algebra

- $A \in \mathbb{R}^{n \times d}, n \gg d, \operatorname{rank}(A)=r$

Classical numerical linear algebra problems

- Compute the leverage scores of A, i.e. the ℓ_{2} norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.
- Least squares regression: Given also $b \in \mathbb{R}^{n}$.

$$
\text { Compute } x^{*}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\|A x-b\|_{2}
$$

- ℓ_{p} regression $(p \in[1, \infty)$):

$$
\text { Compute } x^{*}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\|A x-b\|_{p}
$$

- Low-rank approximation: Given also an integer $1 \leq k \leq d$.

$$
\text { Compute } A_{k}=\operatorname{argmin}_{\operatorname{rank}(B) \leq k}\|A-B\|_{F}
$$

Numerical linear algebra

- $A \in \mathbb{R}^{n \times d}, n \gg d, \operatorname{rank}(A)=r$

Classical numerical linear algebra problems

- Compute the leverage scores of A, i.e. the ℓ_{2} norms of the n standard basis vectors when projected onto the subspace spanned by the columns of A.
- Least squares regression: Given also $b \in \mathbb{R}^{n}$.

$$
\text { Compute } x^{*}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\|A x-b\|_{2}
$$

- ℓ_{p} regression $(p \in[1, \infty)$):

$$
\text { Compute } x^{*}=\operatorname{argmin}_{x \in \mathbb{R}^{d}}\|A x-b\|_{p}
$$

- Low-rank approximation: Given also an integer $1 \leq k \leq d$.

$$
\text { Compute } A_{k}=\operatorname{argmin}_{\operatorname{rank}(B) \leq k}\|A-B\|_{F}
$$

- Preconditioning: Compute $R \in \mathbb{R}^{d \times d}$ (for $d=r$) so that

$$
\forall x\|A R x\|_{2} \approx\|x\|_{2}
$$

Computationally efficient solutions

Singular Value Decomposition

Theorem
Every matrix $A \in \mathbb{R}^{n \times d}$ of rank r can be written as

$$
A=\underbrace{U}_{\begin{array}{c}
\text { orthonorm } \\
\text { columns } \\
n \times r
\end{array}} \underbrace{\sum}_{\begin{array}{c}
\text { diagonal } \\
\text { positive definite } \\
r \times r
\end{array}} \underbrace{V^{T}}_{\begin{array}{c}
\text { orthonorm } \\
\text { columns } \\
d \times r
\end{array}}
$$

Can compute SVD in $\tilde{O}\left(n d^{\omega-1}\right)$ [Demmel, Dumitriu, Holtz, 2007].
$\omega<2.373 \ldots$ is the exponent of square matrix multiplication [Coppersmith, Winograd, 1987], [Stothers, 2010], [Vassilevska-Williams, 2012]

Computationally efficient solutions

$$
A=\underbrace{U}_{\begin{array}{c}
\text { orthonorm } \\
\text { colunns } \\
n \times r
\end{array}} \underbrace{\sum}_{\begin{array}{c}
\text { diagonal } \\
\text { positive definite } \\
r \times r
\end{array}} \underbrace{V^{T}}_{\begin{array}{c}
\text { orthonorm } \\
\text { colunns } \\
d \times r
\end{array}}
$$

- Leverage scores: Output row norms of U.
- Least squares regression: Output $V \Sigma^{-1} U^{T} b$.
- Low-rank approximation: Output $U \Sigma_{k} V^{T}$.
- Preconditioning: Output $R=V \Sigma^{-1}$.

Computationally efficient solutions

$$
A=\underbrace{U}_{\begin{array}{c}
\text { orthonorm } \\
\text { columns } \\
n \times r
\end{array}} \underbrace{\sum}_{\begin{array}{c}
\text { diagonal } \\
\text { positive definite } \\
r \times r
\end{array}} \underbrace{V^{T}}_{\begin{array}{c}
\text { orthonorm } \\
\text { colunns } \\
d \times r
\end{array}}
$$

- Leverage scores: Output row norms of U.
- Least squares regression: Output $V \Sigma^{-1} U^{T} b$.
- Low-rank approximation: Output $U \Sigma_{k} V^{T}$.
- Preconditioning: Output $R=V \Sigma^{-1}$.

Conclusion: In time $\tilde{O}\left(n d^{\omega-1}\right)$ we can compute the SVD then solve all the previously stated problems. Is there a faster way?

Subspace embeddings

[Sarlós, 2006]
Let $V \subseteq \mathbb{R}^{n}$ be a linear subspace of dimension d. A subspace embedding for V is a matrix $\Pi \in \mathbb{R}^{m \times n}$ so that

$$
\forall x \in V,(1-\varepsilon)\|x\| \leq\|\Pi x\| \leq(1+\varepsilon)\|x\|
$$

Subspace embeddings

[Sarlós, 2006]

Let $V \subseteq \mathbb{R}^{n}$ be a linear subspace of dimension d. A subspace embedding for V is a matrix $\Pi \in \mathbb{R}^{m \times n}$ so that

$$
\forall x \in V,(1-\varepsilon)\|x\| \leq\|\Pi x\| \leq(1+\varepsilon)\|x\|
$$

Subspace embeddings can be used to speed up algorithms for all five problems previously listed [Sarlós, 2006], [Dasgupta, Drineas, Harb, Kumar, Mahoney, 2008], [Clarkson, Woodruff, 2009], [Drineas, Magdon-Ismail, Mahoney, Woodruff, 2012], [Clarkson, Woodruff, 2013], [Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, Woodruff, 2013], [Woodruff, Zhang, 2013].

How to use subspace embeddings

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^{*}=\operatorname{argmin}\|A x-b\|$ and $\tilde{x}=\operatorname{argmin}\|\Pi A x-\Pi b\|$. Then

How to use subspace embeddings

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^{*}=\operatorname{argmin}\|A x-b\|$ and $\tilde{x}=\operatorname{argmin}\|\Pi A x-\Pi b\|$. Then

$$
\|П A \tilde{x}-П b\| \leq\left\|\Pi A x^{*}-П b\right\|
$$

How to use subspace embeddings

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^{*}=\operatorname{argmin}\|A x-b\|$ and $\tilde{x}=\operatorname{argmin}\|\Pi A x-\Pi b\|$. Then $(1-\varepsilon)\|A \tilde{x}-b\| \leq \underbrace{\|\Pi A \tilde{x}-\Pi b\|}_{\|\Pi(A \tilde{x}-b)\|} \leq\left\|\Pi A x^{*}-\Pi b\right\|$

How to use subspace embeddings

Least squares regression: Let Π be a subspace embedding for the subspace spanned by b and the columns of A. Let $x^{*}=\operatorname{argmin}\|A x-b\|$ and $\tilde{x}=\operatorname{argmin}\|\Pi A x-\Pi b\|$. Then

$$
\begin{aligned}
(1-\varepsilon)\|A \tilde{x}-b\| & \leq\|\Pi A \tilde{x}-\Pi b\| \leq\left\|\Pi A x^{*}-\Pi b\right\| \leq(1+\varepsilon)\left\|A x^{*}-b\right\| \\
& \Rightarrow\|A \tilde{x}-b\| \leq\left(\frac{1+\varepsilon}{1-\varepsilon}\right) \cdot\left\|A x^{*}-b\right\|
\end{aligned}
$$

Computational gain from subspace embeddings

Computing SVD of ΠA takes time $\tilde{O}\left(m d^{\omega-1}\right)$, which is much faster than $\tilde{O}\left(n d^{\omega-1}\right)$ if $m \ll n$.

Computational gain from subspace embeddings

Computing SVD of ΠA takes time $\tilde{O}\left(m d^{\omega-1}\right)$, which is much faster than $\tilde{O}\left(n d^{\omega-1}\right)$ if $m \ll n$.

Good news: Known that if Π is, say, a random Gaussian matrix with $m=O\left(d / \varepsilon^{2}\right)$, it will be a subspace embedding with high probability [Gordon, 1988], [Klartag, Mendelson, 2005], [Arora, Hazan, Kale, 2006], [Clarkson, Woodruff, 2013].

Computational gain from subspace embeddings

Computing SVD of ΠA takes time $\tilde{O}\left(m d^{\omega-1}\right)$, which is much faster than $\tilde{O}\left(n d^{\omega-1}\right)$ if $m \ll n$.

Good news: Known that if Π is, say, a random Gaussian matrix with $m=O\left(d / \varepsilon^{2}\right)$, it will be a subspace embedding with high probability [Gordon, 1988], [Klartag, Mendelson, 2005], [Arora, Hazan, Kale, 2006], [Clarkson, Woodruff, 2013].

Bad news: Computing ΠA naively takes time $O\left(m n d^{\omega-2}\right)$ (even worse than $O\left(n d^{\omega-1}\right)$)

Picking better subspace embeddings

The trouble is that a random Gaussian matrix is unstructured.
Sarlós' idea: Pick Π to be a structured matrix so that ΠA can be computed quickly. Sarlós used FFT-based approach of [Ailon, Chazelle, 2006]+followup work with $m=\tilde{O}\left(d / \varepsilon^{2}\right)$ and such that Πx can be computed in time $O(n \log n)$ for any $x \in \mathbb{R}^{n}$.

Picking better subspace embeddings

The trouble is that a random Gaussian matrix is unstructured.
Sarlós' idea: Pick Π to be a structured matrix so that ΠA can be computed quickly. Sarlós used FFT-based approach of [Ailon, Chazelle, 2006]+followup work with $m=\tilde{O}\left(d / \varepsilon^{2}\right)$ and such that Πx can be computed in time $O(n \log n)$ for any $x \in \mathbb{R}^{n}$.

Can compute ΠA in time $O(n d \log n)$ by computing Π times each column of A separately.

Conclusion: Can solve, e.g. least squares regression, in time $O(n d \log n)+\tilde{O}\left(d^{\omega} / \varepsilon^{2}\right)$. Nearly linear time in matrix size!

Picking better subspace embeddings

The trouble is that a random Gaussian matrix is unstructured.
Sarlós' idea: Pick Π to be a structured matrix so that ΠA can be computed quickly. Sarlós used FFT-based approach of [Ailon, Chazelle, 2006]+followup work with $m=\tilde{O}\left(d / \varepsilon^{2}\right)$ and such that Πx can be computed in time $O(n \log n)$ for any $x \in \mathbb{R}^{n}$.

Can compute ΠA in time $O(n d \log n)$ by computing Π times each column of A separately.

Conclusion: Can solve, e.g. least squares regression, in time $O(n d \log n)+\tilde{O}\left(d^{\omega} / \varepsilon^{2}\right)$. Nearly linear time in matrix size!

Can we do better?

Linear time in input sparsity

[Clarkson, Woodruff, 2013] constructed a Π with $m=\operatorname{poly}(d / \varepsilon)$ rows so that each column has exactly one non-zero entry!

Implication: E.g. least squares regression, running time $n n z(A)+\operatorname{poly}(d / \varepsilon)$.

Linear time in input sparsity

[Clarkson, Woodruff, 2013] constructed a Π with $m=\operatorname{poly}(d / \varepsilon)$ rows so that each column has exactly one non-zero entry!

Implication: E.g. least squares regression, running time $n n z(A)+\operatorname{poly}(d / \varepsilon)$.

Let the number of non-zeroes per column be s (so can multiply ΠA in time $s \cdot \mathrm{nnz}(A)$)

	m	s
[Kane, N. '12]	$O\left(d / \varepsilon^{2}\right)$	$O(d / \varepsilon)$
[Clarkson, Woodruff '13]	$O\left(d^{2} \log ^{6}(d / \varepsilon) / \varepsilon^{2}\right)$	1

Linear time in input sparsity

[Clarkson, Woodruff, 2013] constructed a Π with $m=\operatorname{poly}(d / \varepsilon)$ rows so that each column has exactly one non-zero entry!

Implication: E.g. least squares regression, running time $n n z(A)+\operatorname{poly}(d / \varepsilon)$.

Let the number of non-zeroes per column be s (so can multiply ΠA in time $s \cdot \mathrm{nnz}(A)$)

	m	s
[Kane, N. '12]	$O\left(d / \varepsilon^{2}\right)$	$O(d / \varepsilon)$
[Clarkson, Woodruff '13]	$O\left(d^{2} \log ^{6}(d / \varepsilon) / \varepsilon^{2}\right)$	1
this work	$O\left(d^{1+\gamma} / \varepsilon^{2}\right)$	$O_{\gamma}(1 / \varepsilon)$
this work	$O\left(d^{2} / \varepsilon^{2}\right)^{*}$	1

$\gamma>0$ can be chosen as an arbitrarily small constant.

* Also obtained by [Mahoney, Meng '13], and also follows from [Thorup, Zhang '04] + [Kane, N., '12] (observed by Nguyễn).

The embedding Π

OSNAP distributions

(Oblivious Sparse Norm-Approximating Projections)

Each black cell is $\pm 1 / \sqrt{s}$ at random, s black cells per column

OSNAP distributions
 (Oblivious Sparse Norm-Approximating Projections)

Each black cell is $\pm 1 / \sqrt{s}$ at random, s black cells per column
These matrices first found applications to other problems in the data streams literature in [Charikar, Chen, Farach-Colton '02], [Thorup, Zhang '04].
Also used in "sparse Johnson-Lindenstrauss" [Kane, N. '12].

Analysis

Analysis outline

Recall we have $V \subset \mathbb{R}^{n}$ a linear subspace of dimension d and want

$$
\begin{equation*}
\forall x \in V,(1-\varepsilon)\|x\| \leq\|\Pi x\| \leq(1+\varepsilon)\|x\| \tag{*}
\end{equation*}
$$

Analysis outline

Recall we have $V \subset \mathbb{R}^{n}$ a linear subspace of dimension d and want

$$
\begin{equation*}
\forall x \in V,(1-\varepsilon)\|x\| \leq\|\Pi x\| \leq(1+\varepsilon)\|x\| \tag{*}
\end{equation*}
$$

$V=\left\{U y: y \in \mathbb{R}^{d}\right\}$, where the columns of U form an orthonormal basis for V. Thus (${ }^{*}$) is equivalent to

$$
\forall y \in \mathbb{R}^{d},\|\Pi U y\|=(1 \pm \varepsilon)\|U y\|=(1 \pm \varepsilon)\|y\| \quad(* *)
$$

Analysis outline

Recall we have $V \subset \mathbb{R}^{n}$ a linear subspace of dimension d and want

$$
\begin{equation*}
\forall x \in V,(1-\varepsilon)\|x\| \leq\|\Pi x\| \leq(1+\varepsilon)\|x\| \tag{*}
\end{equation*}
$$

$V=\left\{U y: y \in \mathbb{R}^{d}\right\}$, where the columns of U form an orthonormal basis for V. Thus (*) is equivalent to

$$
\forall y \in \mathbb{R}^{d},\|\Pi \cup y\|=(1 \pm \varepsilon)\|U y\|=(1 \pm \varepsilon)\|y\| \quad(* *)
$$

$\left(^{* *}\right)$ equivalent to all eigenvals of $S=(\Pi \cup)^{T}(\Pi U)$ being $(1 \pm \varepsilon)^{2}$, which is equivalent to $\|S-I\| \leq \varepsilon$ (up to a factor of 2).

Analysis outline

Recall we have $V \subset \mathbb{R}^{n}$ a linear subspace of dimension d and want

$$
\begin{equation*}
\forall x \in V,(1-\varepsilon)\|x\| \leq\|\Pi x\| \leq(1+\varepsilon)\|x\| \tag{*}
\end{equation*}
$$

$V=\left\{U y: y \in \mathbb{R}^{d}\right\}$, where the columns of U form an orthonormal basis for V. Thus (*) is equivalent to

$$
\forall y \in \mathbb{R}^{d},\|\Pi \cup y\|=(1 \pm \varepsilon)\|U y\|=(1 \pm \varepsilon)\|y\| \quad(* *)
$$

$\left(^{* *}\right)$ equivalent to all eigenvals of $S=(\Pi \cup)^{T}(\Pi U)$ being $(1 \pm \varepsilon)^{2}$, which is equivalent to $\|S-I\| \leq \varepsilon$ (up to a factor of 2).
Markov's inequality:

$$
\mathbb{P}(\|S-I\|>\varepsilon)=\mathbb{P}\left(\|S-I\|^{\ell}>\varepsilon^{\ell}\right)<\frac{1}{\varepsilon^{\ell}} \mathbb{E}\|S-I\|^{\ell} \leq \frac{1}{\varepsilon^{\ell}} \mathbb{E} \operatorname{tr}\left((S-I)^{\ell}\right)
$$

Analysis outline

Recall we have $V \subset \mathbb{R}^{n}$ a linear subspace of dimension d and want

$$
\begin{equation*}
\forall x \in V,(1-\varepsilon)\|x\| \leq\|\Pi x\| \leq(1+\varepsilon)\|x\| \tag{*}
\end{equation*}
$$

$V=\left\{U y: y \in \mathbb{R}^{d}\right\}$, where the columns of U form an orthonormal basis for V. Thus (${ }^{*}$) is equivalent to

$$
\forall y \in \mathbb{R}^{d},\|\Pi \cup y\|=(1 \pm \varepsilon)\|U y\|=(1 \pm \varepsilon)\|y\| \quad(* *)
$$

$\left(^{* *}\right)$ equivalent to all eigenvals of $S=(\Pi \cup)^{T}(\Pi U)$ being $(1 \pm \varepsilon)^{2}$, which is equivalent to $\|S-I\| \leq \varepsilon$ (up to a factor of 2).

Markov's inequality:

$$
\mathbb{P}(\|S-I\|>\varepsilon)=\mathbb{P}\left(\|S-I\|^{\ell}>\varepsilon^{\ell}\right)<\frac{1}{\varepsilon^{\ell}} \mathbb{E}\|S-I\|^{\ell} \leq \frac{1}{\varepsilon^{\ell}} \mathbb{E} \operatorname{tr}\left((S-I)^{\ell}\right)
$$

This is the classical "moment method" in random matrix theory; see e.g. [Wigner, 1955], [Füredi, Komlós, 1981], [Bai, Yin, 1993]

Natural "matrix extension" of JL

Johnson-Lindenstrauss lemma
Theorem
Let $u \in \mathbb{R}^{n}$ be arbitrary, unit ℓ_{2} norm, Π random sign matrix. Then

$$
\underset{\Pi}{\mathbb{P}}\left(\left|\|\sqcap u\|^{2}-1\right|>\varepsilon\right)<\delta
$$

as long as

$$
m \gtrsim \frac{\log (1 / \delta)}{\varepsilon^{2}}, \ell=\log (1 / \delta)\left(\left[\text { Achlioptas }^{\prime} 01\right]\right)
$$

or

$$
m \gtrsim \frac{1}{\varepsilon^{2} \delta}, \ell=2([\text { Alon, Matias, Szegedy'} 96])
$$

Natural "matrix extension" of JL

Johnson-Lindenstrauss lemma
Theorem
Let $u \in \mathbb{R}^{n \times 1}$ be arbitrary, o.n. cols, Π random sign matrix. Then

$$
\underset{\Pi}{\mathbb{P}}\left(\left\|(\Pi u)^{*}(\Pi u)-I_{1}\right\|>\varepsilon\right)<\delta
$$

as long as

$$
m \gtrsim \frac{1+\log (1 / \delta)}{\varepsilon^{2}}, \ell=\log (1 / \delta)
$$

or

$$
m \gtrsim \frac{1^{2}}{\varepsilon^{2} \delta}, \ell=2
$$

Natural "matrix extension" of JL

Conjecture

Theorem
Let $u \in \mathbb{R}^{n \times d}$ be arbitrary, o.n. cols, Π random sign matrix. Then

$$
\underset{\Pi}{\mathbb{P}}\left(\left\|(\Pi u)^{*}(\Pi u)-I_{d}\right\|>\varepsilon\right)<\delta
$$

as long as

$$
m \gtrsim \frac{d+\log (1 / \delta)}{\varepsilon^{2}}, \ell=\log (d / \delta)
$$

or

$$
m \gtrsim \frac{d^{2}}{\varepsilon^{2} \delta}, \ell=2
$$

Natural "matrix extension" of sparse JL

[Kane, N. '12]
Theorem
Let $u \in \mathbb{R}^{n}$ be arbitrary, unit ℓ_{2} norm, Π sparse sign matrix. Then

$$
\underset{\Pi}{\mathbb{P}}\left(\left|\|\Pi u\|^{2}-1\right|>\varepsilon\right)<\delta
$$

as long as

$$
m \gtrsim \frac{\log (1 / \delta)}{\varepsilon^{2}}, s \gtrsim \frac{\log (1 / \delta)}{\varepsilon}, \ell=\log (1 / \delta)
$$

or

$$
m \gtrsim \frac{1}{\varepsilon^{2} \delta}, s=1, \ell=2\left(\left[\text { Thorup, Zhang }{ }^{\prime} 04\right]\right)
$$

Natural "matrix extension" of sparse JL

[Kane, N. '12]
Theorem
Let $u \in \mathbb{R}^{n \times 1}$ be arbitrary, o.n. cols, Π sparse sign matrix. Then

$$
\underset{\Pi}{\mathbb{P}}\left(\left\|(\Pi u)^{*}(\Pi u)-I_{1}\right\|>\varepsilon\right)<\delta
$$

as long as

$$
m \gtrsim \frac{1+\log (1 / \delta)}{\varepsilon^{2}}, s \gtrsim \frac{\log (1 / \delta)}{\varepsilon}, \ell=\log (1 / \delta)
$$

or

$$
m \gtrsim \frac{1^{2}}{\varepsilon^{2} \delta}, s=1, \ell=2
$$

Natural "matrix extension" of sparse JL

Conjecture
Theorem
Let $u \in \mathbb{R}^{n \times d}$ be arbitrary, o.n. cols, Π sparse sign matrix. Then

$$
\underset{\Pi}{\mathbb{P}}\left(\left\|(\Pi u)^{*}(\Pi u)-I_{d}\right\|>\varepsilon\right)<\delta
$$

as long as

$$
m \gtrsim \frac{d+\log (1 / \delta)}{\varepsilon^{2}}, s \gtrsim \frac{\log (d / \delta)}{\varepsilon}, \ell=\log (d / \delta)
$$

or

$$
m \gtrsim \frac{d^{2}}{\varepsilon^{2} \delta}, s=1, \ell=2
$$

Natural "matrix extension" of sparse JL

What we prove
Theorem
Let $u \in \mathbb{R}^{n \times d}$ be arbitrary, o.n. cols, Π sparse sign matrix. Then

$$
\underset{\Pi}{\mathbb{P}}\left(\left\|(\Pi u)^{*}(\Pi u)-I_{d}\right\|>\varepsilon\right)<\delta
$$

as long as

$$
m \gtrsim \frac{d \cdot \log ^{c}(d / \delta)}{\varepsilon^{2}}, s \gtrsim \frac{\log ^{c}(d / \delta)}{\varepsilon} \text { or } m \gtrsim \frac{d^{1.01}}{\varepsilon^{2}}, s \gtrsim \frac{1}{\varepsilon}
$$

or

$$
m \gtrsim \frac{d^{2}}{\varepsilon^{2} \delta}, s=1
$$

Back to the analysis

$$
\begin{gathered}
\text { Analysis }(\ell=2) \\
s=1, m=O\left(d^{2} / \varepsilon^{2}\right)
\end{gathered}
$$

Want to understand $S-I, S=(\Pi \cup)^{T}(\Pi \cup)$

$$
\begin{gathered}
\text { Analysis }(\ell=2) \\
s=1, m=O\left(d^{2} / \varepsilon^{2}\right)
\end{gathered}
$$

Want to understand $S-I, S=(\Pi \cup)^{T}(\Pi \cup)$
Let the columns of U be u^{1}, \ldots, u^{d} Recall $\Pi_{i, j}=\delta_{i, j} \sigma_{i, j} / \sqrt{s}$

$$
\begin{gathered}
\text { Analysis }(\ell=2) \\
s=1, m=O\left(d^{2} / \varepsilon^{2}\right)
\end{gathered}
$$

Want to understand $S-I, S=(\Pi \cup)^{T}(\Pi \cup)$
Let the columns of U be u^{1}, \ldots, u^{d}
Recall $\Pi_{i, j}=\delta_{i, j} \sigma_{i, j} / \sqrt{s}$
Some computations yield

$$
(S-I)_{k, k^{\prime}}=\frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r, i} \delta_{r, j} \sigma_{r, i} \sigma_{r, j} u_{i}^{k} u_{j}^{k^{\prime}}
$$

$$
\begin{gathered}
\text { Analysis }(\ell=2) \\
s=1, m=O\left(d^{2} / \varepsilon^{2}\right)
\end{gathered}
$$

Want to understand $S-I, S=(\Pi \cup)^{T}(\Pi \cup)$
Let the columns of U be u^{1}, \ldots, u^{d}
Recall $\Pi_{i, j}=\delta_{i, j} \sigma_{i, j} / \sqrt{s}$
Some computations yield

$$
(S-I)_{k, k^{\prime}}=\frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r, j} \delta_{r, j} \sigma_{r, i} \sigma_{r, j} u_{i}^{k} u_{j}^{k^{\prime}}
$$

Computing $\mathbb{E}\|S-I\|_{F}^{2}$ is straightforward, and can show $\mathbb{E}\|S-I\|_{F}^{2} \leq\left(d^{2}+d\right) / m$

$$
\mathbb{P}(\|S-I\|>\varepsilon)<\frac{1}{\varepsilon^{2}} \frac{d^{2}+d}{m}
$$

$$
\begin{gathered}
\text { Analysis }(\ell=2) \\
s=1, m=O\left(d^{2} / \varepsilon^{2}\right)
\end{gathered}
$$

Want to understand $S-I, S=(\Pi \cup)^{T}(\Pi \cup)$
Let the columns of U be u^{1}, \ldots, u^{d}
Recall $\Pi_{i, j}=\delta_{i, j} \sigma_{i, j} / \sqrt{s}$
Some computations yield

$$
(S-I)_{k, k^{\prime}}=\frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r, i} \delta_{r, j} \sigma_{r, i} \sigma_{r, j} u_{i}^{k} u_{j}^{k^{\prime}}
$$

Computing $\mathbb{E}\|S-I\|_{F}^{2}$ is straightforward, and can show $\mathbb{E}\|S-I\|_{F}^{2} \leq\left(d^{2}+d\right) / m$

$$
\mathbb{P}(\|S-I\|>\varepsilon)<\frac{1}{\varepsilon^{2}} \frac{d^{2}+d}{m}
$$

Set $m \geq \delta^{-1}\left(d^{2}+d\right) / \varepsilon^{2}$ for success probability $1-\delta$

$$
\begin{gathered}
\text { Analysis (large } \ell \text {) } \\
s=O_{\gamma}(1 / \varepsilon), m=O\left(d^{1+\gamma} / \varepsilon^{2}\right) \\
(S-I)_{k, k^{\prime}}=\frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r, j} \delta_{r, j} \sigma_{r, i} \sigma_{r, j} u_{i}^{k} u_{j}^{k^{\prime}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Analysis (large } \ell \text {) } \\
s=O_{\gamma}(1 / \varepsilon), m=O\left(d^{1+\gamma} / \varepsilon^{2}\right) \\
(S-I)_{k, k^{\prime}}=\frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r, i} \delta_{r, j} \sigma_{r, i} \sigma_{r, j} u_{i}^{k} u_{j}^{k^{\prime}}
\end{gathered}
$$

By induction, for any square matrix B and integer $\ell \geq 1$,

$$
\left(B^{\ell}\right)_{i, j}=\sum_{\substack{i_{1}, \ldots, i_{\ell+1} \\ i_{1}=i, i_{\ell+1}=j}} \prod_{t=1}^{\ell} B_{i_{t}, i_{t+1}}
$$

$$
\begin{gathered}
\text { Analysis (large } \ell \text {) } \\
s=O_{\gamma}(1 / \varepsilon), m=O\left(d^{1+\gamma} / \varepsilon^{2}\right) \\
(S-I)_{k, k^{\prime}}=\frac{1}{s} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r, i} \delta_{r, j} \sigma_{r, i} \sigma_{r, j} u_{i}^{k} u_{j}^{k^{\prime}}
\end{gathered}
$$

By induction, for any square matrix B and integer $\ell \geq 1$,

$$
\begin{aligned}
& \left(B^{\ell}\right)_{i, j}=\sum_{\substack{i_{1}, \ldots, i_{t+1} \\
i_{1}=i_{\ell}, i_{\ell+1}=j}} \prod_{t=1}^{\ell} B_{i_{t}, i_{t+1}} \\
& \Rightarrow \operatorname{tr}\left(B^{\ell}\right)=\sum_{\substack{i_{1}, \ldots, i_{\ell+1} \\
i_{1}=i_{\ell+1}}} \prod_{t=1}^{\ell} B_{i_{t}, i_{t+1}}
\end{aligned}
$$

> Analysis (large ℓ) $s=O_{\gamma}(1 / \varepsilon), m=O\left(d^{1+\gamma} / \varepsilon^{2}\right)$

$$
\mathbb{E} \operatorname{tr}\left((S-I)^{\ell}\right)=\sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{\ell} \neq j_{\ell} \\ r_{1}, \ldots, r_{\ell} \\ k_{1}, \ldots, k_{\ell+1} \\ k_{1}=k_{\ell+1}}}\left(\mathbb{E} \prod_{t=1}^{\ell} \delta_{r_{t}, i_{t}} \delta_{r_{t}, j_{t}}\right)\left(\mathbb{E} \prod_{t=1}^{\ell} \sigma_{r_{t}, i_{t}} \sigma_{r_{t}, j_{t}}\right) \prod_{t=1}^{\ell} u_{i_{t}}^{k_{t}} u_{j_{t}}^{k_{t+1}}
$$

$$
\begin{gathered}
\text { Analysis (large } \ell \text {) } \\
s=O_{\gamma}(1 / \varepsilon), m=O\left(d^{1+\gamma} / \varepsilon^{2}\right)
\end{gathered}
$$

$$
\mathbb{E} \operatorname{tr}\left((S-I)^{\ell}\right)=\sum_{\substack{i_{1} \neq j_{1}, \ldots, i, i_{\ell} \neq j_{\ell} \\ k_{1}, \ldots, r_{l} \\ k_{1}, \ldots, k_{+1} \\ k_{1}=k_{l+1}}}\left(\mathbb{E} \prod_{t=1}^{\ell} \delta_{r_{t}, i_{t}} \delta_{r_{t}, j t}\right)\left(\mathbb{E} \prod_{t=1}^{\ell} \sigma_{r_{t}, i_{t}} \sigma_{r_{t}, j_{t}}\right) \prod_{t=1}^{\ell} u_{t t}^{k_{t}} u_{j_{t}}^{k_{t+1}}
$$

The strategy: Associate each monomial in summation above with a graph, group monomials that have the same graph, and estimate the contribution of each graph then do some combinatorics
(a common strategy; see [Wigner, 1955], [Füredi, Komlós, 1981], [Bai, Yin, 1993])

Example monomial \rightarrow graph correspondence

Example monomial \rightarrow graph correspondence

$$
\operatorname{tr}\left((S-I)^{\ell}\right)=\sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{\ell} \neq j_{\ell} \\ r_{1}, \ldots, r_{\ell} \\ k_{1}, \ldots, k_{\ell} \\ k_{1}=k_{\ell+1}}} \prod_{t=1}^{\ell} \delta_{r_{t}, i_{t}} \delta_{r_{t}, j_{t}} \cdot \prod_{t=1}^{\ell} \sigma_{r_{t}, i_{t}} \sigma_{r_{t}, j_{t}} \cdot \prod_{t=1}^{\ell} u_{i_{t}}^{k_{t}} u_{j_{t}}^{k_{t+1}}
$$

$$
\ell=4
$$

$\times \delta_{r_{e}, i_{a}} \delta_{r_{e}, i_{b}} \sigma_{r_{e}, i_{a}} \sigma_{r_{e}, i_{b}} u_{i_{a}}^{k_{2}} u_{i_{b}}^{k_{3}}$

Example monomial \rightarrow graph correspondence

$$
\ell=4
$$

Example monomial \rightarrow graph correspondence

$$
\operatorname{tr}\left((S-I)^{\ell}\right)=\sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{i} \neq j_{\ell} \\ r_{1}, \ldots, r_{\ell} \\ k_{1}, \ldots, k_{\ell+1} \\ k_{1}=k_{\ell+1}}} \prod_{t=1}^{\ell} \delta_{r_{t}, i_{t}} \delta_{r_{t}, j_{t}} \cdot \prod_{t=1}^{\ell} \sigma_{r_{t}, i_{t}} \sigma_{r_{t}, j_{t}} \cdot \prod_{t=1}^{\ell} u_{i_{t}}^{k_{t}} u_{j_{t}}^{k_{t+1}}
$$

$$
\ell=4
$$

Example monomial \rightarrow graph correspondence

$$
\operatorname{tr}\left((S-I)^{\ell}\right)=\sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{i} \neq j_{\ell} \\ r_{1}, \ldots, r_{\ell} \\ k_{1}, \ldots, k_{\ell+1} \\ k_{1}=k_{\ell+1}}} \prod_{t=1}^{\ell} \delta_{r_{t}, i_{t}} \delta_{r_{t}, j_{t}} \cdot \prod_{t=1}^{\ell} \sigma_{r_{t}, i_{t}} \sigma_{r_{t}, j_{t}} \cdot \prod_{t=1}^{\ell} u_{i_{t}}^{k_{t}} u_{j_{t}}^{k_{t+1}}
$$

$$
\ell=4
$$

$$
\begin{aligned}
& \delta_{r_{e}, i_{a}} \delta_{r_{e}, i_{b}} \sigma_{r_{e}, i_{a}} \sigma_{r_{e}, i_{b}} u_{i_{a}}^{k_{1}} u_{i_{b}}^{k_{2}} \\
\times & \delta_{r_{e}, i_{a}} \delta_{r_{e}, i_{b}} \sigma_{r_{e}, i_{a}} \sigma_{r_{e}, i_{b}} u_{i_{a}}^{k_{2}} u_{i_{b}}^{k_{3}} \\
\times & \delta_{r_{f}, i_{c}} \delta_{r_{f}, i_{d}} \sigma_{r_{f}, i_{c}} \sigma_{r_{f}, i_{d}} u_{i_{c}}^{k_{3}} u_{i_{d}}^{k_{4}} \\
\times & \delta_{r_{f}, i_{c}} \delta_{r_{f}, i_{d}} \sigma_{r_{f}, i_{c}} \sigma_{r_{f}, i_{d}} u_{i_{c}}^{k_{4}} u_{i_{d}}^{k_{1}}
\end{aligned}
$$

Example monomial \rightarrow graph correspondence

$$
\begin{gathered}
\operatorname{tr}\left((S-I)^{\ell}\right)=\sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{\ell} \neq j_{\ell} \\
r_{1}, \ldots, r_{\ell}}} \prod_{t=1}^{\ell} \delta_{r_{t}, i_{t}} \delta_{r_{t}, j_{t}} \cdot \prod_{t=1}^{\ell} \sigma_{r_{t}, i_{t}} \sigma_{r_{t}, j_{t}} \cdot \prod_{t=1}^{\ell}\left\langle u_{i_{t}}, u_{i_{t+1}}\right\rangle \\
\ell=4
\end{gathered}
$$

$$
\begin{aligned}
& \delta_{r_{e}, i_{a}} \delta_{r_{e}, i_{b}} \sigma_{r_{e}, i_{a}} \sigma_{r_{e}, i_{b}} u_{i_{a}}^{k_{1}} u_{i_{b}}^{k_{2}} \\
\times & \delta_{r_{e}, i_{a}} \delta_{r_{e}, i_{b}} \sigma_{r_{e}, i_{a}} \sigma_{r_{e}, i_{b}} u_{i_{a}}^{k_{2}} u_{i_{b}}^{k_{3}} \\
\times & \delta_{r_{f}, i_{c}} \delta_{r_{f}, i_{d}} \sigma_{r_{f}, i_{c}} \sigma_{r_{f}, i_{d}} u_{i_{c}}^{k_{3}} u_{i_{d}}^{k_{4}} \\
\times & \delta_{r_{f}, i_{c}} \delta_{r_{f}, i_{d}} \sigma_{r_{f}, i_{c}} \sigma_{r_{f}, i_{d}} u_{i_{c}}^{k_{4}} u_{i_{d}}^{k_{1}}
\end{aligned}
$$

Grouping monomials by graph

z right vertices, b distinct edges between middle and right

$$
\begin{aligned}
\mathbb{E} \operatorname{tr}\left((S-I)^{\ell}\right) & =\sum_{\substack{i_{1} \neq j_{1}, \ldots, i_{\ell} \neq j_{\ell} \\
r_{1}, \ldots, r_{\ell}}}\left(\mathbb{E} \prod_{t=1}^{\ell} \delta_{r_{t}, i_{t}} \delta_{r_{t}, j_{t}}\right)\left(\mathbb{E} \prod_{t=1}^{\ell} \sigma_{r_{t}, i_{t}} \sigma_{r_{t}, j_{t}}\right) \prod_{t=1}^{\ell}\left\langle u_{i_{t}}, u_{i_{t+1}}\right\rangle \\
& \leq \sum_{G} m^{z}\left(\frac{s}{m}\right)^{b}\left|\sum_{i_{1} \neq \ldots \neq i_{y}} \prod_{e=(\alpha, \beta) \in \hat{G}}\left\langle u_{i_{\alpha}}, u_{i_{\beta}}\right\rangle\right|
\end{aligned}
$$

Understanding \hat{G}

$$
F(\hat{G})=\left|\sum_{i_{1} \neq \ldots \neq i_{y}} \prod_{e=(\alpha, \beta) \in \hat{G}}\left\langle u_{i_{\alpha}}, u_{i_{\beta}}\right\rangle\right|
$$

Let C be the number of connected components of $\stackrel{\substack{\hat{G}}}{ }$. It turns out the right upper bound for $F(\hat{G})$ is roughly d^{C}

Understanding \hat{G}

$$
F(\hat{G})=\left|\sum_{i_{1} \neq \ldots \neq i_{y}} \prod_{e=(\alpha, \beta) \in \hat{G}}\left\langle u_{i_{\alpha}}, u_{\left.i_{\beta}\right\rangle}\right\rangle\right|
$$

Let C be the number of connected components of $\stackrel{\substack{\hat{G}}}{ }$. It turns out the right upper bound for $F(\hat{G})$ is roughly d^{C}

- Can get d^{C} bound if all edges in \hat{G} have even multiplicity

Understanding \hat{G}

$$
F(\hat{G})=\left|\sum_{i_{1} \neq \ldots \neq i_{y}} \prod_{e=(\alpha, \beta) \in \hat{G}}\left\langle u_{i_{\alpha}}, u_{i_{\beta}}\right\rangle\right|
$$

Let C be the number of connected components of $\stackrel{\substack{\hat{G}}}{ }$. It turns out the right upper bound for $F(\hat{G})$ is roughly d^{C}

- Can get d^{C} bound if all edges in \hat{G} have even multiplicity
- How about \hat{G} where this isn't the case, e.g. as above?

Bounding $F(\hat{G})$ with odd multiplicities

Reduces back to case of even edge multiplicities! (AM-GM)

Bounding $F(\hat{G})$ with odd multiplicities

Reduces back to case of even edge multiplicities! (AM-GM)
Caveat: \# connected components increased (unacceptable)

AM-GM trick done right

Theorem (Tutte '61, Nash-Williams '61)
Let G be a multigraph with edge-connectivity at least $2 k$. Then G must have at least k edge-disjoint spanning trees.

AM-GM trick done right

Theorem (Tutte '61, Nash-Williams '61)
Let G be a multigraph with edge-connectivity at least $2 k$. Then G must have at least k edge-disjoint spanning trees.

Using the theorem $(k=2)$

- If every connected component (CC) of \hat{G} has 2 edge-disjoint spanning trees, we are done

AM-GM trick done right

Theorem (Tutte '61, Nash-Williams '61)
Let G be a multigraph with edge-connectivity at least $2 k$. Then G must have at least k edge-disjoint spanning trees.

Using the theorem ($k=2$)

- If every connected component (CC) of \hat{G} has 2 edge-disjoint spanning trees, we are done
- Otherwise, some CC is not 4 edge-connected. Since each CC is Eulerian, there must be a cut of size 2

AM-GM trick done right

$$
\sum_{\substack{i_{v} \\ v \in T}}\left(\prod_{(q, r) \in T}\left\langle u_{i_{q}}, u_{i_{r}}\right\rangle\right) u_{i_{c}}^{T} \underbrace{\left(\sum_{\substack{i_{v} \\ v \in \bar{T}}} u_{i_{a}}\left(\prod_{(q, r) \in \bar{T}}\left\langle u_{i_{q}}, u_{i_{r}}\right\rangle\right) u_{i_{b}}^{T}\right)}_{M} u_{i_{d_{d}}}
$$

AM-GM trick done right

$$
\sum_{v \in T}(\prod_{v, r)}\left\langle\left\langle u_{i_{q}}, u_{i_{i}}\right\rangle\right) \underbrace{\left(\sum_{i_{i c}^{T}}^{T} u_{i=\bar{T}}\left(\prod_{(q, r) \in \bar{T}}\left\langle u_{i_{q}}, u_{\left.i_{i}\right\rangle}\right\rangle\right) u_{i_{i} T}^{T}\right)}_{M} u_{i_{d}}
$$

- Repeatedly eliminate size-2 cuts until every CC has two edge-disjoint spanning trees
- Show all M's along the way have bounded operator norm
- Show that even edge multiplicities are still easy to handle when all M's have bounded operator norm

Handling even edge multiplicities
\hat{G}

Handling even edge multiplicities

Rough idea

- Note

$$
\begin{aligned}
& \text { 1. }\left\langle u_{i}, u_{j}\right\rangle^{2}=u_{j}^{T} u_{i} u_{i}^{T} u_{j} \\
& \text { 2. Also } \sum_{i=1}^{n} u_{i} u_{i}^{T}=I
\end{aligned}
$$

Handling even edge multiplicities

Rough idea

- Note

$$
\begin{aligned}
& \text { 1. }\left\langle u_{i}, u_{j}\right\rangle^{2}=u_{j}^{T} u_{i} u_{i}^{T} u_{j} \\
& \text { 2. Also } \sum_{i=1}^{n} u_{i} u_{i}^{T}=l
\end{aligned}
$$

- In graph terms, we can choose to remove any vertex x we want from the dot product graph (by summing over its assignments). Then for each neighbor of x we attach self-loops (one self-loop for every two edges to x).

Handling even edge multiplicities

Rough idea

- Note

$$
\begin{aligned}
& \text { 1. }\left\langle u_{i}, u_{j}\right\rangle^{2}=u_{j}^{T} u_{i} u_{i}^{T} u_{j} \\
& \text { 2. Also } \sum_{i=1}^{n} u_{i} u_{i}^{T}=l
\end{aligned}
$$

- In graph terms, we can choose to remove any vertex x we want from the dot product graph (by summing over its assignments). Then for each neighbor of x we attach self-loops (one self-loop for every two edges to x).
- What order do we sum over vertices?

Vertex summation order: even edge multiplicities

Vertex summation order: even edge multiplicities

:

Vertex summation order: even edge multiplicities

Vertex summation order: even edge multiplicities

Bad order: increased the number of connected components

Vertex summation order: even edge multiplicities

A better order:

Vertex summation order: even edge multiplicities

A better order:

Vertex summation order: even edge multiplicities

A better order:

Vertex summation order: even edge multiplicities

A better order:

Vertex summation order: even edge multiplicities

A better order:

8

Vertex summation order: even edge multiplicities

A better order:

In general: for each connected component of \hat{G} take some spanning tree, then sum over the vertices that are lower in the tree first.

Vertex summation order: even edge multiplicities

Vertex summation order: even edge multiplicities

Step 1: Take a spanning tree of \hat{G}

Vertex summation order: even edge multiplicities

Summing in this order ensures the number of connected components never increases

Conclusion

Other recent progress

- Can show any oblivious subspace embedding succeeding with probability $\geq 2 / 3$ must have $\Omega\left(d / \varepsilon^{2}\right)$ rows [N., Nguyễn]

Other recent progress

- Can show any oblivious subspace embedding succeeding with probability $\geq 2 / 3$ must have $\Omega\left(d / \varepsilon^{2}\right)$ rows [N., Nguyễn]
- Can show any oblivious subspace embedding with $\underset{\tilde{\sim}}{ }\left(d^{1+\gamma}\right)$ rows must have sparsity $s=\Omega(1 /(\varepsilon \gamma))^{*}$ [N., Nguyễn]

Other recent progress

- Can show any oblivious subspace embedding succeeding with probability $\geq 2 / 3$ must have $\Omega\left(d / \varepsilon^{2}\right)$ rows [N., Nguyễn]
- Can show any oblivious subspace embedding with ${\underset{\tilde{\tilde{p}}}{ }}_{\left(d^{1+\gamma}\right)}^{(}$ rows must have sparsity $s=\Omega(1 /(\varepsilon \gamma))^{*}$ [N., Nguyễn]
- Can provide upper bounds on m, s to preserve an arbitrary bounded set $T \subset \mathbb{R}^{n}$, in terms of the geometry of T, in the style of [Gordon '88], [Klartag, Mendelson '05], [Mendelson, Pajor, Tomczak-Jaegermann '07], [Dirksen '13] (in the current notation, these works analyzed dense Π, i.e. $m=s$) [Bourgain, N.]
* Has restriction that $1 /(\varepsilon \gamma) \ll d$.

Open Problems

- OPEN: Improve ω, the exponent of matrix multiplication
- OPEN: Find exact algorithm for least squares regression (or any of these problems) in time faster than $\tilde{O}\left(n d^{\omega-1}\right)$
- OPEN: Prove the following conjecture: to have a subspace embedding with probability $1-\delta$, suffices to set $m=O\left((d+\log (1 / \delta)) / \varepsilon^{2}\right), s=O(\log (d / \delta) / \varepsilon)$. Or even, obtain this bound for m for a dense sign matrix using the moment method, with the $\ell=\Theta(\log (d / \delta))$ th moment.
- OPEN: Show that the tradeoff $m=O\left(d^{1+\gamma} / \varepsilon^{2}\right)$, $s=\operatorname{poly}(1 / \gamma) \cdot 1 / \varepsilon$ is optimal for any distribution over subspace embeddings
- OPEN: Show that $m=\Omega\left(d^{2} / \varepsilon^{2}\right)$ is optimal for $s=1$

Partial progress: [N., Nguyễn, 2012] shows $m=\Omega\left(d^{2}\right)$

