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• A ∈ Rn×d , n� d , rank(A) = r

• tall, skinny matrix



Numerical linear algebra

• A ∈ Rn×d , n� d , rank(A) = r

Classical numerical linear algebra problems

• Compute the leverage scores of A, i.e. the `2 norms of the n
standard basis vectors when projected onto the subspace
spanned by the columns of A.

• Least squares regression: Given also b ∈ Rn.

Compute x∗ = argminx∈Rd ‖Ax − b‖2

• `p regression (p ∈ [1,∞)):

Compute x∗ = argminx∈Rd ‖Ax − b‖p

• Low-rank approximation: Given also an integer 1 ≤ k ≤ d .

Compute Ak = argminrank(B)≤k ‖A− B‖F

• Preconditioning: Compute R ∈ Rd×d (for d = r) so that

∀x ‖ARx‖2 ≈ ‖x‖2
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Computationally efficient solutions

Singular Value Decomposition

Theorem
Every matrix A ∈ Rn×d of rank r can be written as

A = U︸︷︷︸
orthonorm
columns

n×r

Σ︸︷︷︸
diagonal

positive definite
r×r

V T︸︷︷︸
orthonorm
columns

d×r

Can compute SVD in Õ(ndω−1) [Demmel, Dumitriu, Holtz, 2007].
ω < 2.373 . . . is the exponent of square matrix multiplication
[Coppersmith, Winograd, 1987], [Stothers, 2010],
[Vassilevska-Williams, 2012]



Computationally efficient solutions
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diagonal
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V T︸︷︷︸
orthonorm
columns
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• Leverage scores: Output row norms of U.

• Least squares regression: Output VΣ−1UTb.

• Low-rank approximation: Output UΣkV
T .

• Preconditioning: Output R = VΣ−1.

Conclusion: In time Õ(ndω−1) we can compute the SVD then
solve all the previously stated problems. Is there a faster way?
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Subspace embeddings

[Sarlós, 2006]

Let V ⊆ Rn be a linear subspace of dimension d . A subspace
embedding for V is a matrix Π ∈ Rm×n so that

∀x ∈ V , (1− ε)‖x‖ ≤ ‖Πx‖ ≤ (1 + ε)‖x‖

Subspace embeddings can be used to speed up algorithms for all
five problems previously listed [Sarlós, 2006], [Dasgupta, Drineas,
Harb, Kumar, Mahoney, 2008], [Clarkson, Woodruff, 2009],
[Drineas, Magdon-Ismail, Mahoney, Woodruff, 2012], [Clarkson,
Woodruff, 2013], [Clarkson, Drineas, Magdon-Ismail, Mahoney,
Meng, Woodruff, 2013], [Woodruff, Zhang, 2013].
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How to use subspace embeddings

Least squares regression: Let Π be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x∗ = argmin ‖Ax − b‖ and x̃ = argmin ‖ΠAx − Πb‖. Then

(1− ε)‖Ax̃ − b‖ ≤‖ΠAx̃−Πb‖ ≤ ‖ΠAx∗−Πb‖≤ (1 + ε)‖Ax∗ − b‖

⇒ ‖Ax̃ − b‖ ≤
(

1 + ε

1− ε

)
· ‖Ax∗ − b‖
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Computational gain from subspace embeddings

Computing SVD of ΠA takes time Õ(mdω−1), which is much
faster than Õ(ndω−1) if m� n.

Good news: Known that if Π is, say, a random Gaussian matrix
with m = O(d/ε2), it will be a subspace embedding with high
probability [Gordon, 1988], [Klartag, Mendelson, 2005], [Arora,
Hazan, Kale, 2006], [Clarkson, Woodruff, 2013].

Bad news: Computing ΠA naively takes time O(mndω−2) (even
worse than O(ndω−1))
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Picking better subspace embeddings

The trouble is that a random Gaussian matrix is unstructured.

Sarlós’ idea: Pick Π to be a structured matrix so that ΠA can be
computed quickly. Sarlós used FFT-based approach of [Ailon,
Chazelle, 2006]+followup work with m = Õ(d/ε2) and such that
Πx can be computed in time O(n log n) for any x ∈ Rn.

Can compute ΠA in time O(nd log n) by computing Π times each
column of A separately.

Conclusion: Can solve, e.g. least squares regression, in time
O(nd log n) + Õ(dω/ε2). Nearly linear time in matrix size!

Can we do better?
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Linear time in input sparsity
[Clarkson, Woodruff, 2013] constructed a Π with m = poly(d/ε)
rows so that each column has exactly one non-zero entry!

Implication: E.g. least squares regression, running time
nnz(A) + poly(d/ε).

Let the number of non-zeroes per column be s
(so can multiply ΠA in time s · nnz(A))

m s

[Kane, N. ’12] O(d/ε2) O(d/ε)

[Clarkson, Woodruff ’13] O(d2 log6(d/ε)/ε2) 1

this work O(d1+γ/ε2) Oγ(1/ε)
this work O(d2/ε2)∗ 1

γ > 0 can be chosen as an arbitrarily small constant.
* Also obtained by [Mahoney, Meng ’13], and also follows from
[Thorup, Zhang ’04] + [Kane, N., ’12] (observed by Nguy˜̂en).
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The embedding Π



OSNAP distributions
(Oblivious Sparse Norm-Approximating Projections)

Construction 1:

0

0 m

0
0

Construction 2:

0

0
m

0
0

Each black cell is ±1/
√
s at random, s black cells per column

These matrices first found applications to other problems in the
data streams literature in [Charikar, Chen, Farach-Colton ’02],
[Thorup, Zhang ’04].
Also used in “sparse Johnson-Lindenstrauss” [Kane, N. ’12].
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Analysis



Analysis outline
Recall we have V ⊂ Rn a linear subspace of dimension d and want

∀x ∈ V , (1− ε)‖x‖ ≤ ‖Πx‖ ≤ (1 + ε)‖x‖ (∗)

V = {Uy : y ∈ Rd}, where the columns of U form an orthonormal
basis for V . Thus (*) is equivalent to

∀y ∈ Rd , ‖ΠUy‖ = (1± ε)‖Uy‖ = (1± ε)‖y‖ (∗∗)

(**) equivalent to all eigenvals of S = (ΠU)T (ΠU) being (1± ε)2,
which is equivalent to ‖S − I‖ ≤ ε (up to a factor of 2).

Markov’s inequality:

P(‖S−I‖ > ε) = P(‖S−I‖` > ε`) <
1

ε`
E ‖S−I‖` ≤ 1

ε`
E tr((S−I )`)

This is the classical “moment method” in random matrix theory;
see e.g. [Wigner, 1955], [Füredi, Komlós, 1981], [Bai, Yin, 1993]
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Natural “matrix extension” of JL

Johnson-Lindenstrauss lemma

Theorem
Let u ∈ Rn be arbitrary, unit `2 norm, Π random sign matrix. Then

P
Π

(∣∣‖Πu‖2 − 1
∣∣ > ε

)
< δ

as long as

m &
log(1/δ)

ε2
, ` = log(1/δ)([Achlioptas′01])

or

m &
1

ε2δ
, ` = 2 ([Alon, Matias, Szegedy′96])
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Natural “matrix extension” of JL

Conjecture

Theorem
Let u ∈ Rn×d be arbitrary, o.n. cols, Π random sign matrix. Then
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Natural “matrix extension” of sparse JL

[Kane, N. ’12]
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Natural “matrix extension” of sparse JL

What we prove

Theorem
Let u ∈ Rn×d be arbitrary, o.n. cols, Π sparse sign matrix. Then

P
Π

(‖(Πu)∗(Πu)− Id‖ > ε) < δ

as long as

m &
d · logc (d/δ)

ε2
, s &

logc (d/δ)

ε
or m &

d1.01

ε2
, s &

1

ε

or

m &
d2

ε2δ
, s = 1



Back to the analysis



Analysis (` = 2)
s = 1, m = O(d2/ε2)

Want to understand S − I , S = (ΠU)T (ΠU)

Let the columns of U be u1, . . . , ud

Recall Πi ,j = δi ,jσi ,j/
√
s

Some computations yield

(S − I )k,k ′ =
1

s

m∑
r=1

∑
i 6=j

δr ,iδr ,jσr ,iσr ,ju
k
i u

k ′
j

Computing E ‖S − I‖2
F is straightforward, and can show

E ‖S − I‖2
F ≤ (d2 + d)/m

P(‖S − I‖ > ε) <
1

ε2

d2 + d

m

Set m ≥ δ−1(d2 + d)/ε2 for success probability 1− δ
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The strategy: Associate each monomial in summation above with
a graph, group monomials that have the same graph, and estimate
the contribution of each graph then do some combinatorics

(a common strategy; see [Wigner, 1955], [Füredi, Komlós, 1981],
[Bai, Yin, 1993])
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Grouping monomials by graph
z right vertices, b distinct edges between middle and right
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Understanding Ĝ

F (Ĝ ) =

∣∣∣∣∣∣
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∏
e=(α,β)∈Ĝ

〈
uiα , uiβ
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d

Let C be the number of connected components of Ĝ . It turns out
the right upper bound for F (Ĝ ) is roughly dC

• Can get dC bound if all edges in Ĝ have even multiplicity

• How about Ĝ where this isn’t the case, e.g. as above?
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F (Ĝ ) =

∣∣∣∣∣∣
∑

i1 6=... 6=iy

∏
e=(α,β)∈Ĝ
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Bounding F (Ĝ ) with odd multiplicities
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=
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]
Reduces back to case of even edge multiplicities! (AM-GM)

Caveat: # connected components increased (unacceptable)
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AM-GM trick done right

Theorem (Tutte ’61, Nash-Williams ’61)

Let G be a multigraph with edge-connectivity at least 2k. Then G
must have at least k edge-disjoint spanning trees.

Using the theorem (k = 2)

• If every connected component (CC) of Ĝ has 2 edge-disjoint
spanning trees, we are done

• Otherwise, some CC is not 4 edge-connected. Since each CC
is Eulerian, there must be a cut of size 2
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AM-GM trick done right

−→

∑
iv

v∈T

 ∏
(q,r)∈T

〈
uiq , uir

〉 uT
ic

∑
iv

v∈T̄

uia

 ∏
(q,r)∈T̄

〈
uiq , uir

〉 uT
ib


︸ ︷︷ ︸

M

uid

• Repeatedly eliminate size-2 cuts until every CC has two
edge-disjoint spanning trees

• Show all M’s along the way have bounded operator norm

• Show that even edge multiplicities are still easy to handle
when all M’s have bounded operator norm



AM-GM trick done right

−→

∑
iv

v∈T

 ∏
(q,r)∈T

〈
uiq , uir

〉 uT
ic

∑
iv

v∈T̄

uia

 ∏
(q,r)∈T̄

〈
uiq , uir

〉 uT
ib


︸ ︷︷ ︸

M

uid

• Repeatedly eliminate size-2 cuts until every CC has two
edge-disjoint spanning trees

• Show all M’s along the way have bounded operator norm

• Show that even edge multiplicities are still easy to handle
when all M’s have bounded operator norm



Handling even edge multiplicities

Ĝ



Handling even edge multiplicities

Rough idea

• Note

1. 〈ui , uj〉2 = uT
j uiu

T
i uj

2. Also
∑n

i=1 uiu
T
i = I

• In graph terms, we can choose to remove any vertex x we
want from the dot product graph (by summing over its
assignments). Then for each neighbor of x we attach
self-loops (one self-loop for every two edges to x).

• What order do we sum over vertices?
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Bad order: increased the number of connected components
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tree, then sum over the vertices that are lower in the tree first.
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spanning tree

Step 1: Take a spanning tree of Ĝ
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Conclusion



Other recent progress

• Can show any oblivious subspace embedding succeeding with
probability ≥ 2/3 must have Ω(d/ε2) rows [N., Nguy˜̂en]

• Can show any oblivious subspace embedding with O(d1+γ)
rows must have sparsity s = Ω(1/(εγ))* [N., Nguy˜̂en]

• Can provide upper bounds on m, s to preserve an arbitrary
bounded set T ⊂ Rn, in terms of the geometry of T , in the
style of [Gordon ’88], [Klartag, Mendelson ’05], [Mendelson,
Pajor, Tomczak-Jaegermann ’07], [Dirksen ’13] (in the current
notation, these works analyzed dense Π, i.e. m = s)
[Bourgain, N.]

* Has restriction that 1/(εγ)� d .
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Open Problems

• OPEN: Improve ω, the exponent of matrix multiplication

• OPEN: Find exact algorithm for least squares regression (or
any of these problems) in time faster than Õ(ndω−1)

• OPEN: Prove the following conjecture: to have a subspace
embedding with probability 1− δ, suffices to set
m = O((d + log(1/δ))/ε2), s = O(log(d/δ)/ε). Or even,
obtain this bound for m for a dense sign matrix using the
moment method, with the ` = Θ(log(d/δ))th moment.

• OPEN: Show that the tradeoff m = O(d1+γ/ε2),
s = poly(1/γ) · 1/ε is optimal for any distribution over
subspace embeddings

• OPEN: Show that m = Ω(d2/ε2) is optimal for s = 1

Partial progress: [N., Nguy˜̂en, 2012] shows m = Ω(d2)


