OSNAP: Faster numerical linear algebra
algorithms via sparser subspace embeddings

Jelani Nelson
Harvard

September 27, 2013

based on joint work with Huy L. Nguyén (Princeton)

e AcR™9 n>>d, rank(A) =r

e tall, skinny matrix

Numerical linear algebra
e AcR™9 n>>d, rank(A) = r

Numerical linear algebra
e AcR™9 n>>d, rank(A) =r
Classical numerical linear algebra problems

e Compute the leverage scores of A, i.e. the ¢ norms of the n
standard basis vectors when projected onto the subspace
spanned by the columns of A.

Numerical linear algebra

e AcR™9 n>>d, rank(A) =r
Classical numerical linear algebra problems

e Compute the leverage scores of A, i.e. the ¢ norms of the n
standard basis vectors when projected onto the subspace
spanned by the columns of A.

e Least squares regression: Given also b € R”.

Compute x* = argmin, pa [|Ax — bl|2

Numerical linear algebra
e AcR™9 n>>d, rank(A) =r

Classical numerical linear algebra problems

e Compute the leverage scores of A, i.e. the ¢ norms of the n
standard basis vectors when projected onto the subspace
spanned by the columns of A.

e Least squares regression: Given also b € R”.
Compute x* = argmin, pa [|Ax — bl|2
e /, regression (p € [1,00)):

Compute x* = argmin, cpa [|Ax — bl|p

Numerical linear algebra
e AcR™9 n>>d, rank(A) =r

Classical numerical linear algebra problems

e Compute the leverage scores of A, i.e. the {2 norms of the n
standard basis vectors when projected onto the subspace
spanned by the columns of A.

e Least squares regression: Given also b € R”.
Compute x* = argmin, pa [|Ax — bl|2
e /, regression (p € [1,00)):
Compute x* = argmin, cpa [|Ax — bl|p
e Low-rank approximation: Given also an integer 1 < k < d.

Compute Ay = argmin,,,i(g)<« [|A — BllF

Numerical linear algebra
e AcR™9 n>>d, rank(A) =r
Classical numerical linear algebra problems

e Compute the leverage scores of A, i.e. the {2 norms of the n
standard basis vectors when projected onto the subspace
spanned by the columns of A.

Least squares regression: Given also b € R”.

Compute x* = argmin, pa [|Ax — bl|2

¢, regression (p € [1,00)):

Compute x* = argmin, cpa [|Ax — bl|p

Low-rank approximation: Given also an integer 1 < k < d.
Compute Ay = argmin,,,i(g)<« [|A — BllF
Preconditioning: Compute R € R¥*9 (for d = r) so that
Vx [|ARx]|2 & |[x[|2

Computationally efficient solutions

Singular Value Decomposition

Theorem
Every matrix A € R"9 of rank r can be written as

A= U pa v’
~— ~—~ ~—~
orthonorm diagonal orthonorm
columns positive definite columns
nxr rXr dxr

Can compute SVD in O(nd“~1) [Demmel, Dumitriu, Holtz, 2007].
w < 2.373... is the exponent of square matrix multiplication
[Coppersmith, Winograd, 1987], [Stothers, 2010],
[Vassilevska-Williams, 2012]

Computationally efficient solutions

A= U)X v’
~~ ~~ ~~
orthonorm diagonal orthonorm
columns positive definite columns
nxr FXF dxr

Leverage scores: Qutput row norms of U.
Least squares regression: Output VE~1UTb.
Low-rank approximation: Output UX, V.
Preconditioning: Output R = V¥ 1.

Computationally efficient solutions

A= U)X v’
~~ ~~ ~~
orthonorm diagonal orthonorm
columns positive definite columns
nxr FXF dxr

e Leverage scores: Output row norms of U.

Least squares regression: Output VE~1UTb.

Low-rank approximation: Output UX, V.
Preconditioning: Output R = V¥ 1.

Conclusion: In time O(nd“~!) we can compute the SVD then
solve all the previously stated problems. Is there a faster way?

Subspace embeddings

[Sarlés, 2006]

Let V C R" be a linear subspace of dimension d. A subspace
embedding for V is a matrix 1 € R™*" so that

vx eV, (1=e)lx|| < |[Mx]| < (1 + &)l

Subspace embeddings

[Sarlés, 2006]

Let V C R” be a linear subspace of dimension d. A subspace
embedding for V is a matrix 1 € R™*" so that

vx eV, (1=e)lx|| < |[Mx]| < (1 + &)l

Subspace embeddings can be used to speed up algorithms for all
five problems previously listed [Sarlés, 2006], [Dasgupta, Drineas,
Harb, Kumar, Mahoney, 2008], [Clarkson, Woodruff, 2009],
[Drineas, Magdon-Ismail, Mahoney, Woodruff, 2012], [Clarkson,
Woodruff, 2013], [Clarkson, Drineas, Magdon-Ismail, Mahoney,
Meng, Woodruff, 2013], [Woodruff, Zhang, 2013].

How to use subspace embeddings

Least squares regression: Let 1 be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x* = argmin ||Ax — b|| and X = argmin ||[TAx — Ib]|. Then

How to use subspace embeddings

Least squares regression: Let 1 be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x* = argmin ||Ax — b|| and X = argmin ||[TAx — Ib]|. Then

INA%—Tb|| < |NAx*—Tb||

How to use subspace embeddings

Least squares regression: Let [1 be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x* = argmin ||Ax — b|| and X = argmin ||[TAx — Ib||. Then
(1—¢)||Ax—b|| < ||[NAXx — Mb|| < ||[NAX*—Nb|

—_———

IN(AX=b)]|

How to use subspace embeddings

Least squares regression: Let 1 be a subspace embedding for
the subspace spanned by b and the columns of A. Let
x* = argmin ||Ax — b|| and X = argmin ||[TAx — Ib]|. Then

(1—g)||AXx—b|| < |[NAX—Nb|| < ||[NAX*—TNb|| < (1+4¢)||Ax* —b||

1
= ||A% — b < (JZ) |AX* — b||

Computational gain from subspace embeddings

Computing SVD of TNA takes time O(md“~1), which is much
faster than O(nd*~1) if m < n.

Computational gain from subspace embeddings

Computing SVD of TNA takes time O(md“~1), which is much
faster than O(nd*~1) if m < n.

Good news: Known that if I is, say, a random Gaussian matrix
with m = O(d/£?), it will be a subspace embedding with high
probability [Gordon, 1988], [Klartag, Mendelson, 2005], [Arora,
Hazan, Kale, 2006], [Clarkson, Woodruff, 2013].

Computational gain from subspace embeddings

Computing SVD of TNA takes time O(md“~1), which is much
faster than O(nd*~1) if m < n.

Good news: Known that if I is, say, a random Gaussian matrix
with m = O(d/£?), it will be a subspace embedding with high
probability [Gordon, 1988], [Klartag, Mendelson, 2005], [Arora,
Hazan, Kale, 2006], [Clarkson, Woodruff, 2013].

Bad news: Computing MA naively takes time O(mnd“~2) (even
worse than O(nd*“~1))

Picking better subspace embeddings

The trouble is that a random Gaussian matrix is unstructured.

Sarlés’ idea: Pick I to be a structured matrix so that A can be
computed quickly. Sarlés used FFT-based approach of [Ailon,
Chazelle, 2006]+followup work with m = O(d /&) and such that
Mx can be computed in time O(nlog n) for any x € R".

Picking better subspace embeddings

The trouble is that a random Gaussian matrix is unstructured.

Sarlés’ idea: Pick I to be a structured matrix so that A can be
computed quickly. Sarlés used FFT-based approach of [Ailon,
Chazelle, 2006]+followup work with m = O(d /&) and such that
Mx can be computed in time O(nlog n) for any x € R".

Can compute [MA in time O(nd log n) by computing I times each
column of A separately.

Conclusion: Can solve, e.g. least squares regression, in time
O(ndlog n) + O(d“/£?). Nearly linear time in matrix size!

Picking better subspace embeddings

The trouble is that a random Gaussian matrix is unstructured.

Sarlés’ idea: Pick I to be a structured matrix so that A can be
computed quickly. Sarlés used FFT-based approach of [Ailon,
Chazelle, 2006]+followup work with m = O(d /&) and such that
Mx can be computed in time O(nlog n) for any x € R".

Can compute [MA in time O(nd log n) by computing I times each
column of A separately.

Conclusion: Can solve, e.g. least squares regression, in time
O(ndlog n) + O(d“/£?). Nearly linear time in matrix size!

Can we do better?

Linear time in input sparsity

[Clarkson, Woodruff, 2013] constructed a 1 with m = poly(d/¢)
rows so that each column has exactly one non-zero entry!

Implication: E.g. least squares regression, running time
nnz(A) + poly(d/e).

Linear time in input sparsity

[Clarkson, Woodruff, 2013] constructed a 1 with m = poly(d/¢)
rows so that each column has exactly one non-zero entry!

Implication: E.g. least squares regression, running time
nnz(A) + poly(d/e).

Let the number of non-zeroes per column be s
(so can multiply A in time s - nnz(A))

[Kane, N. '12] O(c7}€2) O(d/e)
[Clarkson, Woodruff '13] | O(d?log®(d/e)/e?) 1

Linear time in input sparsity
[Clarkson, Woodruff, 2013] constructed a I1 with m = poly(d/¢)
rows so that each column has exactly one non-zero entry!
Implication: E.g. least squares regression, running time
nnz(A) + poly(d/e).

Let the number of non-zeroes per column be s
(so can multiply A in time s - nnz(A))

m S
[Kane, N. '12] 0(d/<?) 0(d/e)
[Clarkson, Woodruff '13] | O(d? log®(d/<)/<?) 1
this work O(d*7/<?) O0,(1/¢)
this work O(d?/e%)* 1

~ > 0 can be chosen as an arbitrarily small constant.
* Also obtained by [Mahoney, Meng "13], and also follows from
[Thorup, Zhang '04] + [Kane, N., '12] (observed by Nguyén).

The embedding [1

OSNAP distributions
(Oblivious Sparse Norm-Approximating Projections)

-

Construction 1: d m

Construction 2: d

Each black cell is +1/4/s at random, s black cells per column

OSNAP distributions
(Oblivious Sparse Norm-Approximating Projections)

-

Construction 1: li m

Construction 2: d

Each black cell is +1/4/s at random, s black cells per column

These matrices first found applications to other problems in the
data streams literature in [Charikar, Chen, Farach-Colton '02],
[Thorup, Zhang '04].

Also used in “sparse Johnson-Lindenstrauss” [Kane, N. '12].

Analysis

Analysis outline
Recall we have V C R" a linear subspace of dimension d and want

VxeV, (1=e)lx|| < INx[| < (T +e)llx]| (%)

Analysis outline
Recall we have V C R" a linear subspace of dimension d and want

VxeV, (1=e)lx|| < INx[| < (T +e)llx]| (%)

V = {Uy : y € R}, where the columns of U form an orthonormal
basis for V. Thus (*) is equivalent to

vy €RY, NUy[= (L£)|Uy = 1 xe)lyll ()

Analysis outline
Recall we have V C R" a linear subspace of dimension d and want

VxeV, (1=e)lx|| < INx[| < (T +e)llx]| (%)

V = {Uy : y € R}, where the columns of U form an orthonormal
basis for V. Thus (*) is equivalent to

vy €RY, NUy[= (L£)|Uy = 1 xe)lyll ()

(**) equivalent to all eigenvals of S = (MU)T(MU) being (1 £ ¢)?,
which is equivalent to ||S — /|| < & (up to a factor of 2).

Analysis outline
Recall we have V C R" a linear subspace of dimension d and want

VxeV, (1=e)lx|| < INx[| < (T +e)llx]| (%)

V = {Uy : y € R}, where the columns of U form an orthonormal
basis for V. Thus (*) is equivalent to

vy €RY, NUy[= (L£)|Uy = 1 xe)lyll ()

(**) equivalent to all eigenvals of S = (MU)T(MU) being (1 £ ¢)?,
which is equivalent to ||S — /|| < & (up to a factor of 2).

Markov’s inequality:

RIS~ 1] > &) = B(IS— 1] > &) < EIS—I < S Eu((S-1))

Analysis outline
Recall we have V C R" a linear subspace of dimension d and want

VxeV, (1=e)lx|| < INx[| < (T +e)llx]| (%)

V = {Uy : y € R}, where the columns of U form an orthonormal
basis for V. Thus (*) is equivalent to

vy €RY, NUy[= (L£)|Uy = 1 xe)lyll ()

(**) equivalent to all eigenvals of S = (MU)T(MU) being (1 £ ¢)?,
which is equivalent to ||S — /|| < & (up to a factor of 2).

Markov’s inequality:
1 1
P(IS—1]| > &) = P(IS—1]I* > &) < S E|S—1) < 5 Ete((S—1))

This is the classical “moment method” in random matrix theory;
see e.g. [Wigner, 1955], [Fiiredi, Komlés, 1981], [Bai, Yin, 1993]

Natural “matrix extension” of JL

Johnson-Lindenstrauss lemma

Theorem

Let u € R" be arbitrary, unit £ norm, 1 random sign matrix. Then
]II_ID(‘||I'Iu||2 —1]>e¢) <6

as long as

Iog(€1/5) ¢ = log(1/6)([Achlioptas’01])

or
1
m > 2 a5 ¢ =2 ([Alon, Matias, Szegedy’96])

Natural “matrix extension” of JL

Johnson-Lindenstrauss lemma

Theorem
Let u € R™1 be arbitrary, o.n. cols, [random sign matrix. Then

B(I(Mu)*(Mu) =]| > <€) <4

as long as
1+ log(1/6)
m2z T,f = log(1/9)
or)
1
> - =
mN 6257

Natural “matrix extension” of JL

Conjecture

Theorem
Let u € R™9 be arbitrary, o.n. cols, I random sign matrix. Then

B(I(Mu)*(Mu) = lal] > €) <&

as long as
d + log(1/9)
mZz Tve = log(d/9)
or)
m2z d— {=2

Natural “matrix extension” of sparse JL

[Kane, N. '12]

Theorem
Let u € R" be arbitrary, unit ¢ norm, I sparse sign matrix. Then

Iﬁ(wnu||2 —1]>e) <6

as long as

B0 [BT s

or
1
mZ2 R 255~ 1,0 =2 ([Thorup, Zhang'04])

Natural “matrix extension” of sparse JL

[Kane, N. '12]

Theorem
Let u € R™1 be arbitrary, o.n. cols, 1 sparse sign matrix. Then

BAI(Mu)*(Mu) = K[> €) <o

as long as

> 1+ |Og(1/5)’5 > |0g(1/5)’€ = log(1/5)

g2 €

~

or

Natural “matrix extension” of sparse JL

Conjecture

Theorem
Let u € R"™ 9 be arbitrary, o.n. cols, N sparse sign matrix. Then

B(I(Mu)*(Mu) = lall > €) <&

as long as

-, d+log(1/0)
~ 52

~

s> '°g(:/ % ¢~ 1og(d/6)

or

Natural “matrix extension” of sparse JL

What we prove

Theorem
Let u € R™9 be arbitrary, o.n. cols, T sparse sign matrix. Then

BOI(Mu)*(Mu) = lall > €) <6
as long as

. c c 1.01
m> Iogz(d/5)75 - log"(d/9) o d 1
13 g g

or

Back to the analysis

Analysis (¢ = 2)
s=1 m= 0(d?/e?)
Want to understand S — 1, S = (MU) " (NV)

Analysis (¢ = 2)
s=1 m= 0(d?/e?)
Want to understand S — 1, S = (MU) " (NV)

Let the columns of U be u!, ..., u

Recall |_|,',j = (S,‘JO’,‘J/\/E

Analysis (¢ = 2)
s=1 m= 0(d?/e?)
Want to understand S — 1, S = (MU) " (NV)

Let the columns of U be u!, ..., u
Recall |_|,',j = 5,‘JO’,‘J/\/§

Some computations yield

(S = Diw = *ZZ‘SH%UH% uf uf

r=1 i#j

Analysis (¢ = 2)
s=1 m= 0(d?/e?)
Want to understand S — 1, S = (MU) " (NV)

Let the columns of U be u!, ..., u
Recall |_|,',j = 5,‘JO’,‘J/\/§

Some computations yield

(S = Diw = *ZZ‘SH%UH% uf uf

r=1 i#j

Computing E||S — /]|2 is straightforward, and can show
E|S— 1|7 < (d*+d)/m

1d?>+d
P(IS — 1| > ¢) < = L F

e m

Analysis (¢ = 2)
s=1 m= 0(d?/e?)
Want to understand S — 1, S = (MU) " (NV)

Let the columns of U be u!, ..., u
Recall |_|,',j = 5,‘JO’,‘J/\/§

Some computations yield

(S = Diw = *ZZ‘SH%UH% uf uf

r=1 i#j

Computing E||S — /]|2 is straightforward, and can show
E|S— 1|7 < (d*+d)/m

1d?>+d
P(IS — 1| > ¢) < = L F

e m
Set m > 671(d? + d)/e? for success probability 1 —§

Analysis (large /)
= 0,(1/¢), m= O(d*"/?)

I kk’: szsrl&r,/o'rlo'rju

r=1 i#j

Analysis (large /)
s=0,(1/e), m= O(d'*7/&?)

(S = Niw = = Zz5r15rugr"’w uf uf

r=1 i#j

By induction, for any square matrix B and integer ¢ > 1,

V4
BY%i= >, [IBiia

) I.1,.....,I'Z+1) t=1
n=nlg+1=J

Analysis (large /)
s=0,(1/e), m= O(d'*7/&?)

(S-1 kku*ZZfSr:%Ur:Uu uj J

r=1 i#j

By induction, for any square matrix B and integer ¢ > 1,

V4
BY%i= >, [IBiia

iyl t=1
I1 II[+1 j

=tr(B) =) H Biinn

Il., ,.Ig+1t 1
n=le+1

Analysis (large /)
= 0,(1/¢), m= O(d*™/e?)

¢ 4
Etr((S — l)l) = Z (]EH resit ’t Jt) <EHU’t ’tU’tJf> H u’ttujlthrl

t=1 t=1

~~~~~~~



Analysis (large /)
s=0,(1/e), m= O(d'*7/&?)

L L
Eu((S-N)= Y (EH re,ie 8 J> <EH% Mm) [ uiu

i 7‘11 ----- ’[ #Je t=1 t=1

,,,,,

The strategy: Associate each monomial in summation above with
a graph, group monomials that have the same graph, and estimate
the contribution of each graph then do some combinatorics

(a common strategy; see [Wigner, 1955], [Fiiredi, Komlés, 1981],
[Bai, Yin, 1993])



0

Example monomial—graph correspondence

tr((S — /)2) = Z H Ore,ieOre e H Orsie Tre e H u:t J‘?H

11#11 ,,,,, li#le t=1

,,,,,

k1 77777 ‘<2+1
ki=kg 41
(=4
k ij
— @
' ' . ki ko a 2
re,’a(sreylbo—re,’ao—rev’bul Ub 4 3
b
® o
c

-



Example monomial—graph correspondence

tr((S — /)2) = Z H Ore,ieOre e H Orsie Tre e H u:t J‘?H

11#11 ,,,,, li#le t=1

,,,,,

. ko | k3
5re7’b0-reylao-re:’b ul U

X0

re,la




Example monomial—graph correspondence

tI‘((S - I)e) = Z H(S’t ,t(S,t Jt Ho'rt it Ory Jt H Ukt ket

It Jr
11#11 ,,,,, li#]e t=1
,,,,,
A
ki=kp41

(=4
k J
® ®
a
® ®

. . 3 k3 kg
X5rf7/c5rf,ldaff,lcarf,/d U, U




Example monomial—graph correspondence

tr((S — /)2) = Z H Ore,ieOre e H Orsie Tre e H u:t J‘?H

11#11 ,,,,, li#le t=1

,,,,,

k1 77777 ‘<2+1
ki=kp41
ky k1

X5’F7ic5rf7ido-rf:ico-rh’d u; " u;,




Example monomial—graph correspondence

4 4 4
tr((S — 1" = Z H5 i Ore -Ha i Orej -l_Iu{(‘u‘-(‘+1
Tty It YresJe eyt ™ It it “Jjr
WA e ripFip t=1 t=1 t=1
Myeesle
Kiy--oskey1
ki=kg41

ky | ko
re,la reylbo—re,’ao—rea’buia uib

ko ks
resibO re,ia O re,ip uia uib

Or.i0
)
5 ks | ka
)

X0
X0
X0

re,la

1,0 Orpig O e ic O e ig Ui " Uy,

ks ki
rfylc rf:’daff:’carf:’duic uid




Example monomial—graph correspondence

L

4 L
tr((S - I)Z) = Z H 6&,!}5&4} . H Or,itOre je H <uft7 uit+1>
t=1

t=1

#j - ie A t=1
FH)

5reyi36reyib0-reyiao-re:’.b ulil uI{ZZ
X5re,i35r57ibo-re7iao-re7ib UZQ u;f
XOr,icOrs,igOreic Orp g uil? u:{:‘
5 ks | kq

XOrp,icOre,ig Ty ic Oy, ig u; u;,




Grouping monomials by graph
z right vertices, b distinct edges between middle and right

4 L 2
]EtI‘((S - I)Z) = Z <]E H 6’tv’-t6’tvjt> (EH UftJt”’hjt) H <uit7 uft+1>
t=1 t=1 =

W15 sie e t=1
Mseeesfe

AAAAA

S ()X T ()

i#...#ly e=(a,8)e6




Understanding G

FG& =| > II (uw)] °

n#...#iy e=(a,8)eG

Let C be the number of connected components of G. It turns out
the right upper bound for F(G) is roughly d°



Understanding G

FG& =| > II (uw)] °

n#...#iy e=(a,8)eG

Let C be the number of connected components of G. It turns out
the right upper bound for F(G) is roughly d°

e Can get d€ bound if all edges in G have even multiplicity



Understanding G

FG& =| > II (uw)] °

n#...#iy e=(a,8)eG

Let C be the number of connected components of G. It turns out
the right upper bound for F(G) is roughly d°

e Can get d€ bound if all edges in G have even multiplicity

e How about G where this isn't the case, e.g. as above?



Bounding F(G) with odd multiplicities

AN L7

Reduces back to case of even edge multiplicities! (AM—GM)



Bounding F(G) with odd multiplicities
- LN
N /

AN L7

Reduces back to case of even edge multiplicities! (AM—GM)

Caveat: # connected components increased (unacceptable)



AM-GM trick done right

Theorem (Tutte '61, Nash-Williams '61)

Let G be a multigraph with edge-connectivity at least 2k. Then G
must have at least k edge-disjoint spanning trees.



AM-GM trick done right

Theorem (Tutte '61, Nash-Williams '61)

Let G be a multigraph with edge-connectivity at least 2k. Then G
must have at least k edge-disjoint spanning trees.

Using the theorem (k = 2)

e If every connected component (CC) of G has 2 edge-disjoint
spanning trees, we are done



AM-GM trick done right

Theorem (Tutte '61, Nash-Williams '61)
Let G be a multigraph with edge-connectivity at least 2k. Then G
must have at least k edge-disjoint spanning trees.

Using the theorem (k = 2)

e If every connected component (CC) of G has 2 edge-disjoint
spanning trees, we are done

e Otherwise, some CC is not 4 edge-connected. Since each CC
is Eulerian, there must be a cut of size 2



AM-GM trick done right




AM-GM trick done right

Z(H <>) z( I < )
( i (a,

iv q,r)€T _ r)e
veT veT

M

e Repeatedly eliminate size-2 cuts until every CC has two
edge-disjoint spanning trees

e Show all M's along the way have bounded operator norm

e Show that even edge multiplicities are still easy to handle
when all M’s have bounded operator norm



Handling even edge multiplicities



Handling even edge multiplicities

Rough idea

e Note

1. (u, uj>2 = uJ-Tu,-u,-Tuj

2. Also 37 wiu] =1



Handling even edge multiplicities

Rough idea

e Note
1. (u, uj>2 = uJ-Tu,-u,-Tuj
2. Also 37 wiu] =1
e In graph terms, we can choose to remove any vertex x we
want from the dot product graph (by summing over its
assignments). Then for each neighbor of x we attach

self-loops (one self-loop for every two edges to x).



Handling even edge multiplicities

Rough idea

e Note
1. (u, uj>2 = uJ-Tu,-u,-Tuj
2. Also 37 wiu] =1
e In graph terms, we can choose to remove any vertex x we
want from the dot product graph (by summing over its
assignments). Then for each neighbor of x we attach

self-loops (one self-loop for every two edges to x).

e What order do we sum over vertices?



Vertex summation order: even edge multiplicities



Vertex summation order: even edge multiplicities



Vertex summation order: even edge multiplicities



Vertex summation order: even edge multiplicities

&

@

Bad order: increased the number of connected components



Vertex summation order: even edge multiplicities

A better order:



Vertex summation order: even edge multiplicities

A better order:



Vertex summation order: even edge multiplicities

A better order:



Vertex summation order: even edge multiplicities

A better order:



Vertex summation order: even edge multiplicities

A better order:



Vertex summation order: even edge multiplicities

A better order:

8

In general: for each connected component of G take some spanning
tree, then sum over the vertices that are lower in the tree first.



Vertex summation order: even edge multiplicities

oy




Vertex summation order: even edge multiplicities

oy

spanning tree

Step 1: Take a spanning tree of G



Vertex summation order: even edge multiplicities



Vertex summation order: even edge multiplicities



Vertex summation order: even edge multiplicities

g



Vertex summation order: even edge multiplicities

e



Vertex summation order: even edge multiplicities

A1



Vertex summation order: even edge multiplicities

USERE



Vertex summation order: even edge multiplicities

SUCHERE



Vertex summation order: even edge multiplicities

S



Vertex summation order: even edge multiplicities

T



Vertex summation order: even edge multiplicities

S

Summing in this order ensures the number of connected
components never increases



Conclusion



Other recent progress

e Can show any oblivious subspace embedding succeeding with
probability > 2/3 must have Q(d/<?) rows [N., Nguyén]



Other recent progress

e Can show any oblivious subspace embedding succeeding with
probability > 2/3 must have Q(d/e2) rows [N., Nguyén]

e Can show any oblivious subspace embedding with O(d**7)
rows must have sparsity s = Q(1/(e7))* [N., Nguyén]



Other recent progress

e Can show any oblivious subspace embedding succeeding with
probability > 2/3 must have Q(d/e2) rows [N., Nguyén]

e Can show any oblivious subspace embedding with O(d**7)
rows must have sparsity s = Q(1/(e7))* [N., Nguyén]

e Can provide upper bounds on m, s to preserve an arbitrary
bounded set T C R”, in terms of the geometry of T, in the
style of [Gordon '88], [Klartag, Mendelson '05], [Mendelson,
Pajor, Tomczak-Jaegermann '07], [Dirksen '13] (in the current
notation, these works analyzed dense I1, i.e. m = s)
[Bourgain, N.]

* Has restriction that 1/(ev) < d.



Open Problems

OPEN: Improve w, the exponent of matrix multiplication

OPEN: Find exact algorithm for least squares regression (or
any of these problems) in time faster than O(nd“~1)

OPEN: Prove the following conjecture: to have a subspace
embedding with probability 1 — 6, suffices to set

m = O((d + log(1/6))/e?),s = O(log(d/8)/e). Or even,
obtain this bound for m for a dense sign matrix using the
moment method, with the ¢ = ©(log(d/J))th moment.

OPEN: Show that the tradeoff m = O(d*7/e?),
s = poly(1/~) - 1/e is optimal for any distribution over
subspace embeddings

OPEN: Show that m = Q(d?/?) is optimal for s = 1
Partial progress: [N., Nguyén, 2012] shows m = Q(d?)



