Approximating functions with DNFs

Eric Blais

Joint work with Li-Yang Tan

Boolean functions

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Boolean functions

x_{1}	x_{2}	x_{3}	$f(x)$
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

Boolean functions

Boolean functions

Boolean functions as DNFs

Boolean functions as DNFs

Boolean functions

DNFs are very well understood

Theorem (Lupanov '61). Every function f:\{0,1\} ${ }^{n} \rightarrow\{0,1\}$ can be computed by a DNF of size 2^{n} and width n.

Proof.

x_{1}	x_{2}	x_{3}	$f(x)$
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

DNFs are very well understood

Theorem (Lupanov '61). Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by a DNF of size 2^{n} and width n.

Proof.

x_{1}	x_{2}	x_{3}	$f(x)$
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

DNFs are very well understood

Theorem (Lupanov '61). Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by a DNF of size 2^{n-1} and width n.

Proof.

x_{1}	x_{2}	x_{3}	$f(x)$
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

Parity function

Theorem (Lupanov '61). Every DNF computing the function $f=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$ has size 2^{n-1} and width n.

Proof.

Random function

Theorem (Korshunov-Kuznetsov '83). For almost every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, every DNF computing f has size $\Theta\left(2^{n} / \log n \log \log n\right)$ and width $n-\log (3 n)$.

Approximating functions

Main Question. What if we only require our DNF to compute f correctly on most inputs?

Def'n. The functions $f, g:\{0,1\}^{n} \rightarrow\{0,1\}$ are $\underline{\varepsilon}$-close if

$$
\left|\left\{x \in\{0,1\}^{n}: f(x) \neq g(x)\right\}\right| \leq \varepsilon 2^{n} .
$$

Def'n. A DNF $\underline{\varepsilon}$-approximates $f:\{0,1\}^{n} \rightarrow\{0,1\}$ if the function it computes is ε-close to f.

Approximating Parity

Fact. Every function can be .01-approximated by a DNF of size $0.99^{*} 2^{n-1}$ and width n.

Theorem (Boppana-Hastad '97). Every DNF that .01approximates Parity has size at least $2^{n / 16}$ and width at least n/16.

How tight are these bounds?

Approximating parity
(Bold) Conjecture. Every DNF that .01-approximates Parity has size at least $\Omega\left(2^{n}\right)$ and width at least $n-O(1)$.

Intuition.

1. Upper bound on DNF size

Approximating parity

Theorem. There is a DNF of size $\mathrm{O}\left(2^{n} / \log n\right)$ that .01approximates the parity function.

Proof strategy: Probabilistic method

1. Flip each 0 to ? with probability 01.
2. Add all the subcubes of dimension $\log \log n$ that cover only 1 and?

Approximating parity

Theorem. There is a DNF of size $\mathrm{O}\left(2^{n} / \log n\right)$ that .01approximates the parity function.

Proof strategy: Probabilistic method

1. Flip each 0 to ? with probability . 01.
2. Add some of the subcubes of dimension $\log \log n$ that cover only 1 and?

Approximating any function

Theorem. For every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, there is a DNF of size $O\left(2^{n} / \log n\right)$ that .01-approximates f.

Proof. Same!

2. Upper bound on DNF width

Approximating parity with small width

Theorem. There is a DNF of width $n-\Omega(n)$ that .01approximates the parity function.

Proof strategy. Design DNFs that 1. Approximate parity well on a fixed Hamming ball. 2. Evaluate to 0 elsewhere.

Approximating parity with small width

Approximating parity with small width

Approximating parity with small width

Theorem. There is a DNF of width $n-\Omega(\mathrm{n})$ that .01approximates the parity function.

To complete the proof: We want to cover 99.9% of the hypercube with Hamming balls that overlap very little.

Lemma. There is a collection of $\mathrm{O}\left(2^{n} / \mathrm{Vol}(d)\right)$ Hamming balls of radius d that cover 99.9\% of the hypercube.

Approximating any function with small width

Theorem. For every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, there is a DNF of width $\mathrm{n}-\Omega(\mathrm{n})$ that .01 -approximates f.

Proof. Same!

3. Improved upper bounds for Parity

Approximating parity even better

Theorem. There is a DNF of size $2^{.98 n}$ and width $.98 n$ that .01-approximates the parity function.

Proof strategy. Divide and conquer!

Approximating parity even better

Theorem. There is a DNF of size $2^{.98 n}$ and width $.98 n$ that .01-approximates the parity function.

Proof strategy. Divide and conquer!

Approximating parity even better

Lowering the error probability...

\oplus i even $X_{i} \quad \oplus_{\mathrm{i}}$ odd X_{i}

Approximating parity even better

Lowering the error probability...

$\oplus \mathrm{i}$ even $X_{i} \quad \oplus \mathrm{i}$ odd X_{i}
function on 3/4*n variables!

4. Lower bound on DNF size

Lower bounds

Theorem. For almost every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, every DNF computing f has size $\Omega\left(2^{n} / n\right)$.

Proof strategy. Entropy method.
Fact 1. If X is a random variable that can take m possible values, $\mathrm{H}(X) \leq \log m$. Equality holds iff X is uniformly distributed among the m values.

Fact 2. $\mathrm{H}(X, Y)=\mathrm{H}(X)+\mathrm{H}(Y \mid X)$.
Fact 3. $\mathrm{H}(X \mid Y) \leq \mathrm{H}(X)$.

Lower bounds

Let f be a random function.
Let $T=\left(T_{1}, \ldots, T_{3 n}\right) \in\{0,1\}^{3 n}$ denote which terms are in the smallest ε-approximating DNF for f.

Fact. $\mathrm{H}(f, T)=\mathrm{H}(f)=2^{n}$.
Fact. $\mathrm{H}(f \mid T) \leq \mathrm{H}(\varepsilon){ }^{*} 2^{n}$.
Corollary. $\mathrm{H}(T)=\mathrm{H}(f, T)-\mathrm{H}(f \mid T) \geq(1-\mathrm{H}(\varepsilon)) 2^{n}$.
Finally:

$$
\mathrm{H}(T) \leq \sum \mathrm{H}\left(T_{i}\right) \leq 3^{n} \mathrm{H}\left(\mathrm{E}\left[\Sigma T_{i}\right] / 3^{n}\right) \leq \mathrm{E}\left[\sum T_{i}\right] \log \left(3^{n}\right)
$$

Lots more to explore!

Conjecture. Every function can be .01-approximated by a DNF of size $O\left(2^{n} / \log n \log \log n\right)$ and this bound is tight for almost every function.

Open Question. Find an explicit function f for which every DNF that .01-approximates f is larger than the DNF that approximates the parity function.

Lots more to explore!

Theorem (Quine '54). Every monotone function f can be computed by a DNF of size $O\left(2^{n} / \sqrt{n}\right)$.

- Maximum attained by Majority.
- Negations do not help.

Theorem (O'Donnell-Wimmer '07). The majority function can be .01-approximated by a DNF of size $\mathrm{O}\left(2^{\sqrt{n}}\right)$.

What about universal bounds for approximating any monotone function? And do negations help?

Thank you!

