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Boolean functions

f : {0,1}n → {0,1}



Boolean functions

x1 x2 x3 f(x)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
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Boolean functions as DNFs
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DNFs are very well understood

Theorem (Lupanov ’61). Every function f:{0,1}n→{0,1} 
can be computed by a DNF of size 2n   and width n.

Proof. x1 x2 x3 f(x)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
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Parity function

Theorem (Lupanov ’61). Every DNF computing the 
function f = x1⨁x2⨁...⨁xn has size 2n-1 and width n.

Proof. 1
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Random function

Theorem (Korshunov-Kuznetsov ’83). For almost every 
function f:{0,1}n→{0,1}, every DNF computing f has size 
Θ(2n/log n log log n) and width n - log(3n).



Approximating functions

Main Question. What if we only require our DNF to 
compute f correctly on most inputs?

Def’n. The functions f,g : {0,1}n→{0,1} are ε-close if

|{x ∈ {0,1}n : f(x) ≠ g(x)}| ≤ ε2n. 

Def’n. A DNF ε-approximates f : {0,1}n→{0,1} if the 
function it computes is ε-close to f.



Approximating Parity

Fact. Every function can be .01-approximated by a DNF 
of size 0.99*2n-1 and width n.

Theorem (Boppana-Hastad ’97). Every DNF that .01-
approximates Parity has size at least 2n/16 and width at 
least n/16.

How tight are these bounds?



Approximating parity

(Bold) Conjecture. Every DNF that .01-approximates 
Parity has size at least Ω(2n) and width at least n - O(1).

Intuition. 1
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1. Upper bound on DNF size



Approximating parity

Theorem. There is a DNF of size O(2n/log n) that .01-
approximates the parity function.

Proof strategy: Probabilistic method
 
1. Flip each 0 to ? with 
probability .01.

2. Add all the subcubes of
dimension log log n that cover 
only 1 and ?.
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Approximating parity

Theorem. There is a DNF of size O(2n/log n) that .01-
approximates the parity function.

Proof strategy: Probabilistic method
 
1. Flip each 0 to ? with 
probability .01.

2. Add some of the subcubes 
of dimension log log n that cover 
only 1 and ?.
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Approximating any function

Theorem. For every function f:{0,1}n→{0,1}, there is a 
DNF of size O(2n/log n) that .01-approximates f.

Proof. Same! 0
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2. Upper bound on DNF width



Approximating parity with small width

Theorem. There is a DNF of width n-Ω(n) that .01-
approximates the parity function.

Proof strategy. 
Design DNFs that 
1. Approximate parity well 
on a fixed Hamming ball.
2. Evaluate to 0 elsewhere.
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Approximating parity with small width
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Approximating parity with small width
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Approximating parity with small width

Theorem. There is a DNF of width n-Ω(n) that .01-
approximates the parity function.

To complete the proof: We want to cover 99.9% of the 
hypercube with Hamming balls that overlap very little.

Lemma. There is a collection of O(2n/Vol(d)) Hamming 
balls of radius d that cover 99.9% of the hypercube.



Approximating any function with small width

Theorem. For every function f:{0,1}n→{0,1}, there is a 
DNF of width n-Ω(n) that .01-approximates f.

Proof. Same!
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3. Improved upper bounds for Parity



Approximating parity even better

Theorem. There is a DNF of size 2.98n and width .98n 
that .01-approximates the parity function.

Proof strategy. Divide and conquer!



Approximating parity even better

Theorem. There is a DNF of size 2.98n and width .98n 
that .01-approximates the parity function.

Proof strategy. Divide and conquer!
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Lowering the error probability...

Approximating parity even better
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Lowering the error probability...

Approximating parity even better
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...

function on 3/4*n 
variables!



4. Lower bound on DNF size



Lower bounds

Theorem. For almost every function f : {0,1}n→{0,1}, 
every DNF computing f has size Ω(2n/n).

Proof strategy. Entropy method.

Fact 1. If X is a random variable that can take m 
possible values, H(X) ≤ log m. Equality holds iff X is 
uniformly distributed among the m values.

Fact 2. H(X,Y) = H(X) + H(Y | X).

Fact 3. H(X | Y) ≤ H(X).



Lower bounds

Let f be a random function.
Let T = (T1,...,T3n)∈{0,1}3n denote which terms are in the 
smallest ε-approximating DNF for f.

Fact. H(f,T) = H(f) = 2n.
Fact. H(f | T) ≤ H(ε) * 2n.
Corollary. H(T) = H(f,T) - H(f | T) ≥ (1-H(ε)) 2n.

Finally:
  H(T) ≤ ∑ H(Ti) ≤ 3n H(E[ ∑Ti ] / 3n) ≤ E[ ∑Ti ] log(3n).



Lots more to explore!

Conjecture. Every function can be .01-approximated by 
a DNF of size O(2n/log n log log n) and this bound is 
tight for almost every function.

Open Question. Find an explicit function f for which 
every DNF that .01-approximates f is larger than the 
DNF that approximates the parity function.



Lots more to explore!

Theorem (Quine ’54). Every monotone function f can be 
computed by a DNF of size O(2n/√n).
•Maximum attained by Majority.
•Negations do not help.

Theorem (O’Donnell-Wimmer ’07). The majority 
function can be .01-approximated by a DNF of size 
O(2√n).

What about universal bounds for approximating any 
monotone function? And do negations help?



Thank you!


