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DNFs are very well understood

Theorem (Lupanov ’61). Every function f:{0,1}"—{0,1}
can be computed by a DNF of size 27 and width n.

Proof. X1 X2 X3 f(x)
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DNFs are very well understood

Theorem (Lupanov ’61). Every function f:{0,1}"—{0,1}
can be computed by a DNF of size 2™1 and width n.
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Parity function

Theorem (Lupanov '61). Every DNF computing the
function f = x1®x2P...Exn has size 2™ and width n.

Proof.
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Random function

Theorem (Korshunov-Kuznetsov ’83). For almost every
function f:{0,1}"—{0,1}, every DNF computing f has size
©(2"/log n log log n) and width n - log(3n).



Approximating functions

Main Question. What if we only require our DNF to
compute f correctly on most inputs?

Def’n. The functions f,g : {0,1}"—{0,1} are e-close if

{x € {0,1}" : flx) # gx)}| < €2".

Def’n. A DNF g-approximates f: {0,1}"—{0,1} if the
function it computes is e-close to 1.




Approximating Parity

Fact. Every function can be .01-approximated by a DNF
of size 0.99*2"-1 and width n.

Theorem (Boppana-Hastad '97). Every DNF that .01-
approximates Parity has size at least 27/1° and width at
least n/16.

How tight are these bounds?



Approximating parity

(Bold) Conjecture. Every DNF that .01-approximates
Parity has size at least Q2(2") and width at least n - O(1).

Intuition.
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1. Upper bound on DNF size



Approximating parity

Theorem. There is a DNF of size O(2"/log n) that .01-
approximates the parity function.

1. Flip each 0 to ? with
probability .01.

2. Add all the subcubes of
dimension log log n that cover
only 1 and ?.



Approximating parity

Theorem. There is a DNF of size O(2"/log n) that .01-
approximates the parity function.

1. Flip each 0 to ? with
probability .01.

2. Add some of the subcubes
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Approximating any function

Theorem. For every function £:{0,1}"—{0,1}, there is a
DNF of size O(2"/log n) that .01-approximates f.
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Proof. Same!
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2. Upper bound on DNF width



Approximating parity with small width

Theorem. There is a DNF of width n-Q(n) that .01-
approximates the parity function.

Proof strategy. 000000
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Approximating parity with small width
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Approximating parity with small width
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Approximating parity with small width

Theorem. There is a DNF of width n-Q(n) that .01-
approximates the parity function.

To complete the proof: We want to cover 99.9% of the
hypercube with Hamming balls that overlap very little.

Lemma. There is a collection of O(2"/Vol(d)) Hamming
balls of radius d that cover 99.9% of the hypercube.



Approximating any function with small width

Theorem. For every function £:{0,1}"—{0,1}, there is a
DNF of width n-Q2(n) that .01-approximates f.

Proof. Same!




3. Improved upper bounds for Parity



Approximating parity even better

Theorem. There is a DNF of size 298" and width .98n
that .01-approximates the parity function.

Proof strategy. Divide and conquer!
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Theorem. There is a DNF of size 298" and width .98n
that .01-approximates the parity function.
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Approximating parity even better

Lowering the error probability...
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Approximating parity even better

Lowering the error probability...

Pieven Xi Pi<n/2 Xi

| J

Dieven Xi  Diodd Xi function on 3/4*n
variables!
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4. Lower bound on DNF size



Lower bounds

Theorem. For almost every function f: {0,1}"—{0,1},
every DNF computing f has size Q2(2"/n).

Proof strategy. Entropy method.

Fact 1. If X is a random variable that can take m

possible values, H(X) < log m. Equality holds iff X is
uniformly distributed among the m values.

Fact 2. H(X,Y) = H(X) + H(Y | X).
Fact 3. H(X | Y) < H(X).



Lower bounds

Let f be a random function.
Let T = (T4,...,T3n)e{0,1}¥" denote which terms are in the

smallest e-approximating DNF for f.

Fact. H(f,7) = H(f) = 2".
Fact. H(f | T) < H(g) * 2".
Corollary. H(T) = H(f,T) - H(f | T) = (1-H(€)) 2".

Finally:
H(T) <> H(T) < 3"H(E[ > T:]/ 3") < E[ ) Ti] log(3").



Lots more to explore!

Conjecture. Every function can be .01-approximated by
a DNF of size O(2"/log n log log n) and this bound is
tight for almost every function.

Open Question. Find an explicit function f for which
every DNF that .01-approximates f is larger than the
DNF that approximates the parity function.



Lots more to explore!

Theorem (Quine '54). Every monotone function f can be
computed by a DNF of size O(2"// n).

 Maximum attained by Majority.

* Negations do not help.

Theorem (O’Donnell-Wimmer '07). The majority

function can be .01-approximated by a DNF of size
O(2'n).

What about universal bounds for approximating any
monotone function? And do negations help?



Thank you!



