Approximating functions with DNFs

Eric Blais

Joint work with Li-Yang Tan

$f: \{0,1\}^n \rightarrow \{0,1\}$

<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	f(x)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Boolean functions as DNFs

Boolean functions as DNFs

Theorem (Lupanov '61). Every function $f:\{0,1\}^n \rightarrow \{0,1\}$ can be computed by a DNF of size 2^n and width n.

Proof.

<i>X</i> 1	<i>X</i> 2	X 3	f(x)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Theorem (Lupanov '61). Every function $f:\{0,1\}^n \rightarrow \{0,1\}$ can be computed by a DNF of size 2^n and width n.

Proof.

Theorem (Lupanov '61). Every function $f:\{0,1\}^n \rightarrow \{0,1\}$ can be computed by a DNF of size 2^{n-1} and width *n*.

Proof.

Theorem (Lupanov '61). Every DNF computing the function $f = x_1 \oplus x_2 \oplus ... \oplus x_n$ has size 2^{n-1} and width *n*.

Theorem (Korshunov-Kuznetsov '83). For almost every function $f:\{0,1\}^n \rightarrow \{0,1\}$, every DNF computing f has size $\Theta(2^n/\log n \log \log n)$ and width $n - \log(3n)$.

Main Question. What if we only require our DNF to compute *f* correctly on *most* inputs?

Def'n. The functions $f,g : \{0,1\}^n \rightarrow \{0,1\}$ are <u> ϵ -close</u> if

$$\left| \{ \mathbf{X} \in \{0,1\}^n : f(\mathbf{X}) \neq g(\mathbf{X}) \} \right| \leq \varepsilon 2^n.$$

Def'n. A DNF $\underline{\varepsilon}$ -approximates $f : \{0,1\}^n \rightarrow \{0,1\}$ if the function it computes is ε -close to f.

Approximating Parity

Fact. Every function can be .01-approximated by a DNF of size $0.99^{*2^{n-1}}$ and width *n*.

Theorem (Boppana-Hastad '97). Every DNF that .01approximates Parity has size at least $2^{n/16}$ and width at least n/16.

How tight are these bounds?

Approximating parity

(Bold) Conjecture. Every DNF that .01-approximates Parity has size at least $\Omega(2^n)$ and width at least n - O(1).

Intuition.

1. Upper bound on DNF size

Approximating parity

Theorem. There is a DNF of size $O(2^n/\log n)$ that .01-approximates the parity function.

00?00

000??00000?00000

111111111111111111

00002000000

111(11)1

Proof strategy: Probabilistic method

1. Flip each **0** to **?** with probability .01.

2. Add all the subcubes of dimension log log *n* that cover only **1** and **?**.

Approximating parity

Theorem. There is a DNF of size $O(2^n/\log n)$ that .01-approximates the parity function.

00?00

000??00000?0000

Proof strategy: Probabilistic method

1. Flip each 0 to ? with probability .01.

2. Add some of the subcubes of dimension log log *n* that cover only 1 and ?. Approximating any function

Theorem. For every function $f:\{0,1\}^n \rightarrow \{0,1\}$, there is a DNF of size O(2^{*n*}/log *n*) that .01-approximates *f*.

2. Upper bound on DNF width

Theorem. There is a DNF of width n- $\Omega(n)$ that .01-approximates the parity function.

Proof strategy.Design DNFs that1. Approximate parity wellon a fixed Hamming ball.2. Evaluate to 0 elsewhere.

000000 111111 111111

Theorem. There is a DNF of width $n-\Omega(n)$ that .01-approximates the parity function.

To complete the proof: We want to cover 99.9% of the hypercube with Hamming balls that overlap very little.

Lemma. There is a collection of $O(2^n/Vol(d))$ Hamming balls of radius *d* that cover 99.9% of the hypercube.

Approximating any function with small width

Theorem. For every function $f:\{0,1\}^n \rightarrow \{0,1\}$, there is a DNF of width n- $\Omega(n)$ that .01-approximates *f*.

Proof. Same!

3. Improved upper bounds for Parity

Theorem. There is a DNF of size 2^{.98n} and width .98n that .01-approximates the parity function.

Proof strategy. Divide and conquer!

Approximating parity even better

Theorem. There is a DNF of size 2^{.98n} and width .98n that .01-approximates the parity function.

Proof strategy. Divide and conquer!

Approximating parity even better

Lowering the error probability...

Approximating parity even better

Lowering the error probability...

4. Lower bound on DNF size

Theorem. For almost every function $f : \{0,1\}^n \rightarrow \{0,1\}$, every DNF computing f has size $\Omega(2^n/n)$.

Proof strategy. Entropy method.

Fact 1. If *X* is a random variable that can take m possible values, $H(X) \le \log m$. Equality holds iff *X* is uniformly distributed among the *m* values.

Fact 2. H(X,Y) = H(X) + H(Y | X).

Fact 3. $H(X | Y) \le H(X)$.

Let *f* be a random function. Let $T = (T_1,...,T_{3n}) \in \{0,1\}^{3n}$ denote which terms are in the smallest ε -approximating DNF for *f*.

Fact. $H(f,T) = H(f) = 2^{n}$. **Fact.** $H(f | T) \le H(\varepsilon) * 2^{n}$. **Corollary**. $H(T) = H(f,T) - H(f | T) \ge (1-H(\varepsilon)) 2^{n}$.

Finally: $H(T) \leq \sum H(T_i) \leq 3^n H(E[\sum T_i] / 3^n) \leq E[\sum T_i] \log(3^n).$ **Conjecture.** Every function can be .01-approximated by a DNF of size $O(2^n/\log n \log \log n)$ and this bound is tight for almost every function.

Open Question. Find an *explicit* function *f* for which every DNF that .01-approximates *f* is larger than the DNF that approximates the parity function.

Theorem (Quine '54). Every monotone function f can be computed by a DNF of size $O(2^n/\sqrt{n})$.

- Maximum attained by Majority.
- Negations do not help.

Theorem (O'Donnell-Wimmer '07). The majority function can be .01-approximated by a DNF of size $O(2^{\sqrt{n}})$.

What about universal bounds for approximating any monotone function? And do negations help?

Thank you!