Parallel Algorithms for Geometric Graph Problems

Grigory Yaroslavtsev http://grigory.us

Appeared in STOC 2014, joint work with Alexandr Andoni, Krzysztof Onak and Aleksandar Nikolov.

"The Big Data Theory"

What should TCS say about big data?

- This talk:
 - Running time: (almost) linear, sublinear, ...
 - Space: linear, sublinear, ...
 - **Approximation**: $(1 + \epsilon)$, best possible, ...
 - Randomness: as little as possible, ...
- Special focus today: **round** complexity

Round Complexity

Information-theoretic measure of performance

- Tools from information theory (Shannon'48)
- Unconditional results (lower bounds)

Example:

• Approximating Geometric Graph Problems

1930-50s: Given a graph and an optimization problem...

Transportation Problem: Tolstoi [1930]

Minimum Cut (RAND): Harris and Ross [1955] (declassified, 1999)

1960s: Single processor, main memory (IBM 360)

1970s: NP-complete problem – hard to solve exactly in time polynomial in the input size

"Black Book"

Approximate with multiplicative error α on the worstcase graph G:

$$max_{G} \, \frac{Algorithm(G)}{Optimum(G)} \leq \alpha$$

Generic methods:

- Linear programming
- Semidefinite programming
- Hierarchies of linear and semidefinite programs
- Sum-of-squares hierarchies

The New: Approximating Geometric Problems in Parallel Models

1930-70s to 2014

The New: Approximating Geometric Problems in Parallel Models

Geometric graph (implicit):

Euclidean distances between **n** points in \mathbb{R}^d

Already have solutions for old NP-hard problems (Traveling Salesman, Steiner Tree, etc.)

- Minimum Spanning Tree (clustering, vision)
- Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in \mathbb{R}^d

Polynomial time (easy)

- Minimum Spanning Tree
- Earth-Mover Distance =

Min Weight Bi-chromatic Matching

Willbard (hard)

- Steiner Tree
- Traveling Salesman
- Clustering (k-medians, facility location, etc.)

theory!

eed new

Arora-Mitchell , yre

"Divide and Conquer",

easy to implement in

Massively Parallel

Computational Ivi

MST: Single Linkage Clustering

- [Zahn'71] **Clustering** via MST (Single-linkage):
- k clusters: remove k 1 longest edges from MST
- Maximizes **minimum** intercluster distance

[Kleinberg, Tardos]

Earth-Mover Distance

 Computer vision: compare two pictures of moving objects (stars, MRI scans)

Computational Model

- Input: n points in a d-dimensional space (d constant)
- *M* machines, space *S* on each (*S* = *n*^α, 0 < α < 1)
 Constant overhead in total space: *M* · *S* = *O*(*n*)
- Output: solution to a geometric problem (size O(n)) – Doesn't fit on a single machine ($S \ll n$)

Computational Model

- Computation/Communication in **R** rounds:
 - Every machine performs a near-linear time computation => Total running time O(n^{1+o(1)}R)
 - Every machine sends/receives at most S bits of information => Total communication O(nR).

MapReduce-style computations

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
 - Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM - Can be done in $O(\log_{s} n)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

- Bulk-Synchronous Parallel Model (BSP) [Valiant,90]
 Pro: Most general, generalizes all other models
 Con: Many parameters, hard to design algorithms
- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13] Pros:
 - Inspired by modern systems (Hadoop, MapReduce, Dryad, Pregel, ...)
 - Few parameters, **simple** to design algorithms
 - New algorithmic ideas, robust to the exact model specification
 - # Rounds is an information-theoretic measure => can prove unconditional lower bounds
 - Between linear sketching and streaming with sorting

Previous work

- **Dense graphs** vs. sparse graphs
 - Dense: $S \gg n$ (or $S \gg$ solution size)

"Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]

- Sparse: $S \ll n$ (or $S \ll$ solution size)

Sparse graph problems appear hard (**Big open question**: (s,t)-connectivity in $o(\log n)$ rounds?)

Large geometric graphs

- Graph algorithms: **Dense graphs** vs. sparse graphs
 - Dense: $S \gg n$.
 - Sparse: $S \ll n$.
- Our setting:
 - Dense graphs, sparsely represented: O(n) space
 - Output doesn't fit on one machine ($S \ll n$)
- **Today:** $(1 + \epsilon)$ -approximate MST
 - d = 2 (easy to generalize)
 - $\mathbf{R} = \log_{\mathbf{S}} \mathbf{n} = O(1) \text{ rounds } (\mathbf{S} = \mathbf{n}^{\Omega(1)})$

$O(\log n)$ -MST in $\mathbf{R} = O(\log n)$ rounds

• Assume points have integer coordinates $[0, ..., \Delta]$, where $\Delta = O(n^2)$.

EL-nets

εL-net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance <= *εL* from some vertex in S. (Fact: Can efficiently compute *ε*-net of size O (¹/_{ε²}))

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level
- Idea: Pay only O(*EL*) for an edge cut by cell with side *L*
- Randomly shift the quadtree: Pr[cut edge of length Moong] presentation arge errors O(1)-approximation per level

Randomly shifted quadtree

• Top cell shifted by a random vector in $[0, L]^2$

Impose a randomly shifted quadtree (top cell length 2Δ) Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level

$(1 + \epsilon)$ -MST in **R** = $O(\log n)$ rounds

• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length $\frac{2\Delta}{\epsilon}$)

Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

- *O*(log *n*) rounds => O(log_S *n*) = O(1) rounds
 - Flatten the tree: $(\sqrt{S} \times \sqrt{S})$ -grids instead of (2x2) grids at each level.

Impose a randomly shifted ($\sqrt{S} \times \sqrt{S}$)-tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

Theorem: Let l = # levels in a random tree P $\mathbb{E}_{P}[ALG] \leq (1 + O(\epsilon ld))OPT$

Proof (sketch):

- $\Delta_P(u, v)$ = cell length, which first partitions (u, v)
- New weights: $w_P(u, v) = ||u v||_2 + \epsilon \Delta_P(u, v)$ $||u - v||_2 \leq \mathbb{E}_P[w_P(u, v)] \leq (1 + O(\epsilon d)) ||(u, v)v||_2$
- Our algorithm implements Kruskal for weights w_P

"Solve-And-Sketch" Framework

$(1 + \epsilon)$ -MST:

- "Load balancing": partition the tree into parts of the same size
- Almost linear time: Approximate Nearest
 Neighbor data structure [Indyk'99]
- Dependence on dimension **d** (size of ϵ -net is $O\left(\frac{d}{\epsilon}\right)^d$)
- Generalizes to bounded **doubling dimension**
- Basic version is teachable (Jelani Nelson's ``Big Data'' class at Harvard)

"Solve-And-Sketch" Framework

$(1 + \epsilon)$ -Earth-Mover Distance, Transportation Cost

- No simple "divide-and-conquer" Arora-Mitchell-style algorithm (unlike for general matching)
- Only recently sequential $(1 + \epsilon)$ -apprxoimation in $O_{\epsilon}(n \log^{O(1)} n)$ time [Sharathkumar, Agarwal '12]

Our approach (convex sketching):

- Switch to the flow-based version
- In every cell, send the flow to the closest net-point until we can connect the net points

"Solve-And-Sketch" Framework

Convex sketching the cost function for τ net points

- $F: \mathbb{R}^{\tau-1} \to \mathbb{R}$ = the cost of routing fixed amounts of flow through the net points
- Function F' = F + "normalization" is monotone, convex and Lipschitz, $(1 + \epsilon)$ approximates F
- We can (1 +
 e)-sketch it using a lower convex hull

Thank you! <u>http://grigory.us</u>

Open problems

- Exetension to high dimensions?
 - Probably no, reduce from connectivity => conditional lower bound : $\Omega(\log n)$ rounds for MST in ℓ_{∞}^{n}
 - The difficult setting is $d = \Omega(\log n)$ (can do JL)
- Streaming alg for EMD and Transporation Cost?
- Our work: first near-linear time algorithm for Transportation Cost

– Is it possible to reconstruct the solution itself?