Parallel Algorithms for
Geometric Graph Problems

Grigory Yaroslavtsev
http://grigory.us

Appeared in STOC 2014, joint work with Alexandr Andoni,
Krzysztof Onak and Aleksandar Nikolov.

http://grigory.us/

“The Big Data Theory”

What should TCS say about big data?
* This talk:

— Running time: (almost) linear, sublinear, ...
— Space: linear, sublinear, ...

— Approximation: (1 + €), best possible, ...
— Randomness: as little as possible, ...

* Special focus today: round complexity

Round Complexity

Information-theoretic measure of performance
* Tools from information theory (Shannon’48)
* Unconditional results (lower bounds)

Example:
* Approximating Geometric Graph Problems

Approximation in Graphs

1930-50s: Given a graph and an optimization

prObIeI I I...
nnnnnnnnn
(ke mw-c- N HOBO-
yyyyy CHEUPCHK
DA . 3
c‘
n.qﬂf ABrAYA
Srrem
o)
]
o CENUNANATRICHK
Qe nna;:'\}
o~
|
I . -
L o
- -.) hi)
- i o
L -
A% 4
| Xﬁj
2

e N 2
=
A W MO HE R - 0)
“.‘ g d A 5
4 <, o s~y U -
Rpaneckoe . 0 4T LB (e A
mope g g o - 9 T aE . 9 |
K36i1-0P0A € P AN - . i 8
i : .4 ! s
o) ~ L2, B by o o :
w7 T Ganmama { e ; 2k
& oftnwn H - L1 - LB s
vroman ’, "~ . 13 ‘
-~ ! S
%
— v
! =k

Minimum Cut (RAND):
Harris and Ross [1955] (declassified, 1999)

Transportation Problem:
Tolstoi [1930]

Approximation in Graphs

1960s: Single processor, main memory (IBM 360)

Approximation in Graphs

1970s: NP-complete problem — hard to solve
exactly in time polynomial in the input size

COMPUTERS AND INTRACTABILITY

A Guide to the Theory of NP-Compietenass

“Black Book”

Approximation in Graphs

Approximate with multiplicative error & on the worst-
case graph G

Algorlthm(G)
maxg

Optlmum(G)
Generic methods:
* Linear programming
* Semidefinite programming
* Hierarchies of linear and semidefinite programs
* Sum-of-squares hierarchies

The New: Approximating Geometric
Problems in Parallel Models

1930-70s to 2014

PUTERS AND INTRACTABILITY

A Guide to the Theory of NP-Compiete:

Micnael B Garey /

=it e

The New: Approximating Geometric
Problems in Parallel Models

Geometric graph (implicit):
Euclidean distances between n points in R?

12
e

(Traveling Salesman, Steiner Tree, etc.)
* Minimum Spanning Tree (clustering, vision)
 Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in R

Polynomial time (easy)

* Minimum Spanning Tree

e Earth-Mover Distance =

Min Weight Bi-chromatic Matching

d (hard)
* Steiner Tree i
_ e and Corquer”,
* Traveling Salesman - i .
. - 0asy to implement in
o Clustering (kagee®®ans, facility

Ma Darallel

Sae®T “etc.))
Computational TVieag

MST: Single Linkage Clustering

e [Zahn’71] Clustering via MST (Single-linkage):
k clusters: remove k — 1 longest edges from MST

e Maximizes minimum intercluster distance

quality of this

partitioning is O
min{a,b,c} O

[Kleinberg, Tardos]

Earth-Mover Distance

 Computer vision: compare two pictures of
moving objects (stars, MRI scans)

Computational Model

* Input: n points in a d-dimensional space (d constant)
M machines, space Soneach(S=n%,0<a<1)
— Constant overhead in total space: M-S = 0(n)

* Output: solution to a geometric problem (size O(n))

— Doesn’t fit on a single machine (§ K n)

Input; n points $: Output: Size 0(11)

< } M machines
T T

S space

Computational Model

* Computation/Communication in R rounds:

— Every machine performs a near-linear time
computation => Total running time 0 (n'°(VR)

— Every machine sends/receives at most S bits of
information => Total communication O (nR).

Goal: Minimize R. Our work: R = constant.

-
e

0(S1°M) time

ce

MapReduce-style computations

What | won’t discuss today

 PRAMs (shared memory, multiple processors) (see
e.g. [Karloff, Suri, Vassilvitskii‘10])
— Computing XOR requires Q(logn) rounds in CRCW PRAM
— Can be done in O (logg n) rounds of MapReduce

* Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

* Lower-level implementation details (see e.g.
Rajaraman-Leskovec-Ullman book)

Models of parallel computation

e Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models
Con: Many parameters, hard to design algorithms
* Massive Parallel Computation [Feldman-Muthukrishnan-

Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10,
Goodrich-Sitchinava-Zhang’1l, ..., Beame, Koutris, Suciu’13]

Pros:

* [Inspired by modern systems (Hadoop, MapReduce, Dryad,
Pregel, ...)

 Few parameters, simple to design algorithms
* New algorithmic ideas, robust to the exact model specification

* # Rounds is an information-theoretic measure => can prove
unconditional lower bounds

* Between linear sketching and streaming with sorting

Previous work

* Dense graphs vs. sparse graphs

— Dense: $ > n (or § > solution size)

“Filtering” (Output fits on a single machine) [Karloff, Suri
Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11; Lattanzi,
Moseley, Suri, Vassilvitskii, SPAA’11; Suri, Vassilvitskii,
WWW’11]

— Sparse: § K n (or § < solution size)

Sparse graph problems appear hard (Big open question:
(s,t)-connectivity in o(log n) rounds?)

Vs, QQ

Large geometric graphs

* Graph algorithms: Dense graphs vs. sparse graphs
— Dense: S >> n.
— Sparse: § K n.

* Qur setting:
— Dense graphs, sparsely represented: O(n) space

— Output doesn’t fit on one machine (§ < n)

* Today: (1 + €)-approximate MST
— d = 2 (easy to generalize)
— R =loggn = 0O(1) rounds (§ = n®D)

O(logn)-MSTin R = O(logn) rounds

* Assume points have integer coordinates [0, ..., A], where
A =0(n?).

Impose an O (logn)- depth quadtree
Bottom-up: ForzeaeF

— compute oftiFiL
— Use only onedigs mieach on the next level

. Wrong representative:
\(.\/ O(1)-approximation per level

B

€L-nets
eL-net for a cell C with side length L:

Collection S of vertices in C, every vertex is at distance <= elL from some
vertex in S. (Fact: Can efficiently compute e-net of size O (6—2)

Bottom-up: For each cell in the quadtree

— Compute optimum MSTs in subcells
— Use eL-net from each cell on the next level

Idea: Pay only O(€L) for an edge cut by cell with side L

Randomly shift the quadtree:
Pricut edge of length ¥Wbonk [{presehtatblearge errors

O(1)-apprRximation per level

A N

L L L

Randomly shifted quadtree

* Top cell shifted by a random vector in [0, L]?
Impose a randomly shifted quadtree (top cell length 2A)

Bottom-up: For each cell in the quadtree
— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

o (I Pay 5 jnstead of 4

2

Ll] Pr[BaEa(ffJ L 01)
+

(14 €)-MSTinR = 0(log n) rounds

 |dea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length ZE—A)

Bottom-up: For each node (cell) in the quadtree

— compute optimum Minimum Spanning Forests in subcells,
using edges of length < €L

— Use only €?L-net from each cell on the next level

A

L=0()

AT
I Pr[Bad Cut] = O(e€)

(1+ €)-MSTinR = 0(1) rounds

* O(logn) rounds => O(logg n) = O(1) rounds
— Flatten the tree: (V'S X V/S)-grids instead of (2x2) grids at each

level.
} VS = nf®

=

Impose a randomly shifted (V'S X V/S)-tree
Bottom-up: For each node (cell) in the tree
— compute optimum MSTs in subcells via edges of length < €L

— Use only €% L-net from each cell on the next level

(1+ €)-MSTinR = 0(1) rounds

Theorem: Let [= # levels in a random tree P
Ep[ALG] < (1 + O(eld))OPT

Proof (sketch):

* Ap(u,v) = cell length, which first partitions (u, v)

* New weights:

||u —UH2 <

e QOur algorith

“Solve-And-Sketch” Framework

(1 + €)-MST:

— “Load balancing”: partition the tree into parts of
the same size

— Almost linear time: Approximate Nearest
Neighbor data structure [Indyk’99]

— Dependence on dimension d (size of e-net is
N
0(3))
— Generalizes to bounded doubling dimension

— Basic version is teachable (Jelani Nelson’s "'Big
Data’’ class at Harvard)

“Solve-And-Sketch” Framework

(1 + €)-Earth-Mover Distance, Transportation Cost

* No simple “divide-and-conquer” Arora-Mitchell-style
algorithm (unlike for general matching)

* Only recently sequential (1 + €)-apprxoimation in
OE(nlogO(l) n)time [Sharathkumar, Agarwal ‘12]

Our approach (convex sketching):
e Switch to the flow-based version

* In every cell, send the flow to the closest net-point
until we can connect the net points

“Solve-And-Sketch” Framework

Convex sketching the cost function for T net
points

e F:R*! - R = the cost of routing fixed
amounts of flow through the net points

* Function F' = F + “normalization” is
monotone, convex and Lipschitz, (1 + €)-
approximates F

e We can (1 + €)-sketch it using a lower convex
hull

Thank you! http://grigory.us

Open problems
* Exetension to high dimensions?

— Probably no, reduce from connectivity => conditional
lower bound : Q(logn) rounds for MST in £%

— The difficult setting is d = QQ(logn) (can do JL)
e Streaming alg for EMD and Transporation Cost?

* Our work: first near-linear time algorithm for
Transportation Cost

— Is it possible to reconstruct the solution itself?

http://grigory.us/

