
Parallel Algorithms for
Geometric Graph Problems

Grigory Yaroslavtsev
http://grigory.us

Appeared in STOC 2014, joint work with Alexandr Andoni,
Krzysztof Onak and Aleksandar Nikolov.

http://grigory.us/

“The Big Data Theory”

What should TCS say about big data?

• This talk:

– Running time: (almost) linear, sublinear, …

– Space: linear, sublinear, …

– Approximation: 1 + 𝜖 , best possible, …

– Randomness: as little as possible, …

• Special focus today: round complexity

Round Complexity

Information-theoretic measure of performance

• Tools from information theory (Shannon’48)

• Unconditional results (lower bounds)

Example:

• Approximating Geometric Graph Problems

Approximation in Graphs

1930-50s: Given a graph and an optimization
problem…

Transportation Problem:
Tolstoi [1930]

Minimum Cut (RAND):
Harris and Ross [1955] (declassified, 1999)

Approximation in Graphs

1960s: Single processor, main memory (IBM 360)

Approximation in Graphs

1970s: NP-complete problem – hard to solve
exactly in time polynomial in the input size

“Black Book”

Approximation in Graphs

Approximate with multiplicative error 𝜶 on the worst-
case graph 𝐺:

𝑚𝑎𝑥𝐺
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝐺)

𝑂𝑝𝑡𝑖𝑚𝑢𝑚(𝐺)
≤ 𝜶

Generic methods:

• Linear programming

• Semidefinite programming

• Hierarchies of linear and semidefinite programs

• Sum-of-squares hierarchies

• …

The New: Approximating Geometric
Problems in Parallel Models

1930-70s to 2014

The New: Approximating Geometric
Problems in Parallel Models

Geometric graph (implicit):

Euclidean distances between n points in ℝ𝒅

Already have solutions for old NP-hard problems
(Traveling Salesman, Steiner Tree, etc.)

• Minimum Spanning Tree (clustering, vision)

• Minimum Cost Bichromatic Matching (vision)

Polynomial time (easy)

• Minimum Spanning Tree

• Earth-Mover Distance =

Min Weight Bi-chromatic Matching

NP-hard (hard)

• Steiner Tree

• Traveling Salesman

• Clustering (k-medians, facility
location, etc.)

Geometric Graph Problems

Combinatorial problems on graphs in ℝ𝒅

Arora-Mitchell-style
“Divide and Conquer”,
easy to implement in
Massively Parallel
Computational Models

 Need new theory!

MST: Single Linkage Clustering
• [Zahn’71] Clustering via MST (Single-linkage):

k clusters: remove 𝒌 − 𝟏 longest edges from MST

• Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Earth-Mover Distance

• Computer vision: compare two pictures of
moving objects (stars, MRI scans)

Computational Model
• Input: n points in a d-dimensional space (d constant)

• 𝑴 machines, space 𝑺 on each (𝑺 = 𝒏𝛼 , 0 < 𝛼 < 1)

– Constant overhead in total space: 𝑴 ⋅ 𝑺 = 𝑂(𝒏)

• Output: solution to a geometric problem (size O(𝒏))

– Doesn’t fit on a single machine (𝑺 ≪ 𝒏)

 𝑴 machines
S space

𝐈𝐧𝐩𝐮𝐭: 𝒏 points ⇒ ⇒ 𝐎𝐮𝐭𝐩𝐮𝐭: 𝑠𝑖𝑧𝑒 𝑶(𝒏)

 𝑴 machines
S space

Computational Model
• Computation/Communication in 𝑹 rounds:

– Every machine performs a near-linear time
computation => Total running time 𝑂(𝒏𝟏+𝒐(𝟏)𝑹)

– Every machine sends/receives at most 𝑺 bits of
information => Total communication 𝑂(𝒏𝑹).

Goal: Minimize 𝑹. Our work: 𝑹 = constant.

𝑶(𝑺𝟏+𝒐(𝟏)) time

≤ 𝑺 bits

MapReduce-style computations

What I won’t discuss today

• PRAMs (shared memory, multiple processors) (see
e.g. [Karloff, Suri, Vassilvitskii‘10])
– Computing XOR requires Ω (log 𝑛) rounds in CRCW PRAM

– Can be done in 𝑂(log𝒔 𝑛) rounds of MapReduce

• Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

• Lower-level implementation details (see e.g.
Rajaraman-Leskovec-Ullman book)

Models of parallel computation
• Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

• Massive Parallel Computation [Feldman-Muthukrishnan-
Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10,
Goodrich-Sitchinava-Zhang’11, ..., Beame, Koutris, Suciu’13]

Pros:

• Inspired by modern systems (Hadoop, MapReduce, Dryad,
Pregel, …)

• Few parameters, simple to design algorithms

• New algorithmic ideas, robust to the exact model specification

• # Rounds is an information-theoretic measure => can prove
unconditional lower bounds

• Between linear sketching and streaming with sorting

Previous work

• Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ 𝒏 (or 𝑺 ≫ solution size)

“Filtering” (Output fits on a single machine) [Karloff, Suri
Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11; Lattanzi,
Moseley, Suri, Vassilvitskii, SPAA’11; Suri, Vassilvitskii,
WWW’11]

– Sparse: 𝑺 ≪ 𝒏 (or 𝑺 ≪ solution size)

Sparse graph problems appear hard (Big open question:
(s,t)-connectivity in o(log 𝑛) rounds?)

VS.

Large geometric graphs
• Graph algorithms: Dense graphs vs. sparse graphs

– Dense: 𝑺 ≫ 𝒏.

– Sparse: 𝑺 ≪ 𝒏.

• Our setting:
– Dense graphs, sparsely represented: O(n) space

– Output doesn’t fit on one machine (𝑺 ≪ 𝒏)

• Today: (1 + 𝜖)-approximate MST
– 𝒅 = 2 (easy to generalize)

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏))

𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛) rounds

• Assume points have integer coordinates 0,… , Δ , where
Δ = 𝑂 𝒏𝟐 .

Impose an 𝑂(log 𝒏)-depth quadtree
Bottom-up: For each cell in the quadtree

– compute optimum MSTs in subcells
– Use only one representative from each cell on the next level

Wrong representative:
O(1)-approximation per level

Wrong representative:
O(1)-approximation per level

𝝐𝑳-nets
• 𝝐𝑳-net for a cell C with side length 𝑳:

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2)

 Bottom-up: For each cell in the quadtree
– Compute optimum MSTs in subcells
– Use 𝝐𝑳-net from each cell on the next level

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳
• Randomly shift the quadtree:

Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors

𝑳 𝑳 𝜖𝑳

Randomly shifted quadtree
• Top cell shifted by a random vector in 0, 𝑳 2

Impose a randomly shifted quadtree (top cell length 𝟐𝚫)

 Bottom-up: For each cell in the quadtree

– Compute optimum MSTs in subcells

– Use 𝝐𝑳-net from each cell on the next level

Pay 5 instead of 4
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1)

2

1

𝐁𝐚𝐝 𝐂𝐮𝐭

1 + 𝝐 -MST in 𝐑 = 𝑂(log 𝑛) rounds
• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length
𝟐𝚫

𝝐
)

 Bottom-up: For each node (cell) in the quadtree

– compute optimum Minimum Spanning Forests in subcells,
using edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

Sketch of analysis (𝑻∗ = optimum MST):
𝔼[Extra cost] =
𝔼[Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡ℎ 𝑠𝑖𝑑𝑒 𝑳 ⋅ 𝝐𝑳𝒆∈𝑻∗]

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

=

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗)

2

1

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐)

𝑳 = 𝛀(
𝟏

𝝐
)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds

– Flatten the tree: (𝑺 × 𝑺)-grids instead of (2x2) grids at each
level.

Impose a randomly shifted (𝑺 × 𝑺)-tree

 Bottom-up: For each node (cell) in the tree

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳

– Use only 𝝐𝟐𝑳-net from each cell on the next level

⇒ 𝑺 = 𝒏Ω(1)

1 + 𝝐 -MST in 𝐑 = 𝑂(1) rounds

Theorem: Let 𝒍 = # levels in a random tree P
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓

Proof (sketch):
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣)

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣

𝑢 − 𝑣

2
≤ 𝔼𝑷[𝒘𝑷 𝑢, 𝑣] ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2

• Our algorithm implements Kruskal for weights 𝒘𝑷

𝑢 𝑣

𝚫𝑷 𝑢, 𝑣

“Solve-And-Sketch” Framework

(1 + 𝜖)-MST:
– “Load balancing”: partition the tree into parts of

the same size

– Almost linear time: Approximate Nearest
Neighbor data structure [Indyk’99]

– Dependence on dimension d (size of 𝝐-net is

𝑂
𝒅

𝝐

𝒅
)

– Generalizes to bounded doubling dimension

– Basic version is teachable (Jelani Nelson’s ``Big
Data’’ class at Harvard)

“Solve-And-Sketch” Framework

(1 + 𝜖)-Earth-Mover Distance, Transportation Cost

• No simple “divide-and-conquer” Arora-Mitchell-style
algorithm (unlike for general matching)

• Only recently sequential 1 + 𝜖 -apprxoimation in

𝑂𝜖 𝒏 log𝑂 1 𝒏 time [Sharathkumar, Agarwal ‘12]

Our approach (convex sketching):

• Switch to the flow-based version

• In every cell, send the flow to the closest net-point
until we can connect the net points

“Solve-And-Sketch” Framework

Convex sketching the cost function for 𝝉 net
points

• 𝐹:ℝ𝝉−1 → ℝ = the cost of routing fixed
amounts of flow through the net points

• Function 𝐹’ = 𝐹 + “normalization” is
monotone, convex and Lipschitz, (1 + 𝝐)-
approximates 𝐹

• We can (1 + 𝝐)-sketch it using a lower convex
hull

Thank you! http://grigory.us

Open problems

• Exetension to high dimensions?

– Probably no, reduce from connectivity => conditional
lower bound ∶ Ω log 𝑛 rounds for MST in ℓ∞

𝑛

– The difficult setting is 𝑑 = Ω(log 𝒏) (can do JL)

• Streaming alg for EMD and Transporation Cost?

• Our work: first near-linear time algorithm for
Transportation Cost

– Is it possible to reconstruct the solution itself?

http://grigory.us/

