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“The Big Data Theory” 

What should TCS say about big data? 

• This talk: 

– Running time: (almost) linear, sublinear, … 

– Space: linear, sublinear, … 

– Approximation: 1 + 𝜖 , best possible, …  

– Randomness: as little as possible, …  

• Special focus today: round complexity 

 



Round Complexity 

Information-theoretic measure of performance 

• Tools from information theory (Shannon’48) 

• Unconditional results (lower bounds) 

 

Example: 

• Approximating Geometric Graph Problems
  

 



Approximation in Graphs 

1930-50s: Given a graph and an optimization 
problem… 

Transportation Problem: 
Tolstoi [1930]  

Minimum Cut (RAND):  
Harris and Ross [1955] (declassified, 1999) 



Approximation in Graphs 

1960s: Single processor, main memory (IBM 360) 



Approximation in Graphs 

1970s: NP-complete problem – hard to solve 
exactly in time polynomial in the input size 

 

 

“Black Book” 



Approximation in Graphs 

Approximate with multiplicative error 𝜶 on the worst-
case graph 𝐺: 

𝑚𝑎𝑥𝐺  
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝐺)

𝑂𝑝𝑡𝑖𝑚𝑢𝑚(𝐺)
≤ 𝜶 

Generic methods: 

• Linear programming  

• Semidefinite programming 

• Hierarchies of linear and semidefinite programs 

• Sum-of-squares hierarchies 

• … 
 



The New: Approximating Geometric 
Problems in Parallel Models 

1930-70s to 2014 



The New: Approximating Geometric 
Problems in Parallel Models 

Geometric graph (implicit):         

Euclidean distances between n points in ℝ𝒅 

 

 

 

Already have solutions for old NP-hard problems 
(Traveling Salesman, Steiner Tree, etc.) 

• Minimum Spanning Tree (clustering, vision) 

• Minimum Cost Bichromatic Matching (vision) 



Polynomial time (easy) 

• Minimum Spanning Tree 

• Earth-Mover Distance =  

Min Weight Bi-chromatic Matching 

 

NP-hard (hard) 

• Steiner Tree 

• Traveling Salesman 

• Clustering (k-medians, facility 
location, etc.) 

Geometric Graph Problems 

Combinatorial problems on graphs in ℝ𝒅 
 

Arora-Mitchell-style 
“Divide and Conquer”, 
easy  to implement in 
Massively Parallel 
Computational Models 

  

  Need new theory! 



MST: Single Linkage Clustering 
• [Zahn’71] Clustering via MST (Single-linkage):  

k clusters: remove 𝒌 − 𝟏 longest edges from MST 

• Maximizes minimum intercluster distance 

[Kleinberg, Tardos] 



Earth-Mover Distance 

• Computer vision: compare two pictures of 
moving objects (stars, MRI scans) 



Computational Model 
• Input: n points in a d-dimensional space (d constant) 

• 𝑴 machines, space 𝑺 on each (𝑺 = 𝒏𝛼 , 0 < 𝛼 < 1 ) 

– Constant overhead in total space: 𝑴 ⋅ 𝑺 =  𝑂(𝒏) 

• Output: solution to a geometric problem (size O(𝒏)) 

– Doesn’t fit on a single machine (𝑺 ≪  𝒏) 

 

 

 

  𝑴 machines   
S space 

𝐈𝐧𝐩𝐮𝐭:  𝒏 points ⇒ ⇒ 𝐎𝐮𝐭𝐩𝐮𝐭: 𝑠𝑖𝑧𝑒 𝑶(𝒏) 



  𝑴 machines   
S space 

Computational Model 
• Computation/Communication in 𝑹 rounds: 

– Every machine performs a near-linear time 
computation => Total running time 𝑂(𝒏𝟏+𝒐(𝟏)𝑹) 

– Every machine sends/receives at most 𝑺 bits of 
information => Total communication 𝑂(𝒏𝑹). 

 
Goal: Minimize 𝑹.                        Our work: 𝑹 = constant. 

 

𝑶(𝑺𝟏+𝒐(𝟏)) time 

≤ 𝑺 bits 



MapReduce-style computations 

What I won’t discuss today 

• PRAMs (shared memory, multiple processors) (see 
e.g. [Karloff, Suri, Vassilvitskii‘10]) 
– Computing XOR requires Ω (log 𝑛) rounds in CRCW PRAM 

– Can be done in 𝑂(log𝒔 𝑛) rounds of MapReduce 

• Pregel-style systems, Distributed Hash Tables (see 
e.g. Ashish Goel’s class notes and papers) 

• Lower-level implementation details (see e.g. 
Rajaraman-Leskovec-Ullman book) 

 



Models of parallel computation 
• Bulk-Synchronous Parallel Model (BSP) [Valiant,90]  

Pro: Most general, generalizes all other models 

Con: Many parameters, hard to design algorithms 

• Massive Parallel Computation [Feldman-Muthukrishnan-
Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10, 
Goodrich-Sitchinava-Zhang’11, ..., Beame, Koutris, Suciu’13] 

Pros:  

• Inspired by modern systems (Hadoop, MapReduce, Dryad, 
Pregel, … ) 

• Few parameters, simple to design algorithms 

• New algorithmic ideas, robust to the exact model specification 

• # Rounds is an information-theoretic measure => can prove 
unconditional lower bounds 

• Between linear sketching and streaming with sorting 

 

 



Previous work 

• Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ 𝒏 (or 𝑺 ≫ solution size)  

“Filtering” (Output fits on a single machine) [Karloff, Suri 
Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’11; Lattanzi, 
Moseley, Suri, Vassilvitskii, SPAA’11; Suri, Vassilvitskii, 
WWW’11] 

– Sparse: 𝑺 ≪  𝒏 (or 𝑺 ≪ solution size) 

Sparse graph problems appear hard (Big open question: 
(s,t)-connectivity in o(log 𝑛) rounds?) 

 
VS. 



Large geometric graphs 
• Graph algorithms: Dense graphs vs. sparse graphs 

– Dense: 𝑺 ≫ 𝒏.  

– Sparse: 𝑺 ≪  𝒏.  

 

• Our setting: 
– Dense graphs, sparsely represented: O(n) space 

– Output doesn’t fit on one machine (𝑺 ≪  𝒏) 

• Today: (1 + 𝜖)-approximate MST  
– 𝒅 = 2  (easy to generalize)  

– 𝑹 = log𝑺 𝒏= O(1) rounds (𝑺 = 𝒏𝛀(𝟏)) 

 



𝑂(log 𝑛)-MST in 𝑅 = 𝑂(log 𝑛)  rounds  

• Assume points have integer coordinates 0,… , Δ , where 
Δ = 𝑂 𝒏𝟐  . 

 
Impose an 𝑂(log 𝒏)-depth quadtree  
Bottom-up: For each cell in the quadtree  

– compute optimum MSTs in subcells 
– Use only one representative from each cell on the next level 
  

Wrong representative:  
O(1)-approximation per level 



Wrong representative:  
O(1)-approximation per level 

𝝐𝑳-nets 
• 𝝐𝑳-net for a cell C with side length 𝑳: 

Collection S of vertices in C, every vertex is at distance <= 𝝐𝑳 from some 
vertex in S. (Fact: Can efficiently compute 𝝐-net of size 𝑂

1

𝝐2 ) 

      

      Bottom-up: For each cell in the quadtree  
– Compute optimum MSTs in subcells 
– Use 𝝐𝑳-net from each cell on the next level 

 

• Idea: Pay only O(𝝐𝑳) for an edge cut by cell with side 𝑳 
• Randomly shift the quadtree: 

Pr 𝑐𝑢𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ℓ 𝑏𝑦 𝑳 ∼ ℓ/𝑳 – charge errors 

𝑳 𝑳 𝜖𝑳 



Randomly shifted quadtree 
• Top cell shifted by a random vector in 0, 𝑳 2 

Impose a randomly shifted quadtree (top cell length 𝟐𝚫) 

      Bottom-up: For each cell in the quadtree  

– Compute optimum MSTs in subcells 

– Use 𝝐𝑳-net from each cell on the next level 

 

 

 

 

 

Pay 5 instead of 4 
Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝛀(1) 

2 
 

1 
 

𝐁𝐚𝐝 𝐂𝐮𝐭 



1 + 𝝐 -MST in 𝐑 = 𝑂(log  𝑛)  rounds  
• Idea: Only use short edges inside the cells 

Impose a randomly shifted quadtree (top cell length 
𝟐𝚫

𝝐 
 ) 

      Bottom-up: For each node (cell) in the quadtree  

– compute optimum Minimum Spanning Forests in subcells, 
using edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

 

 

 

 

Sketch of analysis (𝑻∗ = optimum MST): 
𝔼[Extra cost] = 
𝔼[ Pr 𝒆 𝑖𝑠 𝑐𝑢𝑡 𝑏𝑦 𝑐𝑒𝑙𝑙 𝑤𝑖𝑡ℎ 𝑠𝑖𝑑𝑒 𝑳 ⋅  𝝐𝑳𝒆∈𝑻∗  ] 

≤ 𝝐 log 𝒏 𝑑 𝒆

𝒆∈𝑻∗

= 

𝝐 log 𝒏 ⋅ 𝑐𝑜𝑠𝑡(𝑻∗) 
 

2 
 

1 
 

Pr[𝐁𝐚𝐝 𝐂𝐮𝐭] = 𝑶(𝝐) 
 

𝑳 = 𝛀(
𝟏

𝝐
)  



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

• 𝑂(log 𝒏) rounds => O(log𝑺 𝒏) = O(1) rounds 

– Flatten the tree: ( 𝑺 × 𝑺)-grids instead of (2x2) grids at each 
level. 

 

 

 

 

Impose a randomly shifted ( 𝑺 × 𝑺)-tree 

      Bottom-up: For each node (cell) in the tree  

– compute optimum MSTs in subcells via edges of length ≤ 𝝐𝑳 

– Use only 𝝐𝟐𝑳-net from each cell on the next level 

 

⇒   𝑺 = 𝒏Ω(1) 
 



1 + 𝝐 -MST in 𝐑 = 𝑂(1)  rounds  

Theorem: Let 𝒍 = # levels in a random tree P 
𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓  

Proof (sketch):  
• 𝚫𝑷(𝑢, 𝑣) = cell length, which first partitions (𝑢, 𝑣) 

• New weights: 𝒘𝑷 𝑢, 𝑣 = 𝑢 − 𝑣
2
+ 𝝐𝚫𝑷 𝑢, 𝑣  

 
𝑢 − 𝑣

2
≤ 𝔼𝑷[𝒘𝑷 𝑢, 𝑣 ] ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢 − 𝑣

2
 

 
• Our algorithm implements Kruskal for weights 𝒘𝑷 

𝑢 𝑣 

𝚫𝑷 𝑢, 𝑣  



“Solve-And-Sketch” Framework 

(1 + 𝜖)-MST: 
– “Load balancing”: partition the tree into parts of 

the same size 

– Almost linear time: Approximate Nearest 
Neighbor data structure [Indyk’99] 

– Dependence on dimension d (size of 𝝐-net is 

𝑂
𝒅

𝝐

𝒅
) 

– Generalizes to bounded doubling dimension 

– Basic version is teachable (Jelani Nelson’s ``Big 
Data’’ class at Harvard) 

 
 

 
 

 



“Solve-And-Sketch” Framework 

(1 + 𝜖)-Earth-Mover Distance, Transportation Cost 

• No simple “divide-and-conquer” Arora-Mitchell-style 
algorithm (unlike for general matching) 

• Only recently sequential 1 + 𝜖 -apprxoimation in  

𝑂𝜖 𝒏 log𝑂 1 𝒏 time [Sharathkumar, Agarwal ‘12] 

Our approach (convex sketching): 

• Switch to the flow-based version 

• In every cell, send the flow to the closest net-point 
until we can connect the net points 

 



“Solve-And-Sketch” Framework 

Convex sketching the cost function for 𝝉 net 
points 

• 𝐹:ℝ𝝉−1 → ℝ = the cost of routing fixed 
amounts of flow through the net points 

• Function 𝐹’ = 𝐹 + “normalization” is 
monotone, convex and Lipschitz, (1 + 𝝐)-
approximates 𝐹 

• We can (1 + 𝝐)-sketch it using a lower convex 
hull 



Thank you! http://grigory.us 

Open problems 

• Exetension to high dimensions? 

– Probably no, reduce from connectivity => conditional 
lower bound ∶  Ω log 𝑛  rounds for MST in ℓ∞

𝑛  

– The difficult setting is 𝑑 = Ω(log 𝒏) (can do JL) 

• Streaming alg for EMD and Transporation Cost? 

• Our work: first near-linear time algorithm for 
Transportation Cost 

– Is it possible to reconstruct the solution itself? 

 

http://grigory.us/

