Motivation for Sublinear-Time Algorithms

Massive datasets

Long access time

world-wide web
online social networks
genome project

sales logs

census data
high-resolution images
scientific measurements

communication bottleneck (dial-up connection)
implicit data (an experiment per data point)

A Sublinear-Time Algorithm

B|L|Al-|[B|L|A-|B|L|A-|BlL|A-|B|L|A[-|B|L|Al-|B|L|A]-

>
=

\
?||B ?||L 2|l L 211 A

Y

sublinear-time algorithm

Y

approximate answer

Quality of Resources
imati VS. » number of samples
Approzimation » running time

Types of Approximation

Classical approximation
* need to compute a value

» output is close to the desired value
» examples: average, median values

* need to compute the best structure
» output is a structure with “cost” close to optimal
» examples: furthest pair of points, minimum spanning tree

Property testing
* need to answer YES or NO

» output is a correct answer for a given input,
or at least some input close to it

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: m points, described by a distance matrix D
- D;; is the distance between points i and j

— D satisfies triangle inequality and symmetry

(Note: input sizeisn = m?)
Let i,j be indices that maximize D;;
Maximum D,; is the diameter.

e Output: (k,¥) such thatD,, 2D,; /2

Algorithm and Analysis

(Algorithm (m, D) R J .
1. Pick k arbitrarily

2. Pick £ to maximize D,,
\3. Output (k,?) 4
e Approximation guarantee
D, < Dy + Dy, (triangle inequality)
< D, + D,, (choice of £ + symmetry of D) k
< 2Dk,
e Running time: O(m) = 0(m =+n) i

%tic /<
> sublinear-time algorithm

V\/\N

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

"'.ié'tr«-,_sr‘ R AN ;"‘?"T-""TJ-H ‘3’(‘ -

-+ “< —

Does the input satisfy the property
or is it far from satisfying it?
e sometimes it is the right question (probabilistically checkable proofs (PCPs))
e as good when the data is constantly changing (WWW)
e fast sanity check to rule out inappropriate inputs (airport security questioning)

12

Property Tester Definition

Probabilistic Algorithm

YES

NO

=)

Accept with
probability > 2/3

Reject with
probability >2/3

Property Tester
YES
4\
£ | m)
A
Far from |:>
YES

Accept with
probability > 2/3

Don’t care

Reject with
probability >2/3

¢-far = differs in many places (= ¢ fraction of places)

13

Randomized Sublinear
Algorithms

Toy Examples

Property Testing: a Toy Example

Input: a stringw € {0,1}" 0(0j{0j1|../10|1 (0|0
Question: Is w = 00...0?
Requires reading entire input.

Approximate version: Isw=00..0o0r
does it have = en 1’s (“errors”)?

(Test (n, w) w

1. Sample s = 2/¢ positions uniformly and independently at randomJ

2. If 1is found, reject; otherwise, accept

Used: 1 —x<e™*

{

If wis e-far, Pr[error] = Pr[no I’sinthe sample]< (1 —¢)S < e & =e 2 < g
N

Analysis: If w = 00 ... 0, it is always accepted.

2
Witnhess Lemma
If a test catches a witness with probability = p,

2 : : : .
then s = > iterations of the test catch a witness with probability = 2/3.
o

15

Randomized Approximation: a Toy Example

Input: a stringw € {0,1}" 0(0j{0j1|../10|1 (0|0
Goal: Estimate the fraction of 1’s in w (like in polls)

It suffices to sample s = 1 / £ positions and output the average
to get the fraction of 1’s +¢ (i.e., additive error &) with probability > 2/3

/Hoeffding Bound 3
Let Yy, ..., Ys be independently distributed random variables in [0,1] and
S
letY = Y Y; (sample sum). Then Pr[|]Y — E[Y]]| = &] < 2e~28%/s,
A i=1 /
S
Y; = value of sample i. Then E[Y] =) E[Y;] = s - (fraction of 1’s in w)

i=1
Pr[|(sample average) — (fraction of 1'sin w)| = €] = Pr[|Y — E[Y]| = &s]

< 2e728%/s = 2¢72 < 1/3
1 1

Apply Hoeffding Bound with § = ¢s substitute s = 1 / &2

16

Property Testing

Simple Examples

Testing Properties of Images

Ty 3
‘W W

r'

L

Pixel Model

Input: n X n matrix of pixels
(0/1 values for black-and-white pictures)

ONONONORONOCNORONONORONG)
ONONON N N N NONONORONG)
CC0000000O0O0OO0
ONON N NONON N NONORONG
ONONONORONON N NONORONG)
ONONONORON N NONONORONG)
ONONONON N NONONONORONG)
ONONON RONOCHORONONORONG)
ONON N N NONCHRONONORONG)
ONON N N N N N NONORONGO
ONONONORONOCNORONONORONG)
ONONONORONOCNORONONORONG)

Query: point (iq, i)

Answer: color of (iy, i)

Testing if an Image is a Half-plane [R03]

A half-plane or

g-far from a half-plane?

O(1/¢) time

20

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
CNONONONONON N N N N N J
CNONONONONON N N N N N J

LN N N N N NONONONORONG)
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

i—far from a half-plane

21

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N
CNONONONONON N N N N & J
CNONONONONON N N N & N J
oNONONONONON N N & N N J
CNONONONONON N & N N N J
oNONONONONON & N N N N J
0000O0HOOOOOO
0000BHOOOOOOO
L N NN N N NONONONORONG)
LN N N N N NONONONORONG)
060000000 O0OO0O
00000000 OOO0O

%—far from a half-plane

22

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNORONONONG
ONORONONONG®
ONORONONONG®
ONORONONONG®
CNORONONONG
ONORONONONG
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)

i—far from a half-plane

23

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

ONONONORON N N N N N /
ORSNONONONON N N N N N J
ONORCNONONON N N N N N J
ONONORCNONON N N N N N J
CNONONORONON N N N N N J
CNONONONORON N N N N N J
LN NN N N EVNONONORONG)
0000000 0CO0OO0O
00000000 _OOO
00000000000
000000000 OQ[O
00000000000

%—far from a half-plane

24

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
CNONONONONON N N N N N J
CNONONONONON N N N N N J

LN N N N N NONONONORONG)
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

i—far from a half-plane

25

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N
CNONONONONON N N N N & J
CNONONONONON N N N & N J
oNONONONONON N N & N N J
CNONONONONON N & N N N J
oNONONONONON & N N N N J
0000O0HOOOOOO
0000BHOOOOOOO
L N NN N N NONONONORONG)
LN N N N N NONONONORONG)
060000000 O0OO0O
00000000 OOO0O

%—far from a half-plane

26

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

cNoNONoNONON N N N N N J
oNoNONONON-N N N N N N J
oNONONON NON N N N N N J
CNONON-NONON N N N N N J
ONOSNONONON N N N N N J
oy NCNCNONON N N N N N J
00000000 OOO0O
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

%—far from a half-plane

27

Strategy

“Testing by implicit learning” paradigm

e Learn the outline of the image by querying a few pixels.

e Test if the image conforms to the outline by random sampling,
and reject if something is wrong.

28

Half-plane Test

{Claim. The number of sides with different
cornersis 0, 2, or4.

.
/” Algorithm N
1. Query the corners.
o /

29

Half-plane Test: 4 Bi-colored Sides

[Claim. The number of sides with different

cornersis 0,2, or4.

ﬂmalysis

N

« [Ifitis 4, the image cannot be a half-plane.

_

%

/” Algorithm

1. Query the corners.

.

2. If the number of sides with different corners is 4, reject.

30

Half-plane Test: 0 Bi-colored Sides

{CIaim. The number of sides with different J
°

cornersis 0, 2, or4. p-rrmrrnn i nt @
ﬂmalysis \ E LN
» If all corners have the same color, the image is a S :.': o
half-plane if and only if it is unicolored. | -« - o o v e [2]-
ZZZZZZ-ZZZZZZ

ol

@ - - - - - ®

\ /
/Algorithm N

1. Query the corners.

2. Ifall corners have the same color c, test if all pixels have color ¢
(as in Toy Example 1).

. J

31

Half-plane Test: 2 Bi-colored Sides

[Claim. The number of sides with different

cornersis 0, 2, or 4. J

ﬂmalysm \

K catch a wrong pixel. /

The area outside of W U B has < en?/2 pixels.
If the image is a half-plane, W contains only
white pixels and B contains only black pixels.
If the 1mage 1s e-far from half-planes, it has

> en?/2 wrong pixels in W U B.

By Witness Lemma, 4 /¢ samples suffice to

/” Algorithm
1. Query the corners.
2. If # of sides with different corners is 2, on both sides find 2 different
pixels within distance en/2 by binary search.
3. Query4/¢e pixels fromW U B
\4. Accept iff all Wpixels are white and all B pixels are black.

32

Testing if an Image is a Half-plane [R03]

A half-plane or

g-far from a half-plane?

O(1/¢) time ~/

33

Other Results on Properties of Images

e Pixel Model

Convexity [RO3]

Convex or e-far from convex?

0(1/£?) time

Connectedness [RO3]

Connected or e-far from connected?

O(1/£*) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template

or is e-far?

time independent of image size

e Properties of sparse images [Ron Tsur 10]

34

Testing if a List is Sorted

Input: a list of n numbers x,, x,,..., X,
e (Question: Is the list sorted?
Requires reading entire list: (2(n) time
e Approximate version: Is the list sorted or e-far from sorted?
(An € fraction of x;’s have to be changed to make it sorted.)
[Erglin Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/¢) time ~.a;//
Q(log n) queries
e Attempts:
1. Test: Pick a randomjand rejectif x;>x,,; .

Failson: 11111110000000 < 1/2-far from sorted

2. Test: Pick random i <jand reject if x; > x..

Failson: 10213243546576 <— 1/2-far from sorted

35

Is a list sorted or e-far from sorted?

Idea: Associate positions in the list with vertices of the directed line.

1 5 3> njln

=
—>

Construct a graph (2-spanner) <nlog n edges

by adding a few “shortcut” edges (i, j) fori<j
where each pair of vertices is connected by a path of length at most 2

v

36

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis: i J
* Callan edge (x;,x) violated if x; > x;, and good otherwise.
e Ifx; is an endpoint of a violated edge, call it bad. Otherwise, call it good.

[Claim 1. All good numbers x; are sorted.]
Proof: Consider any two good numbers, x; and x..

They are connected by a path of (at most) two good edges (x;,x,), (x,,X;).
= X; <X, and x, < x;

= X;< X;

37

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis: i J
* Callan edge (x;,x) violated if x; > x;, and good otherwise.
e |Ifx; is an endpoint of a bad edge, call it bad. Otherwise, call it good.

[Claim 1. All good numbers x; are sorted.]

[Claim 2. An e-far list violates > ¢ /(2 log n) fraction of edges in 2-spanner.]

Proof: If a list is e-far from sorted, it has > ¢ n bad numbers. (Claim 1)
e Each violated edge contributes 2 bad numbers.
e 2-spanner has > ¢ n/2 violated edges out of < n log n.

38

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis: i J
* Callan edge (x;,x) violated if x; > x;, and good otherwise.

[Claim 2. An e-far list violates > ¢ /(2 log n) fraction of edges in 2-spanner.]

By Witness Lemma, it suffices to sample (4 log n)/e edges from 2-spanner.

(Algorithm
LSampIe (4 log n)/ € edges (x;,x;) from the i7anner and reject if x; > x..

— 1

Guarantee: All sorted lists are accepted.
All lists that are e-far from sorted are rejected with probability >2/3.

Time: O((log n)/¢)
39

Graph Properties

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices v Y’

e in adjacency lists representation \
(a list of neighbors for each vertex) \

e maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (v,1), where v € V and i € [d]: entry i of adjacency list of vertex v

Exact Answer: QQ(dn) time

e Approximate version:
Is the graph connected or e-far from connected?

of entires in adjacency lists on which G, and G, dif fer

diSt(Gl, Gz) — an

1
Time: O (—d) today

g2

No dependence on n!

+ improvement on HW .

Testing Connectedness: Algorithm

/ Connectedness Tester(G, d, &) N\
1. Repeat s=16/¢cd times:
2. pick a random vertex u
3. determine if connected component of u is small:

perform BFS from u, stopping after at most 8/ed new nodes
K4. Reject if a small connected component was found, otherwise accept. /

Run time: O(d/e2d?)=0(1/2d)

Analysis:

e Connected graphs are always accepted.

e Remains to show:

If a graph is e-far from connected, it is rejected with probability >

wIiN

Testing Connectedness: Analysis

(Claim 1 \

. . ed
L If G is e-far from connected, 1t has > Tn connected componentsJ

Claim 2 N

. . edn
If G is e-far from connected, it has = o connected components

$ of size at most 8/«d. .

. gdn .
e If Claim 2 holds, at least —~ nodes are in small connected components.

: : : 2-8 16
e By Witness lemma, it suffices to sample = — nodes to detect one
gdn/n &d

from a small connected component.

60

Testing Connectedness: Proof of Claim 1

(Claim 1 W
. . ed
L If G is e-far from connected, 1t has > Tn connected componentsJ

Proof: We prove the contrapositive:

If G has < % connected components, one can make G connected by
modifying < € fraction of its representation, i.e., < edn entries.
e If there are no degree restrictions, k components can be connected by
adding k-1 edges, each affecting 2 nodes. Here, k < % , S0 2k-2 < edn .

e What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

61

Freeing up an Adjacency List Entry

(Claim 1

. . d
L If G is e-far from connected, 1t has > % connected componentsJ

Proof:
What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

e Consider an MST of this component.

e Let v be aleaf of the MST.

e Disconnect v from a node other than its parent in the MST.

e Two entries are changed while keeping the same number of components.

e Thus, k components can be connected by adding 2k-1 edges, each affecting
2 nodes. Here, k < % , S0 4k-2 < edn .

62

Testing Connectedness: Proof of Claim 2

(Claim 1 \

. . ed
L If G is e-far from connected, 1t has > Tn connected componentsJ

Claim 2 N

. . edn
If G is e-far from connected, it has = o connected components

4 of size at most 8/«d.
Proof of Claim 2:

)

e If Claim 1 holds, there are at least % connected components.
4
edn/4 Ten
e By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

e Their average size <

63

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices

e in adjacency lists representation v Y’
(a list of neighbors for each vertex) .\. .\.

e maximum degree d

Connected or
e-far from connected?
1 .
0 (T) time J
e«d

(no dependence on n)

64

