
Motivation for Sublinear-Time Algorithms
Massive datasets
• world-wide web
• online social networks
• genome project
• sales logs
• census data
• high-resolution images
• scientific measurements
Long access time
• communication bottleneck (dial-up connection)
• implicit data (an experiment per data point)

4

A Sublinear-Time Algorithm

6

B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A

approximate answer

sublinear-time algorithm

Quality of
approximation vs.

Resources
 number of samples
 running time

? L ? B ? L ? A

Types of Approximation
Classical approximation
• need to compute a value

 output is close to the desired value
 examples: average, median values

• need to compute the best structure
 output is a structure with “cost” close to optimal
 examples: furthest pair of points, minimum spanning tree

Property testing
• need to answer YES or NO

 output is a correct answer for a given input,
 or at least some input close to it

7

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: 𝑚 points, described by a distance matrix 𝐷

– 𝐷 is the distance between points 𝑖 and 𝑗
– 𝐷 satisfies triangle inequality and symmetry
(Note: input size is 𝑛 = 𝑚2)

Let 𝑖, 𝑗 be indices that maximize 𝐷𝑖𝑗 .

Maximum 𝐷𝑖𝑗
is the diameter.

• Output: (𝑘, ℓ𝓁) such that 𝐷𝑘ℓ𝓁
 𝐷𝑖𝑗

/2

Algorithm and Analysis

1. Pick 𝑘 arbitrarily
2. Pick ℓ𝓁 to maximize 𝐷𝑘ℓ𝓁

3. Output (𝑘, ℓ𝓁)
• Approximation guarantee

𝐷𝑖𝑗 ≤ 𝐷𝑖𝑘 + 𝐷𝑘𝑗 (triangle inequality)
 ≤ 𝐷𝑘ℓ𝓁 + 𝐷𝑘ℓ𝓁 (choice of ℓ𝓁 + symmetry of 𝐷)
 ≤ 2𝐷𝑘ℓ𝓁

• Running time: 𝑂(𝑚) = 𝑂(𝑚 = 𝑛)

𝑖

𝑗

𝑘

ℓ𝓁

A rare example of a deterministic
sublinear-time algorithm

 Algorithm (𝑚,𝐷)

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

“in the ballpark” vs. “out of the ballpark”

Does the input satisfy the property
or is it far from satisfying it?

• sometimes it is the right question (probabilistically checkable proofs (PCPs))

• as good when the data is constantly changing (WWW)

• fast sanity check to rule out inappropriate inputs (airport security questioning)

12

13

Property Tester

Close to YES

Far from
 YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑

Property Tester Definition
Probabilistic Algorithm

YES Accept with
probability ≥ 𝟐/𝟑

Reject with
probability 2/3

NO

 far = differs in many places 𝜀- (≥ 𝜀 fraction of places)

 𝜀

Randomized Sublinear
Algorithms

Toy Examples

 Test (𝑛, 𝑤)

Property Testing: a Toy Example
Input: a string 𝑤 ∈ 0,1
Question: Is 𝑤 = 00…0?
 Requires reading entire input.
Approximate version: Is 𝑤 = 00…0 or
 does it have ≥ 𝜀𝑛 1’s (“errors”)?

1. Sample 𝑠 = 2/𝜀 positions uniformly and independently at random
2. If 1 is found, reject; otherwise, accept

Analysis: If 𝑤 = 00…0, it is always accepted.

If 𝑤 is 𝜀-far, Pr[error] = Pr[no 1’s in the sample]≤ 1 − 𝜀 ௦ ≤ 𝑒ିఌ௦ = 𝑒ିଶ < ଵ
ଷ

If a test catches a witness with probability ≥ 𝑝,
then s = ଶ

 iterations of the test catch a witness with probability ≥ 2/3.

15

Used: 1 − 𝑥 ≤ 𝑒ି௫

Witness Lemma

0 0 0 1 … 0 1 0 0

Randomized Approximation: a Toy Example
Input: a string 𝑤 ∈ 0,1
Goal: Estimate the fraction of 1’s in 𝑤 (like in polls)
It suffices to sample 𝑠 = 1 ⁄ 𝜀ଶ positions and output the average

to get the fraction of 1’s ±𝜀 (i.e., additive error 𝜀) with probability ¸ 2/3

Y୧ = value of sample 𝑖. Then E[Y] = ∑
௦

ୀଵ
E[Y୧] = 𝑠 ⋅ (fraction of 1’s in 𝑤)

Pr (sample average) − fraction of 1′s in 𝑤 ≥ 𝜀 = Pr Y − E Y ≥ 𝜀𝑠
≤ 2eିଶఋమ/௦ = 2𝑒ିଶ < 1/3

16

Let Yଵ, … , Yୱ be independently distributed random variables in [0,1] and

let Y = ∑
௦

ୀଵ
Y୧ (sample sum). Then Pr Y − E Y ≥ δ ≤ 2eିଶఋమ/௦.

0 0 0 1 … 0 1 0 0

Hoeffding Bound

Apply Hoeffding Bound with 𝛿 = 𝜀𝑠 substitute 𝑠 = 1 ⁄ 𝜀ଶ

Property Testing

Simple Examples

Testing Properties of Images

18

Pixel Model

19

Query: point (𝑖ଵ, 𝑖ଶ)

Answer: color of (𝑖ଵ, 𝑖ଶ)

Input: 𝑛 × 𝑛 matrix of pixels
(0/1 values for black-and-white pictures)

Testing if an Image is a Half-plane [R03]

A half-plane or
𝜀-far from a half-plane?

 O(1/𝜀) time

20

Half-plane Instances

21

A half-plane ଵ
ସ
-far from a half-plane

Half-plane Instances

22

A half-plane ଵ
ସ
-far from a half-plane

Half-plane Instances

23

A half-plane ଵ
ସ
-far from a half-plane

Half-plane Instances

24

A half-plane ଵ
ସ
-far from a half-plane

Half-plane Instances

25

A half-plane ଵ
ସ
-far from a half-plane

Half-plane Instances

26

A half-plane ଵ
ସ
-far from a half-plane

Half-plane Instances

27

A half-plane ଵ
ସ
-far from a half-plane

Strategy

“Testing by implicit learning” paradigm

• Learn the outline of the image by querying a few pixels.
• Test if the image conforms to the outline by random sampling,

and reject if something is wrong.

28

Half-plane Test

29

Claim. The number of sides with different
corners is 0, 2, or 4.

Algorithm
1. Query the corners.

? ?

? ?

Half-plane Test: 4 Bi-colored Sides

30

Claim. The number of sides with different
corners is 0, 2, or 4.

 Analysis
• If it is 4, the image cannot be a half-plane.

Algorithm
1. Query the corners.
2. If the number of sides with different corners is 4, reject.

Half-plane Test: 0 Bi-colored Sides

31

Claim. The number of sides with different
corners is 0, 2, or 4.

 Analysis
• If all corners have the same color, the image is a

half-plane if and only if it is unicolored.

Algorithm
1. Query the corners.
2. If all corners have the same color 𝑐, test if all pixels have color 𝑐
 (as in Toy Example 1).

?

?

?
?

?

?

Half-plane Test: 2 Bi-colored Sides

32

Claim. The number of sides with different
corners is 0, 2, or 4.

Algorithm
1. Query the corners.
2. If # of sides with different corners is 2, on both sides find 2 different

pixels within distance 𝜀𝑛/2 by binary search.
3. Query 4/𝜀 pixels from 𝑊 ∪ 𝐵
4. Accept iff all 𝑊pixels are white and all 𝐵 pixels are black.

Analysis
• The area outside of 𝑊 ∪𝐵 has ≤ 𝜀𝑛ଶ/2 pixels.
• If the image is a half-plane, W contains only

white pixels and B contains only black pixels.
• If the image is 𝜀-far from half-planes, it has

≥ 𝜀𝑛ଶ/2 wrong pixels in 𝑊 ∪𝐵.
• By Witness Lemma, 4/𝜀 samples suffice to

catch a wrong pixel.

? ?
𝜀𝑛/2

? ?
𝜀𝑛/2

𝑊

𝐵

Testing if an Image is a Half-plane [R03]

A half-plane or
𝜀-far from a half-plane?

 O(1/𝜀) time

33

Other Results on Properties of Images
• Pixel Model

Convexity [R03]
Convex or 𝜀-far from convex?
 O(1/𝜀ଶ) time

Connectedness [R03]
Connected or 𝜀-far from connected?
 O(1/𝜀ସ) time

Partitioning [Kleiner Keren Newman 10]
Can be partitioned according to a template
or is 𝜀-far?
 time independent of image size

• Properties of sparse images [Ron Tsur 10]

34

Testing if a List is Sorted
Input: a list of n numbers x1 , x2 ,..., xn
• Question: Is the list sorted?
 Requires reading entire list: (n) time
• Approximate version: Is the list sorted or ²-far from sorted?
 (An ² fraction of xi ’s have to be changed to make it sorted.)
 [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/²) time
 (log n) queries
• Attempts:
 1. Test: Pick a random i and reject if xi > xi+1 .

 Fails on: 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Ã 1/2-far from sorted

 2. Test: Pick random i < j and reject if xi > xj.

 Fails on: 1 0 2 1 3 2 4 3 5 4 6 5 7 6 Ã 1/2-far from sorted

35

1
2

Is a list sorted or ²-far from sorted?
Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)
• by adding a few “shortcut” edges (i, j) for i < j
• where each pair of vertices is connected by a path of length at most 2

36

… …

≤ n log n edges

 1 2 3 … n-1 n

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:
• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.
• If xi is an endpoint of a violated edge, call it bad. Otherwise, call it good.

Proof: Consider any two good numbers, xi and xj.
 They are connected by a path of (at most) two good edges (xi ,xk), (xk ,xj).
) xi ≤ xk and xk ≤ xj

) xi ≤ xj

37

1
2

1
2

5 4 3 xi xj xk

Claim 1. All good numbers xi are sorted.

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:
• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.
• If xi is an endpoint of a bad edge, call it bad. Otherwise, call it good.

Proof: If a list is ²-far from sorted, it has ¸ ² n bad numbers. (Claim 1)
• Each violated edge contributes 2 bad numbers.
• 2-spanner has ¸ ² n/2 violated edges out of · n log n.

 38

1
2

1
2

5 4 3 xi xj xk

Claim 1. All good numbers xi are sorted.

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:
• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

By Witness Lemma, it suffices to sample (4 log n)/² edges from 2-spanner.

Sample (4 log n)/ ² edges (xi ,xj) from the 2-spanner and reject if xi > xj.
Guarantee: All sorted lists are accepted.
All lists that are ²-far from sorted are rejected with probability ¸2/3.
Time: O((log n)/²)
 39

1
2

1
2

5 4 3 xi xj xk

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Algorithm

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.

Graph Properties

Testing if a Graph is Connected [Goldreich Ron]
Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices
• in adjacency lists representation
 (a list of neighbors for each vertex)
• maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (𝑣, 𝑖), where 𝑣 ∈ 𝑉 and 𝑖 ∈ [𝑑]: entry 𝑖 of adjacency list of vertex 𝑣

Exact Answer: (dn) time

• Approximate version:

Is the graph connected or ²-far from connected?

dist 𝐺ଵ, 𝐺ଶ = # ௧௦ ௗ௬ ௦௧௦ ௪ ீభ ௗ ீమ ௗ
ௗ

Time: 𝑂 ଵ
ఌమௗ

 today

+ improvement on HW

No dependence on n!

58

Testing Connectedness: Algorithm

1. Repeat s=16/d times:
2. pick a random vertex 𝑢
3. determine if connected component of 𝑢 is small:

 perform BFS from 𝑢, stopping after at most 8/d new nodes
4. Reject if a small connected component was found, otherwise accept.

Run time: O(𝑑/𝑑ଶ)=O(1/𝑑)

Analysis:

• Connected graphs are always accepted.

• Remains to show:

If a graph is ²-far from connected, it is rejected with probability ≥ ଶ
ଷ

59

 Connectedness Tester(G, d, ε)

Testing Connectedness: Analysis

• If Claim 2 holds, at least ௗ
଼
 nodes are in small connected components.

• By Witness lemma, it suffices to sample ଶ⋅଼
ௗ/ = ଵௗ nodes to detect one

from a small connected component.

60

Claim 1

 If G is -far from connected, it has ≥ ௗ
ସ
 connected components.

Claim 2

 If G is -far from connected, it has ≥ ௗ
଼
 connected components

of size at most 8/d.

Testing Connectedness: Proof of Claim 1

Proof: We prove the contrapositive:

If G has < ௗ
ସ
 connected components, one can make G connected by

modifying < fraction of its representation, i.e., < 𝑑𝑛 entries.
• If there are no degree restrictions, k components can be connected by

adding k-1 edges, each affecting 2 nodes. Here, k < ௗ
ସ
 , so 2k-2 < 𝑑𝑛 .

• What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

61

Claim 1

 If G is -far from connected, it has ≥ ௗ
ସ
 connected components.

Freeing up an Adjacency List Entry

Proof:
What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

• Consider an MST of this component.
• Let 𝑣 be a leaf of the MST.
• Disconnect 𝑣 from a node other than its parent in the MST.
• Two entries are changed while keeping the same number of components.
• Thus, k components can be connected by adding 2k-1 edges, each affecting

2 nodes. Here, k < ௗ
ସ
 , so 4k-2 < 𝑑𝑛 .

62

𝑣

Claim 1

 If G is -far from connected, it has ≥ ௗ
ସ
 connected components.

Testing Connectedness: Proof of Claim 2

Proof of Claim 2:

• If Claim 1 holds, there are at least ௗ
ସ
 connected components.

• Their average size ≤
ௗ/ସ = ସ.

• By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

63

Claim 1

 If G is -far from connected, it has ≥ ௗ
ସ
 connected components.

Claim 2

 If G is -far from connected, it has ≥ ௗ
଼
 connected components

of size at most 8/d.

Testing if a Graph is Connected [Goldreich Ron]

64

Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices
• in adjacency lists representation
 (a list of neighbors for each vertex)
• maximum degree d

Connected or
𝜀-far from connected?

 𝑂 ଵ
ఌమௗ

 time

 (no dependence on 𝑛)

