Sublinear Algorithms for Big Data

Lecture 2

Grigory Yaroslavtsev

http://grigory.us
Recap

• (Markov) For every $c > 0$:
 $$\Pr[X \geq c \, \mathbb{E}[X]] \leq \frac{1}{c}$$

• (Chebyshev) For every $c > 0$:
 $$\Pr[|X - \mathbb{E}[X]| \geq c \, \mathbb{E}[X]] \leq \frac{\text{Var}[X]}{(c \, \mathbb{E}[X])^2}$$

• (Chernoff) Let X_1, \ldots, X_t be independent and identically distributed r.v.s with range $[0, c]$ and expectation μ. Then if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$,
 $$\Pr[|X - \mu| \geq \delta \mu] \leq 2 \exp \left(- \frac{t \mu \delta^2}{3c} \right)$$
Today

• Approximate Median
• Alon-Mathias-Szegedy Sampling
• Frequency Moments
• Distinct Elements
• Count-Min
Data Streams

• Stream: \(m \) elements from universe \([n] = \{1, 2, \ldots, n\}\), e.g.

\[
\langle x_1, x_2, \ldots, x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, \ldots, 10 \rangle
\]

• \(f_i \) = frequency of \(i \) in the stream = # of occurrences of value \(i \)

\[
f = \langle f_1, \ldots, f_n \rangle
\]
Approximate Median

- $S = \{x_1, \ldots, x_m\}$ (all distinct) and let
 $\text{rank}(y) = |x \in S : x \leq y|$

- **Problem:** Find ϵ-approximate median, i.e. y such that
 $$\frac{m}{2} - \epsilon m < \text{rank}(y) < \frac{m}{2} + \epsilon m$$

- **Exercise:** Can we approximate the value of the median with additive error $\pm \epsilon n$ in sublinear time?

- **Algorithm:** Return the median of a sample of size t taken from S (with replacement).
Approximate Median

- **Problem:** Find ϵ-approximate median, i.e. y such that
 \[
 \frac{m}{2} - \epsilon m < \text{rank}(y) < \frac{m}{2} + \epsilon m
 \]

- **Algorithm:** Return the median of a sample of size t taken from S (with replacement).

- **Claim:** If $t = \frac{7}{\epsilon^2} \log \frac{2}{\delta}$ then this algorithm gives ϵ-median with probability $1 - \delta$.
Approximate Median

- Partition S into 3 groups
 \[
 S_L = \{ x \in S : \text{rank}(x) \leq \frac{m}{2} - \epsilon m \}
 \]
 \[
 S_M = \{ x \in S : \frac{m}{2} - \epsilon m \leq \text{rank}(x) \leq \frac{m}{2} + \epsilon m \}
 \]
 \[
 S_U = \{ x \in S : \text{rank}(x) \geq \frac{m}{2} + \epsilon m \}
 \]

- **Key fact**: If less than $\frac{t}{2}$ elements from each of S_L and S_U are in sample then its median is in S_M.

- Let $X_i = 1$ if i-th sample is in S_L and 0 otherwise.

- Let $X = \sum_i X_i$. By Chernoff, if $t > \frac{7}{\epsilon^2} \log \frac{2}{\delta}$
 \[
 \Pr \left[X \geq \frac{t}{2} \right] \leq \Pr \left[X \geq (1 + \epsilon)\mathbb{E}[X] \right] \leq e^{-\frac{\epsilon^2 (\frac{1}{2} - \epsilon) t}{3}} \leq \frac{\delta}{2}
 \]

- Same for S_U + union bound \Rightarrow error probability $\leq \delta$
AMS Sampling

• **Problem:** Estimate $\sum_{i \in [n]} g(f_i)$, for an arbitrary function g with $g(0) = 0$.

• **Estimator:** Sample x_J, where J is sampled uniformly at random from $[m]$ and compute:

$$r = |\{j \geq J : x_j = x_J\}|$$

Output: $X = m(g(r) - g(r - 1))$

• **Expectation:**

$$\mathbb{E}[X] = \sum_i \Pr[x_J = i] \mathbb{E}[X|x_J = i] = \sum_i \frac{f_i}{m} \left(\sum_{r=1}^{f_i} \frac{m(g(r) - g(r - 1))}{f_i} \right) = \sum_i g(f_i)$$
Frequency Moments

• Define $F_k = \sum_i f_i^k$ for $k \in \{0,1,2, \ldots \}$

 - $F_0 = \# \text{ number of distinct elements}$
 - $F_1 = \# \text{ elements}$
 - $F_2 = \text{“Gini index”, “surprise index”}$
Frequency Moments

• Define $F_k = \sum_i f_i^k$ for $k \in \{0, 1, 2, \ldots \}$

• Use AMS estimator with $X = m (r^k - (r - 1)^k)$
 $\mathbb{E}[X] = F_k$

• Exercise: $0 \leq X \leq m k f_*^{k-1}$, where $f_* = \max_i f_i$

• Repeat t times and take average \hat{X}. By Chernoff:
 $\Pr[|\hat{X} - F_k| \geq \epsilon F_k] \leq 2 \exp\left(-\frac{t F_k \epsilon^2}{3m k f_*^{k-1}}\right)$

• Taking $t = \frac{3m k f_*^{k-1} \log \frac{1}{\delta}}{\epsilon^2 F_k}$ gives $\Pr[|\hat{X} - F_k| \geq \epsilon F_k] \leq \delta$
Frequency Moments

• Lemma:

\[
\frac{mf_*^{k-1}}{F_k} \leq n^{1-1/k}
\]

• Result:

\[
t = \frac{3m f_*^{k-1} \log^\frac{1}{\delta}}{\epsilon^2 F_k} = O \left(\frac{kn^{1-1/k} \log^\frac{1}{\delta}}{\epsilon^2 \log n} \log n \right)
\]

memory suffices for \((\epsilon, \delta)\)-approximation of \(F_k\)

• Question: What if we don’t know \(m\)?

• Then we can use probabilistic guessing (similar to Morris’s algorithm), replacing \(\log n\) with \(\log nm\).
Frequency Moments

• Lemma:

\[
\frac{mf_*^{k-1}}{F_k} \leq n^{1-1/k}
\]

• Exercise: \(F_k \geq n \left(\frac{m}{n} \right)^k \) (Hint: worst-case when \(f_1 = \cdots = f_n = \frac{m}{n} \). Use convexity of \(g(x) = x^k \)).

• Case 1: \(f_*^k \leq n \left(\frac{m}{n} \right)^k \)

\[
\frac{mf_*^{k-1}}{F_k} \leq \frac{mn^{1-1/k} \left(\frac{m}{n} \right)^{k-1}}{n \left(\frac{m}{n} \right)^k} = n^{1-1/k}
\]
Frequency Moments

- Lemma:
 \[\frac{mf_*^{k-1}}{F_k} \leq n^{1-1/k} \]

- Case 2: \(f_*^k \geq n \left(\frac{m}{n} \right)^k \)
 \[\frac{mf_*^{k-1}}{F_k} \leq \frac{mf_*^{k-1}}{f_*^k} \leq \frac{m}{f_*} \leq \frac{m}{n^{1-1/k} \left(\frac{m}{n} \right)} = n^{1-\frac{1}{k}} \]
Hash Functions

• **Definition:** A family H of functions from $A \rightarrow B$ is k-wise independent if for any distinct $x_1, ..., x_k \in A$ and $i_1, ..., i_k \in B$:

$$
\Pr_{h \in RH} [h(x_1) = i_1, h(x_2) = i_2, ..., h(x_k) = i_k] = \frac{1}{|B|^k}
$$

• **Example:** If $A \subseteq \{0, ..., p - 1\}$, $B = \{0, ..., p - 1\}$ for prime p

$$
H = \left\{ h(x) = \sum_{i=0}^{k-1} a_i x^i \mod p: 0 \leq a_0, a_1, ..., a_{k-1} \leq p - 1 \right\}
$$

is a k-wise independent family of hash functions.
Linear Sketches

• Sketching algorithm: picks a random matrix $Z \in \mathbb{R}^{k \times n}$, where $k \ll n$ and computes Zf.

• Can be incrementally updated:
 – We have a sketch Zf
 – When i arrives, new frequencies are $f' = f + e_i$
 – Updating the sketch:
 \[
 Zf' = Z(f + e_i) = Zf + Ze_i
 = Zf + (i - \text{th column of } Z)
 \]

• Need to choose random matrices carefully
• **Problem:** (ϵ, δ)-approximation for $F_2 = \sum_i f_i^2$

• **Algorithm:**
 – Let $Z \in \{-1,1\}^{k \times n}$, where entries of each row are 4-wise independent and rows are independent
 – Don’t store the matrix: k 4-wise independent hash functions σ
 – Compute ZF, average squared entries “appropriately”

• **Analysis:**
 – Let s be any entry of ZF.
 – Lemma: $\mathbb{E}[s^2] = F_2$
 – Lemma: $\text{Var}[s^2] \leq 4F_2^2$
F_2: Expectation

- Let σ be a row of Z with entries $\sigma_i \in \mathbb{R} \{-1,1\}$.

\[
\mathbb{E}[s^2] = \mathbb{E}
\left[
(\sum_{i=1}^{n} \sigma_i f_i)^2
\right]
\]

\[
= \mathbb{E}
\left[
\sum_{i=1}^{n} \sigma_i^2 f_i^2 + \sum_{i \neq j} \mathbb{E}[\sigma_i \sigma_j f_i f_j]
\right]
\]

\[
= \mathbb{E}
\left[
\sum_{i=1}^{n} f_i^2 + \sum_{i \neq j} \mathbb{E}[\sigma_i \sigma_j] f_i f_j
\right]
\]

\[
= F_2 + \sum_{i \neq j} \mathbb{E}[\sigma_i] \mathbb{E}[\sigma_j] f_i f_j = F_2
\]

- We used 2-wise independence for $\mathbb{E}[\sigma_i \sigma_j] = \mathbb{E}[\sigma_i] \mathbb{E}[\sigma_j]$.
\[F_2 : \text{Variance} \]

\[
\mathbb{E}[(X^2 - \mathbb{E}X^2)^2] = \mathbb{E} \left(\sum_{i \neq j} \sigma_i \sigma_j f_i f_j \right)^2
\]

\[
= \mathbb{E} \left(2 \sum_{i \neq j} \sigma_i^2 \sigma_j^2 f_i^2 f_j^2 + 4 \sum_{i \neq j \neq k} \sigma_i^2 \sigma_j \sigma_k f_i^2 f_j f_k + 24 \sum_{i < j < k < l} \sigma_i \sigma_j \sigma_k \sigma_l f_i f_j f_k f_l \right)
\]

\[
= 2 \sum_{i \neq j} f_i^2 f_j^2 + 4 \sum_{i \neq j \neq k} \mathbb{E} [\sigma_j \sigma_k] f_i^2 f_j f_k + 24 \sum_{i < j < k < l} \mathbb{E} [\sigma_i \sigma_j \sigma_k \sigma_l] f_i f_j f_k f_l \leq 2 F_2^2
\]

- \[\mathbb{E} [\sigma_i \sigma_j \sigma_k \sigma_l] = \mathbb{E} [\sigma_i] \mathbb{E} [\sigma_j] \mathbb{E} [\sigma_k] \mathbb{E} [\sigma_l] = 0 \text{ by 4-wise independence} \]
\[F_0 : \text{Distinct Elements} \]

- **Problem:** \((\epsilon, \delta)\)-approximation for \(F_0 = \sum_i f_i^0\)
- **Simplified:** For fixed \(T > 0\), with prob. \(1 - \delta\) distinguish:
 \[F_0 > (1 + \epsilon)T \text{ vs. } F_0 < (1 - \epsilon)T \]
- **Original problem reduces by trying** \(O \left(\frac{\log n}{\epsilon} \right)\) values of \(T\):
 \[T = 1, (1 + \epsilon), (1 + \epsilon)^2, \ldots, n \]
\(F_0 \): Distinct Elements

- **Simplified:** For fixed \(T > 0 \), with prob. \(1 - \delta \) distinguish:
 \[F_0 > (1 + \epsilon)T \text{ vs. } F_0 < (1 - \epsilon)T \]

- **Algorithm:**
 - Choose random sets \(S_1, \ldots, S_k \subseteq [n] \) where
 \(\Pr[i \in S_j] = \frac{1}{T} \)
 - Compute \(s_j = \sum_{i \in S_j} f_i \)
 - If at least \(k/e \) of the values \(s_j \) are zero, output \(F_0 < (1 - \epsilon)T \)
$F_0 > (1 + \epsilon)T$ vs. $F_0 < (1 - \epsilon)T$

Algorithm:

– Choose random sets $S_1, \ldots, S_k \subseteq [n]$ where $\Pr[i \in S_j] = \frac{1}{T}$

– Compute $s_j = \sum_{i \in S_j} f_i$

– If at least k/e of the values s_j are zero, output $F_0 < (1 - \epsilon)T$

Analysis:

– If $F_0 > (1 + \epsilon)T$, then $\Pr[s_j = 0] < \frac{1}{e} - \frac{\epsilon}{3}$

– If $F_0 < (1 - \epsilon)T$, then $\Pr[s_j = 0] > \frac{1}{e} + \frac{\epsilon}{3}$

– Chernoff: $k = O \left(\frac{1}{\epsilon^2} \log \frac{1}{\delta} \right)$ gives correctness w.p. $1 - \delta$
\(F_0 > (1 + \epsilon)T \) vs. \(F_0 < (1 - \epsilon)T \)

- **Analysis:**
 - If \(F_0 > (1 + \epsilon)T \), then \(\Pr[s_j = 0] < \frac{1}{e} - \frac{\epsilon}{3} \)
 - If \(F_0 < (1 - \epsilon)T \), then \(\Pr[s_j = 0] > \frac{1}{e} + \frac{\epsilon}{3} \)

- If \(T \) is large and \(\epsilon \) is small then:
 \[
 \Pr[s_j = 0] = \left(1 - \frac{1}{T}\right)^{F_0} \approx e^{-\frac{F_0}{T}}
 \]

- If \(F_0 > (1 + \epsilon)T \):
 \[
 e^{-\frac{F_0}{T}} \leq e^{-(1+\epsilon)} \leq \frac{1}{e} - \frac{\epsilon}{3}
 \]

- If \(F_0 < (1 - \epsilon)T \):
 \[
 e^{-\frac{F_0}{T}} \geq e^{-(1-\epsilon)} \geq \frac{1}{e} + \frac{\epsilon}{3}
 \]
Count-Min Sketch

- https://sites.google.com/site/countminsketch/
- **Stream:** \(m \) elements from universe \([n] = \{1, 2, ..., n\}\), e.g.
 \[\langle x_1, x_2, ..., x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, ..., 10 \rangle\]
- \(f_i = \) frequency of \(i \) in the stream = \# of occurrences of value \(i \), \(f = \langle f_1, ..., f_n \rangle \)
- **Problems:**
 - **Point Query:** For \(i \in [n] \) estimate \(f_i \)
 - **Range Query:** For \(i, j \in [n] \) estimate \(f_i + \cdots + f_j \)
 - **Quantile Query:** For \(\phi \in [0,1] \) find \(j \) with \(f_1 + \cdots + f_j \approx \phi m \)
 - **Heavy Hitters:** For \(\phi \in [0,1] \) find all \(i \) with \(f_i \geq \phi m \)
Count-Min Sketch: Construction

• Let $H_1, \ldots, H_d : [n] \to [w]$ be 2-wise independent hash functions

• We maintain $d \cdot w$ counters with values:

 $c_{i,j} = \# \text{ elements } e \text{ in the stream with } H_i(e) = j$

• For every x the value $c_{i,H_i(x)} \geq f_x$ and so:

 $f_x \leq \tilde{f}_x = \min(c_{1,H_1(x)}, \ldots, c_{d,H_1(d)})$

• If $w = \frac{2}{\epsilon}$ and $d = \log_2 \frac{1}{\delta}$ then:

 $\Pr[f_x \leq \tilde{f}_x \leq f_x + \epsilon m] \geq 1 - \delta.$
Count-Min Sketch: Analysis

• Define random variables $Z_1 \ldots, Z_k$ such that $c_{i,H_i(x)} = f_x + Z_i$

\[Z_i = \sum_{y \neq x, H_i(y) = H_i(x)} f_y \]

• Define $X_{i,y} = 1$ if $H_i(y) = H_i(x)$ and 0 otherwise:

\[Z_i = \sum_{y \neq x} f_y X_{i,y} \]

• By 2-wise independence:

\[\mathbb{E}[Z_i] = \sum_{y \neq x} f_y \mathbb{E}[X_{i,y}] = \sum_{y \neq x} f_y \Pr[H_i(y) = H_i(x)] \leq \frac{m}{w} \]

• By Markov inequality,

\[\Pr[Z_i \geq \epsilon m] \leq \frac{1}{w \epsilon} = \frac{1}{2} \]
Count-Min Sketch: Analysis

- All Z_i are independent

$$\Pr[Z_i \geq \epsilon m \text{ for all } 1 \leq i \leq d] \leq \left(\frac{1}{2}\right)^d = \delta$$

- The w.p. $1 - \delta$ there exists j such that $Z_j \leq \epsilon m$

$$\tilde{f}_x = \min(c_{1,H_1(x), \ldots, c_{d,H_d(x)}}) = \min(f_x, +Z_1 \ldots, f_x + Z_d) \leq f_x + \epsilon m$$

- CountMin estimates values f_x up to $\pm \epsilon m$ with total memory $O\left(\frac{\log m \log \frac{1}{\delta}}{\epsilon^2}\right)$
Dyadic Intervals

• Define $\log n$ partitions of $[n]$:

 $I_0 = \{1,2,3, \ldots n\}$

 $I_1 = \{\{1,2\}, \{3,4\}, \ldots, \{n-1, n\}\}$

 $I_2 = \{\{1,2,3,4\}, \{5,6,7,8\}, \ldots, \{n-3, n-2, n-1, n\}\}$

 ...

 $I_{\log n} = \{\{1, 2,3, \ldots, n\}\}$

• Exercise: Any interval (i, j) can be written as a disjoint union of at most $2 \log n$ such intervals.

• Example: For $n = 256$: $[48,107] = [48,48] \cup [49,64] \cup [65,96] \cup [97,104] \cup [105,106] \cup [107,107]$
Count-Min: Range Queries and Quantiles

- **Range Query:** For $i, j \in [n]$ estimate $f_i + \cdots + f_j$
- **Approximate median:** Find j such that:
 \[
 f_1 + \cdots + f_j \geq \frac{m}{2} + \epsilon m \quad \text{and} \quad f_1 + \cdots + f_{j-1} \leq \frac{m}{2} - \epsilon m
 \]
Count-Min: Range Queries and Quantiles

• **Algorithm:** Construct $\log n$ Count-Min sketches, one for each I_i such that for any $I \in I_i$ we have an estimate \tilde{f}_I for f_I such that:

$$\Pr[f_I \leq \tilde{f}_I \leq f_I + \epsilon m] \geq 1 - \delta$$

• To estimate $[i, j]$, let $I_1 \ldots, I_k$ be decomposition:

$$\tilde{f}_{[i,j]} = \tilde{f}_{l_1} + \cdots + \tilde{f}_{l_k}$$

• Hence,

$$\Pr[f_{[i,j]} \leq \tilde{f}_{[i,j]} \leq 2 \epsilon m \log n] \geq 1 - 2\delta \log n$$
Count-Min: Heavy Hitters

• **Heavy Hitters:** For $\phi \in [0,1]$ find all i with $f_i \geq \phi m$ but no elements with $f_i \leq (\phi - \epsilon)m$

• **Algorithm:**
 – Consider binary tree whose leaves are $[n]$ and associate internal nodes with intervals corresponding to descendant leaves
 – Compute Count-Min sketches for each I_i
 – Level-by-level from root, mark children I of marked nodes if $\tilde{f}_i \geq \phi m$
 – Return all marked leaves

• Finds heavy-hitters in $O(\phi^{-1} \log n)$ steps
Thank you!

- Questions?