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Part 0: Introduction 

• Disclaimers 

• Logistics 

• Materials 

• … 



Name 

Correct: 

• Grigory 

• Gregory (easiest and highly recommended!) 

Also correct:  

• Dr. Yaroslavtsev (I bet it’s difficult to pronounce) 

Wrong: 

• Prof. Yaroslavtsev (Not any easier) 

 

 



Disclaimers 

• A lot of Math! 



Disclaimers 

• No programming! 



Disclaimers 

• 10-15 times longer than “Fuerza Bruta”, soccer 
game, milonga… 



Big Data 

• Data 

• Programming and Systems 

• Algorithms 

• Probability and Statistics 

 



Sublinear Algorithms 

𝑛 = size of the data, we want 𝑜(𝑛), not 𝑂(𝑛) 

• Sublinear Time 
– Queries 

– Samples 

• Sublinear Space 
– Data Streams 

– Sketching 

• Distributed Algorithms 
– Local and distributed computations  

– MapReduce-style algorithms 

 



Why is it useful? 

• Algorithms for big data used by big companies 
(ultra-fast (randomized algorithms for 
approximate decision making) 
– Networking applications (counting and detecting 

patterns in small space) 

– Distributed computations (small sketches to reduce 
communication overheads) 

• Aggregate Knowledge: startup doing streaming 
algorithms, acquired for $150M 

• Today: Applications to soccer  



Course Materials 

• Will be posted at the class homepage: 

http://grigory.us/big-data.html 

• Related and further reading: 
– Sublinear Algorithms (MIT) by Indyk, Rubinfeld 

– Algorithms for Big Data (Harvard) by Nelson 

– Data Stream Algorithms (University of 
Massachusetts) by McGregor 

– Sublinear Algorithms (Penn State) by 
Raskhodnikova 

 

   

http://grigory.us/big-data.html
http://grigory.us/big-data.html
http://grigory.us/big-data.html


Course Overview 

• Lecture 1 

• Lecture 2 

• Lecture 3 

• Lecture 4 

• Lecture 5 

 

3 hours = 3 x (45-50 min lecture + 10-15 min 
break). 



Puzzles 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one 
by one:  

• (Easy, “Find a missing player”)  
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and 
𝑛 + 1, which value is missing?  

– You have 𝑂(log 𝑛) space 

• Example: 
– There are 11 soccer players with numbers 1, …, 11.  

– You see 10 of them one by one, which one is missing? 
You can only remember a single number.  























Which number was missing? 



Puzzle #1 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one 
by one:  

• (Easy, “Find a missing player”)  
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and 
𝑛 + 1, which value is missing?  

– You have 𝑂(log 𝑛) space 

• Example: 
– There are 11 soccer players with numbers 1, …, 11.  

– You see 10 of them one by one, which one is missing? 
You can only remember a single number.  



Puzzle #2 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving 
one by one:  

• (Harder, “Keep a random team”)   
– How can you maintain a uniformly random sample 

of 𝑆 values out of those you have seen so far?  

– You can store exactly 𝑆 items at any time 

• Example: 
– You want to have a team of 11 players randomly 

chosen from the set you have seen. 

– Players arrive one at a time and you have to 
decide whether to keep them or not. 



Puzzle #3 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving 
one by one:  

• (Very hard, “Count the number of players”) 

– What is the total number of values up to error 
± 𝜖𝑛?  

– You have 𝑂(log log 𝑛 /𝜖2) space and can be 
completely wrong with some small probability  



Puzzles 

You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one by one:  
• (Easy, “Find a missing player”)  

– If all 𝑎𝑖
′𝑠 are different and have values between 1 and 𝑛 + 1, 

which value is missing?  
– You have 𝑂(log 𝑛) space 

• (Harder, “Keep a random team”)   
– How can you maintain a uniformly random sample of 𝑆 values 

out of those you have seen so far?  
– You can store exactly 𝑆 items at any time 

• (Very hard, “Count the number of players”) 
– What is the total number of values up to error ±𝜖𝑛?  
– You have 𝑂(log log 𝑛 /𝜖2) space and can be completely wrong 

with some small probability  



Part 1: Probability 101 

“The bigger the data the better you should 
know your Probability” 

• Basic Spanish: Hola, Gracias, Bueno, Por favor, 
Bebida, Comida, Jamon, Queso, Gringo, Chica, 
Amigo, …   

• Basic Probability: 
– Probability, events, random variables 

– Expectation, variance / standard deviation  

– Conditional probability, independence, pairwise 
independence, mutual independence 

 



Expectation 

• 𝑿 = random variable with values 𝑥1, … , 𝑥𝑛, … 

• Expectation 𝔼 𝑿  

𝔼 𝑿 = xi ⋅ Pr [𝑿 = 𝑥𝑖]

∞

𝑖=1

 

• Properties (linearity):  
𝔼 𝑐𝑿 = 𝑐𝔼 𝑿  

𝔼 𝑿 + 𝒀 = 𝔼 𝑿] + 𝔼[𝒀  

• Useful fact: if all 𝑥𝑖 ≥ 0 and integer then  

𝔼 𝑿 =  Pr [𝑿 ≥ 𝑖]∞
𝑖=1    

 



Expectation 

• Example: dice has values 1, 2, … , 6 with 
probability 1/6 

𝔼[Value]= 

 𝑖 ⋅ Pr [𝑉𝑎𝑙𝑢𝑒 = 𝑖]

6

𝑖=1

 

=
1

6
 𝑖

6

𝑖=1

=
21

6
= 3.5 



Variance 

• Variance 𝑉𝑎𝑟 𝑿 = 𝔼[(X −𝔼[X])2] 

 
𝑉𝑎𝑟 𝑿 = 𝔼[(X −𝔼[X])2] =  
= 𝔼 𝑿2  − 2 𝐗 ⋅ 𝔼[X] + 𝔼[X]2  
= 𝔼[𝑿2] − 2𝔼[𝐗 ⋅ 𝔼[X]] + 𝔼[𝔼[X]2] 

 

• 𝔼[X] is some fixed value (a constant) 

• 2 𝔼[𝐗 ⋅ 𝔼[X]]= 2 𝔼[X] ⋅ 𝔼[X] =2 𝔼2[𝑿] 

• 𝔼[𝔼[X]2] =  𝔼2[X] 

• 𝑉𝑎𝑟 𝑿 = 𝔼[𝑿2] − 2 𝔼2 𝑿 +  𝔼2[X] = 𝔼[𝑿𝟐]  −  𝔼𝟐[X] 

• Corollary: 𝑉𝑎𝑟[𝑐𝑿]  =  𝑐2𝑉𝑎𝑟[𝑿]  



Variance 
• Example (Variance of a fair dice): 

𝔼[𝑉𝑎𝑙𝑢𝑒] = 3.5 
𝑉𝑎𝑟 𝑉𝑎𝑙𝑢𝑒 = 𝔼[ 𝑉𝑎𝑙𝑢𝑒 − 𝔼 𝑉𝑎𝑙𝑢𝑒 2] 

=𝔼[ 𝑉𝑎𝑙𝑢𝑒 − 3.5 2] 

=  𝑖 − 3.5 2 ⋅ 𝑃𝑟6
𝑖=1 𝑉𝑎𝑙𝑢𝑒 = 𝑖   

= 
1

6
 𝑖 − 3.5 26
𝑖=1  

=
1

6
 [ 1 –  3.5

2
+ 2 –  3.5

2
+ 3 –  3.5

2
 

+ 4 –  3.5 2+ 5 –  3.5 2 + 6 –  3.5 2] 

= 
1

6
6.25 + 2.25 + 0.25 + 0.25 + 2.25 +  6.25  

= 
8.75

3
≈  2.917  



Independence 

• Two random variables 𝑿 and 𝒀 are independent if 
and only if (iff) for every 𝑥, 𝑦: 
Pr 𝑿 = 𝑥, 𝒀 = 𝑦 = Pr 𝑿 = 𝑥 ⋅ Pr [𝒀 = 𝑦] 

• Variables 𝑿1, … , 𝑿𝑛 are mutually independent iff 

Pr 𝑿𝟏 = 𝑥1, … , 𝑿𝑛 = 𝑥𝑛 = Pr 𝑿𝒊 = 𝑥𝑖

𝑛

𝑖=1

 

• Variables 𝑿1, … , 𝑿𝑛 are pairwise independent iff for 
all pairs i,j 

Pr 𝑿𝒊 = 𝑥𝑖 , 𝑿𝑗 = 𝑥𝑗 = Pr 𝑿𝒊 = 𝑥𝑖 Pr 𝑿𝒋 = 𝑥𝑗  

 



Independence: Example    

Independent or not? 

• Event 𝐸1 = Argentina wins the World Cup 

• Event 𝐸2 = Messi becomes the best striker  

 

Independent or not? 

• Event 𝐸1 = Argentina wins against 
Netherlands in the semifinals 

• Event 𝐸2 = Germany wins against Brazil in the 
semifinals 



Independence: Example  

• Ratings of mortgage securities 
– AAA = 1% probability of default (over X years) 

– AA = 2% probability of default 

– A = 5% probability of default 

– B = 10% probability of default 

– C = 50% probability of default 

– D = 100% probability of default 

• You are a portfolio holder with 1000 AAA 
securities?  
– Are they all independent?  

– Is the probability of default 0.01 1000 = 10−2000?  

 
 



Conditional Probabilities 

• For two events 𝐸1 and 𝐸2: 

Pr 𝐸2 𝐸1 =
Pr [𝐸1 𝑎𝑛𝑑 𝐸2]

Pr [𝐸1]
 

• If two random variables (r.vs) are independent 
Pr 𝑋2 = 𝑥2|𝑋1 = 𝑥1  

=
Pr [𝑋1=𝑥1 𝑎𝑛𝑑 𝑋2=𝑥2]

Pr 𝑋1=𝑥1
  (by definition) 

=
Pr 𝑋1=𝑥1 𝑃𝑟 𝑋2=𝑥2

Pr[𝑋1=𝑥1]
  (by independence) 

= Pr [𝑋2 = 𝑥2]  

  

 



Union Bound 

For any events 𝐸1, … , 𝐸𝑘: 
Pr 𝐸1𝑜𝑟 𝐸2 𝑜𝑟 …𝑜𝑟 𝐸𝑘

≤ Pr 𝐸1 + Pr 𝐸2 +…+ Pr [𝐸𝑘] 

 

• Pro: Works even for dependent variables! 

• Con: Sometimes very loose, especially for mutually 
independent events 

Pr 𝐸1 𝑜𝑟 𝐸2 𝑜𝑟 …𝑜𝑟 𝐸𝑘 = 1 −  (1 − Pr 𝐸𝑖 )
𝑘
𝑖=1  



Union Bound: Example 

Events “Argentina wins the World Cup” and 
“Messi becomes the best striker” are not 
independent, but: 

Pr[“Argentina wins the World Cup” or  

“Messi becomes the best striker”] ≤  

Pr[“Argentina wins the World Cup”] + 

Pr[“Messi becomes the best striker”] 

 



Independence and Linearity of 
Expectation/Variance 

• Linearity of expectation (even for dependent 
variables!): 

𝔼  𝑋𝑖

𝑘

𝑖=1

= 𝔼[𝑋𝑖]

𝑘

𝑖=1

 

• Linearity of variance (only for pairwise independent 
variables!) 

𝑉𝑎𝑟  𝑋𝑖

𝑘

𝑖=1

= 𝑉𝑎𝑟[𝑋𝑖]

𝑘

𝑖=1

 

  



Part 2: Inequalities 

• Markov inequality 

• Chebyshev inequality 

• Chernoff bound 



Markov’s Inequality 

• For every 𝑐 > 0:    Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐
 

• Proof (by contradiction) Pr 𝑿 ≥ 𝑐 𝔼 𝑿 >
1

𝑐
  

𝔼 𝑿 =  𝑖 ⋅ Pr [𝑿 = 𝑖]𝑖                   (by definition) 

≥  𝑖 ⋅ Pr 𝑿 = 𝑖∞
𝑖=𝑐𝔼 𝑿           (pick only some i’s) 

≥  𝑐𝔼 𝑿 ⋅ Pr 𝑿 = 𝑖  ∞
𝑖=𝑐𝔼 𝑿              (𝑖 ≥ 𝑐𝔼 𝑿 ) 

= 𝑐𝔼 𝑿  Pr 𝑿 = 𝑖            ∞
𝑖=𝑐𝔼 𝑿  (by linearity) 

= 𝑐𝔼 𝑿 Pr 𝑿 ≥ 𝑐 𝔼 𝑿             (same as above) 

> 𝔼 𝑿          (by assumption Pr 𝑿 ≥ 𝑐 𝔼 𝑿 >
1

𝑐
) 



Markov’s Inequality 

• For every 𝑐 > 0:    Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐
 

• Corollary (c′ = 𝑐 𝔼 𝑿 ) : 

For every 𝑐′ > 0:  Pr 𝑿 ≥ 𝑐′ ≤
𝔼 𝑿

𝑐′
  

• Pro: always works! 

• Cons:  

– Not very precise 

– Doesn’t work for the lower tail: Pr 𝑿 ≤ 𝑐 𝔼 𝑿  

 



Markov Inequality: Example 

Markov 1: For every 𝑐 > 0: 

 Pr 𝑿 ≥ 𝑐 𝔼 𝑿 ≤
1

𝑐
 

• Example: 

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 1.5 ⋅  𝔼 𝑉𝑎𝑙𝑢𝑒 = Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 1.5 ⋅ 3.5 =

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 5.25 ≤
1

1.5
=
2

3
  

 
Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 2 ⋅  𝔼 𝑉𝑎𝑙𝑢𝑒 = Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 2 ⋅ 3.5  

= Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 7 ≤
1

2
 

 



Markov Inequality: Example 

Markov 2: For every 𝑐 > 0:  

Pr 𝑿 ≥ 𝑐 ≤
𝔼 𝑿

𝑐
  

• Example: 

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 4 ≤
𝔼 𝑉𝑎𝑙𝑢𝑒

4
= 
3.5

4
 =  0.875 (=  0.5) 

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 5 ≤
𝔼 𝑉𝑎𝑙𝑢𝑒

5
= 
3.5

5
= 0.7     ≈ 0.33  

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 6 ≤
𝔼 𝑉𝑎𝑙𝑢𝑒

6
= 
3.5

6
≈ 0.58   ≈ 0.17  

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 3 ≤
𝔼 𝑉𝑎𝑙𝑢𝑒

3
= 
3.5

3
≈ 1.17        = 1  

 

 

 

 

 



Markov Inequality: Example 

Markov 2: For every 𝑐 > 0:  

Pr 𝑿 ≥ 𝑐 ≤
𝔼 𝑿

𝑐
  

• Pr 𝑉𝑎𝑙𝑢𝑒 ≤ 𝑧 = Pr [(7 −  𝑉𝑎𝑙𝑢𝑒) ≥ 𝑧]: 

Pr 𝑉𝑎𝑙𝑢𝑒 ≤ 3 ≤
𝔼 7 − 𝑉𝑎𝑙𝑢𝑒

4
= 
3.5

4
 =  0.875 (=  𝟎. 𝟓) 

Pr 𝑉𝑎𝑙𝑢𝑒 ≤ 2 ≤
𝔼 7 − 𝑉𝑎𝑙𝑢𝑒

5
= 
3.5

5
= 0.7     ≈ 𝟎. 𝟑𝟑  

Pr 𝑉𝑎𝑙𝑢𝑒 ≤ 1 ≤
𝔼 7 − 𝑉𝑎𝑙𝑢𝑒

6
= 
3.5

6
≈ 0.58   ≈ 𝟎. 𝟏𝟕  

Pr 𝑉𝑎𝑙𝑢𝑒 ≤ 4 ≤
𝔼 7 − 𝑉𝑎𝑙𝑢𝑒

3
= 
3.5

3
≈ 1.17        = 𝟏  

 

 

 

 

 



Markov + Union Bound: Example 

Markov 2: For every 𝑐 > 0:  

Pr 𝑿 ≥ 𝑐 ≤
𝔼 𝑿

𝑐
  

• Example: 

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒 ≤ 3 ≤ 
Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 4] + 𝑃𝑟[𝑉𝑎𝑙𝑢𝑒 ≤ 3  = 2 ⋅ 0.875 = 1.75 

(= 𝟏) 

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 5 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒 ≤ 2 ≤ 2 ⋅ 0.7 = 1.4 
≈ 𝟎. 𝟔𝟔  

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 6 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒 ≤ 1 ≤ 2 ⋅ 0.58 ≈ 1.16   
≈ 𝟎. 𝟑𝟑  



Chebyshev’s Inequality 

• For every 𝑐 > 0:  

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿 ≤
1

𝑐2
 

• Proof:  

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿   

= Pr 𝑿 − 𝔼 𝑿 2 ≥ 𝑐2𝑉𝑎𝑟 𝑿                (by squaring) 
= Pr 𝑿 − 𝔼 𝑿 2 ≥ 𝑐2𝔼[ 𝑿 − 𝔼 𝑿 2 ] (def. of Var) 

≤
1

𝑐2
                                              (by Markov’s inequality) 

 



Chebyshev’s Inequality 

• For every 𝑐 > 0:  

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐 𝑉𝑎𝑟 𝑿 ≤
1

𝑐2
 

• Corollary (𝑐′ = 𝑐 𝑉𝑎𝑟 𝑿 ): 

For every 𝑐′ > 0:  

Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐′ ≤
𝑉𝑎𝑟 𝑿

𝑐′2
 

 



Chebyshev: Example 

• For every 𝑐′ > 0: Pr 𝑿 − 𝔼 𝑿 ≥ 𝑐′ ≤
𝑉𝑎𝑟 𝑿

𝑐′2
 

𝔼 𝑉𝑎𝑙𝑢𝑒 = 3.5;   𝑉𝑎𝑟 𝑉𝑎𝑙𝑢𝑒 ≈ 2.91 

 

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒 ≤ 3 =

𝑃𝑟 𝑉𝑎𝑙𝑢𝑒 − 3.5 > 0.5 ≤  
2.91

0.52
 ≈ 11.64 (= 𝟏) 

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 5 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒 ≤ 2 ≤
2.91

1.52
≈ 1.29   ≈ 𝟎. 𝟔𝟔  

Pr 𝑉𝑎𝑙𝑢𝑒 ≥ 6 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒 ≤ 1 ≤
2.91

2.52
≈ 0.47   ≈ 𝟎. 𝟑𝟑  

 



Chebyshev: Example 

• Roll a dice 10 times:  

𝑉𝑎𝑙𝑢𝑒10 = Average value over 10 rolls 
Pr 𝑉𝑎𝑙𝑢𝑒10 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒10 ≤ 3 = ? 

• 𝑋𝑖 = value of the i-th roll, 𝑿 =
1

10
  𝑋𝑖
10
𝑖=1    

• Variance (= by linearity for independent r.vs): 

𝑉𝑎𝑟 𝑿 = 𝑉𝑎𝑟
1

10
 𝑋𝑖

10

𝑖=1

=
1

100
𝑉𝑎𝑟  𝑋𝑖

10

𝑖=1

=
1

100
 𝑉𝑎𝑟 𝑋𝑖 ≈

1

100
⋅ 10 ⋅ 2.91 = 0.291

10

𝑖=1

  



Chebyshev: Example 

• Roll a dice 10 times:  

𝑉𝑎𝑙𝑢𝑒10 = Average value over 10 rolls 
Pr 𝑉𝑎𝑙𝑢𝑒10 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒10 ≤ 3 = ? 

• 𝑉𝑎𝑟 𝑉𝑎𝑙𝑢𝑒10 = 0.291 (if n rolls then 2.91 / n) 

• Pr 𝑉𝑎𝑙𝑢𝑒10 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒10 ≤ 3 ≤
0.291

0.52
≈ 1.16 

• Pr 𝑉𝑎𝑙𝑢𝑒𝑛 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒𝑛 ≤ 3 ≤
2.91

𝑛⋅0.52
≈
11.6

𝑛
 



Chernoff bound 

• Let 𝑋1…𝑋𝑡 be independent and identically 
distributed r.vs with range [0,1] and 
expectation 𝜇.  

• Then if 𝑋 =
1

𝑡
 𝑋𝑖𝑖  and 1 > 𝛿 > 0, 

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3
 

 



Chernoff bound (corollary) 

• Let 𝑋1…𝑋𝑡 be independent and identically 
distributed r.vs with range [0, c] and 
expectation 𝜇.  

• Then if 𝑋 =
1

𝑡
 𝑋𝑖𝑖  and 1 > 𝛿 > 0, 

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3𝒄
 

 



Chernoff: Example 

• Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3𝑐
 

• Roll a dice 10 times:  

𝑉𝑎𝑙𝑢𝑒10 = Average value over 10 rolls 
Pr 𝑉𝑎𝑙𝑢𝑒10 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒10 ≤ 3 = ? 

– 𝑋 =  𝑉𝑎𝑙𝑢𝑒10, 𝑡 =  10, c = 6 

– 𝜇 =  𝔼 𝑋𝑖 = 3.5 

– 𝛿 =
0.5

3.5
=
1

7
 

• Pr 𝑉𝑎𝑙𝑢𝑒10 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒10 ≤ 3 ≤ 2exp −
3.5⋅10

3⋅6⋅49
=

2exp −
35

882
≈ 2 ⋅ 0.96 = 1.92  

 
 

 

 



Chernoff: Example 

• Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3𝑐
 

• Roll a dice 1000 times:  

𝑉𝑎𝑙𝑢𝑒1000 = Average value over 1000 rolls 
Pr 𝑉𝑎𝑙𝑢𝑒1000 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒1000 ≤ 3 = ? 

– 𝑋 =  𝑉𝑎𝑙𝑢𝑒1000, 𝑡 =  1000, c = 6 

– 𝜇 =  𝔼 𝑋𝑖 = 3.5 

– 𝛿 =
0.5

3.5
=
1

7
 

• Pr 𝑉𝑎𝑙𝑢𝑒10 ≥ 4 𝑜𝑟 𝑉𝑎𝑙𝑢𝑒10 ≤ 3 ≤

2 exp −
3.5⋅1000

3⋅6⋅49
= 2exp −

3500

882
≈

2 ⋅ exp −3.96 ≈ 2 ⋅ 0.02 = 0.04  

 
 

 

 



Chernoff v.s Chebyshev: Example 

Let 𝜎 = 𝑉𝑎𝑟[𝑋𝑖] : 

• Chebyshev: Pr 𝑿 − 𝜇 ≥ 𝑐′ ≤
𝑉𝑎𝑟 𝑿

𝑐′2
=
𝜎

𝑡 𝑐′2
 

• Chernoff: Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝜇𝑡𝛿2

3𝑐
 

If 𝑡 is very big: 

• Values 𝜇, 𝜎, 𝛿, 𝑐, 𝑐′ are all constants! 

– Chebyshev: Pr 𝑿 − 𝜇 ≥ 𝑧 = 𝑂
1

𝑡
 

– Chernoff: Pr 𝑿 − 𝜇 ≥ 𝑧 = 𝑒−Ω(𝑡) 

 



Chernoff v.s Chebyshev: Example 

Large values of t is exactly what we need! 

• Chebyshev: Pr 𝑿 − 𝜇 ≥ 𝑧 = 𝑂
1

𝑡
 

• Chernoff: Pr 𝑿 − 𝜇 ≥ 𝑧 = 𝑒−Ω(𝑡) 

 

So is Chernoff always better for us? 

• Yes, if we have i.i.d. variables. 

• No, if we have dependent or only pairwise 
independent random varaibles. 

• If the variables are not identical – Chernoff-type 
bounds exist. 

 



Answers to the puzzles 
You see a sequence of values 𝑎1, … , 𝑎𝑛, arriving one by one:  

• (Easy)  
– If all 𝑎𝑖

′𝑠 are different and have values between 1 and 𝑛 + 1, 
which value is missing?  

– You have 𝑂(log 𝑛) space 

– Answer: missing value =  𝑖𝑛𝑖=1  −  𝑎𝑖
𝑛
𝑖=1  

• (Harder)   
– How can you maintain a uniformly random sample of 𝑆 

values out of those you have seen so far?  

– You can store exactly 𝑆 values at any time 

– Answer: Store first 𝑎1, … , 𝑎𝑆. When you see 𝑎𝑖  for 𝑖 > 𝑆, with 
probability S/𝑖 replace random value from your storage with 
𝑎𝑖. 



Part 3: Morris’s Algorithm 

• (Very hard, “Count the number of players”) 

– What is the total number of values up to error 
± 𝜖𝑛?  

– You have 𝑂(log log 𝑛 /𝜖2) space and can be 
completely wrong with some small probability  

 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0 

• When an item arrives, increase X by 1 with 

probability 
1

2𝑋
  

• When the stream is over, output 2𝑋 − 1 

 

Claim: 𝔼 2𝑋 = 𝑛 + 1  



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0, when an item arrives, increase X 

by 1 with probability 
1

2𝑋
  

Claim: 𝔼 2𝑋 = 𝑛 + 1  

• Let the value after seeing 𝑛 items be 𝑋𝑛 

𝔼 2𝑋𝑛 = Pr [𝑋𝑛−1 = 𝑗 ]𝔼 2
𝑋𝑛|𝑋𝑛−1 = 𝑗

∞

𝑗=0

 

=   Pr [𝑋𝑛−1 = 𝑗 ]
1

2𝑗
 2𝑗+1 + 1 −

1

2𝑗
2𝑗∞

𝑗=0  

=  Pr [𝑋𝑛−1 = 𝑗 ] 2
𝑗 + 1  ∞

𝑗=0 = 1 + 𝔼 2𝑋𝑛−1  

 

 

 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 
• Initialize 𝑋 to 0, when an item arrives, increase X by 1 with 

probability 
1

2𝑋
  

Claim: 𝔼 22𝑋 =
3

2
𝑛2 +

3

2
𝑛 + 1  

𝔼 22𝑋𝑛 = Pr [2𝑋𝑛−1 = 𝑗 ]𝔼 22𝑋𝑛|2𝑋𝑛−1 = 𝑗

∞

𝑗=0

 

=  Pr [2𝑋𝑛−1 = 𝑗 ]
1

𝑗
 4 𝑗2 + 1 −

1

𝑗
𝑗2∞

𝑗=0  

= Pr [2𝑋𝑛−1 = 𝑗 ] 𝑗2 + 3𝑗 = 𝔼 22𝑋𝑛−1 + 3𝔼 2𝑋𝑛−1  

∞

𝑗=0

 

= 3
n − 1 2

2
+ 3(n − 1)/2  + 1 + 3n  

 
 
 
 



Morris’s Algorithm: Alpha-version  

Maintains a counter 𝑋 using log log 𝑛 bits 

• Initialize 𝑋 to 0, when an item arrives, 

increase X by 1 with probability 
1

2𝑋
  

• 𝔼[2𝑋] = n + 1, 𝑉𝑎𝑟 2𝑋 = 𝑂 𝑛2   

• Is this good? 



Morris’s Algorithm: Beta-version  

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits 
for each 

• Initialize 𝑋𝑖
′
𝑠 to 0, when an item arrives, increase 

each 𝑋𝑖 by 1 independently with probability 
1

2𝑋
𝑖 

• Output Z =  
1

𝑡
( 2𝑋

𝑖
 − 1)𝑡

𝑖=1     

• 𝔼[2𝑋𝑖] = n + 1, 𝑉𝑎𝑟 2𝑋𝑖 = 𝑂 𝑛2   

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟 
1

𝑡
 2𝑋

𝑗𝑡
𝑗=1 − 1 = 𝑂

𝑛2

𝑡
  

• Claim: If 𝑡 ≥
𝑐

𝜖2
 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3 



Morris’s Algorithm: Beta-version  

Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 
bits for each 

• Output Z =  
1

𝑡
( 2𝑋

𝑖
 − 1)𝑡

𝑖=1     

• 𝑉𝑎𝑟 𝑍 = 𝑉𝑎𝑟 
1

𝑡
 2𝑋

𝑗𝑡
𝑗=1 − 1 = 𝑂

𝑛2

𝑡
  

• Claim: If 𝑡 ≥
𝑐

𝜖2
 then Pr 𝑍 − 𝑛 > 𝜖𝑛 < 1/3 

– Pr 𝑍 − 𝑛 > 𝜖 𝑛 <
𝑉𝑎𝑟[𝑍]

𝜖2𝑛2
= 𝑂

𝑛2

𝑡
⋅
1

𝜖2𝑛2
 

– If 𝑡 ≥
𝑐

𝜖2
 we can make this at most 

1

3
 



Morris’s Algorithm: Final 

• What if I want the probability of error to be 
really small, i.e. Pr 𝑍 − 𝑛 > 𝜖 𝑛 ≤ 𝛿? 

• Same Chebyshev-based analysis: 𝑡 = 𝑂
1

𝜖2𝛿
 

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times 

independently in parallel and output the 
median answer. 

• Total space: 𝑂
log log 𝑛⋅log

1

𝛿

𝜖2
 

  

 



Morris’s Algorithm: Final 

• Do these steps 𝑚 = 𝑂 log
1

𝛿
 times 

independently in parallel and output the median 
answer 𝑍𝑚. 

 
Maintains 𝑡 counters 𝑋1, … , 𝑋𝑡 using log log 𝑛 bits 
for each 

• Initialize 𝑋𝑖
′
𝑠 to 0, when an item arrives, increase 

each 𝑋𝑖 by 1 independently with probability 
1

2𝑋
𝑖 

• Output Z =  
1

𝑡
( 2𝑋

𝑖
 − 1)𝑡

𝑖=1     

 



Morris’s Algorithm: Final Analysis 

Claim: Pr 𝑍𝑚  − 𝑛 > 𝜖 𝑛 ≤ 𝛿 

• Let 𝑌𝑖 be an indicator r.v. for the event that 
𝑍𝑖  − 𝑛 ≤ 𝜖𝑛, where 𝑍𝑖  is the i-th trial. 

• Let 𝑌= 𝑌𝑖𝑖 .  

• Pr 𝑍𝑚 − 𝑛 > 𝜖𝑛 ≤ Pr 𝑌 ≤
𝑚

2
≤

Pr 𝑌 − 𝔼 𝑌 ≥
𝑚

6
≤ Pr 𝑌 − 𝔼 𝑌 ≥

𝜇

4
≤

exp −𝑐
1

42
2𝑚

3
< exp −𝑐 log

1

𝛿
< 𝛿 

 



Thank you! 

• Questions? 

• Next time:  

–More streaming algorithms 

– Testing distributions 

 


