Sublinear Algorihms for Big Data

Lecture 1

Grigory Yaroslavtsev

http: [[grlgory us

http://grigory.us/

Part O: Introduction

Disclaimers
Logistics
Materials

Name

Correct:

* Grigory

* Gregory (easiest and highly recommended!)
Also correct:

* Dr. Yaroslavtsev (I bet it’s difficult to pronounce)
Wrong:

* Prof. Yaroslavtsev (Not any easier)

Disclaimers

 Alot of Math!

FIELDS arrAnGED BY PORITY
FORE PURE ~

SOCIOLOGY 1S PSYCHOLOGY IS BIOLeGY 1S WHICH 1S JusT
JUST APPUED JUsT APPLIED JUST APPLIED APPLIED PHYSICS,
PSYC‘-I-IGHTJG? Hiﬂmﬁv EHEH15TFE‘:" IT's NICE TO

GE ON TOF.

BE SN

OH, HEY, T DIDNT
SEE YOU GUYS ALL
THE WAY OVER THERE.

L

SDCIELGGIEI"S PEYCHOLOGISTS EJCI.DGIETS chsm PHvSI::Jsrs

MATHEMATICIANS

Disclaimers

No programming!

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME pin), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Eu,.. THE RUNNING TIME IS O¢pm)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND .,

“' /1.?
y’*"f’d

WTF, MAN. I JUST
WANTED TO LEARN
How TO PROGRAM
VIDEO GAMES,

ein LA

nP’@_‘a_}A(_

Disclaimers

* 10-15 times longer than “Fuerza Bruta”, soccer
game, milonga...

Big Data

Data

Programming and Systems
Algorithms

Probability and Statistics

Sublinear Algorithms

n = size of the data, we want o(n), not O(n)

e Sublinear Time
— Queries
— Samples
e Sublinear Space
— Data Streams
— Sketching
* Distributed Algorithms

— Local and distributed computations
— MapReduce-style algorithms

Why is it useful?

* Algorithms for big data used by big companies

(ultra-fast (randomized algorithms for
approximate decision making) GO 816

— Networking applications (counting and detecting
patterns in small space)

— Distributed computations (small sketches to reduce
communication overheads)

* Aggregate Knowledge: startup doing streaming
algorithms, acquired for S150M k -
* Today: Applications to soccer a ‘8

Course Materials

* Will be posted at the class homepage:
http://grigory.us/big-data.html
* Related and further reading:
— Sublinear Algorithms (MIT) by Indyk, Rubinfeld

— Algorithms for Big Data (Harvard) by Nelson

— Data Stream Algorithms (University of
Massachusetts) by McGregor

— Sublinear Algorithms (Penn State) by
Raskhodnikova

http://grigory.us/big-data.html
http://grigory.us/big-data.html
http://grigory.us/big-data.html

Course Overview

* Lecturel
* Lecture 2
* Lecture 3
* Lecture 4
* Lecture S

3 hours = 3 x (45-50 min lecture + 10-15 min
break).

Puzzles

You see a sequence of values a4, ..., a,, arriving one
by one:
* (Easy, “Find a missing player”)

— If all a;s are different and have values between 1 and
n + 1, which value is missing?

— You have O(logn) space
 Example:

— There are 11 soccer players with numbers 1, ..., 11.

— You see 10 of them one by one, which one is missing?
You can only remember a single number.

ing?

Which number was miss

Puzzle #1

You see a sequence of values a4, ..., a,, arriving one
by one:
* (Easy, “Find a missing player”)

— If all a;s are different and have values between 1 and
n + 1, which value is missing?

— You have O(logn) space
 Example:

— There are 11 soccer players with numbers 1, ..., 11.

— You see 10 of them one by one, which one is missing?
You can only remember a single number.

Puzzle #2

You see a sequence of values aq, ..., a,, arriving
one by one:

* (Harder, “Keep a random team”)

— How can you maintain a uniformly random sample
of S values out of those you have seen so far?

— You can store exactly S items at any time

 Example:

— You want to have a team of 11 players randomly
chosen from the set you have seen.

— Players arrive one at a time and you have to
decide whether to keep them or not.

Puzzle #3

You see a sequence of values ay, ..., a,, arriving
one by one:

* (Very hard, “Count the number of players”)

— What is the total number of values up to error
+ en?

— You have O(loglogn /€?) space and can be
completely wrong with some small probability

Puzzles

You see a sequence of values a4, ..., a,, arriving one by one:
* (Easy, “Find a missing player”)

— If all a;s are different and have values between 1 and n + 1,
which value is missing?

— You have O(logn) space

* (Harder, “Keep a random team”)

— How can you maintain a uniformly random sample of S values
out of those you have seen so far?

— You can store exactly S items at any time
* (Very hard, “Count the number of players”)
— What is the total number of values up to error +en?

— You have O(loglogn /€?) space and can be completely wrong
with some small probability

Part 1: Probability 101

“The bigger the data the better you should
know your Probability”

* Basic Spanish: Hola, Gracias, Bueno, Por favor,
Bebida, Comida, Jamon, Queso, Gringo, Chica,
Amigo, ...

e Basic Probability:

— Probability, events, random variables
— Expectation, variance / standard deviation

— Conditional probability, independence, pairwise
independence, mutual independence

Expectation

X =random variable with values x4, ..., x,,, ...

Expectation E[X]
E[X] = Z X; * Pr[X = x;]

Properties (linearity):
E|cX] = cE[X]

E|X + Y] = E|X] + E[Y]
Useful fact: if all x; = 0 and integer then

E[X] = %22, Pr{X > i]

Expectation ‘.‘gi

)

 Example: dice has values 1, 2, ..., 6 with
probability 1/6

E[Value]=
6

z i - Pr[Value = i
i=1

6
12- _
6 | =

1=1

Variance
e Variance Var[X] = E[(X —E[X]*]

Var[X] = E[(X —E[X])?]=
= E[X2 —2X- E[X] + E[X]?]
= E[X?%] — 2E[X - E[X]] + E[E[X]?]

* [E|X] is some fixed value (a constant)

« 2E[X-E[X]]=2E[X] - E[X] =2 E?[X]

- E[E[X]?] = E*[X]

» Var[X] = E[X?] — 2 E?|X]| + E?[X] = E[X?]
* Corollary: Var[cX] = c*Var[X]

- E*[X]

Variance

 Example (Variance of a fair dice):

E[Value] = 3.5
Var[Value] = E[(Value — E[Value])?]
=E[(Value — 3.5)?]

Z _,(i —3.5)% - Pr[Value = i]
Z _, (0 — — 3.5)*
2 2 2
=g [(1-3.5) +(2-3.5) +(3-3.5)
+(4 3.5)%+ (5 - 3.5)% + (6 - 3.5)“]
2 [6.25 +2.25 +0.25 + 0.25 + 2.25 + 6.25]
> ~ 2917

ooo*\l

w ‘

Independence

* Two random variables X and Y are independent if
and only if (iff) for every x, y:

PrI X =x,Y =y] =Pr|X = x] : Pr[Y = y]
* Variables X4, ..., X,, are mutually independent iff

n
PriXq{ = xq, ..., X, = x| = 1_[Pr|X; = x{]
i=1

* Variables X4, ..., X,, are pairwise independent iff for
all pairs i,j

Pr|X; = x;, X; = x;| = Pr[X; = x;] Pr[X; = x;]

Independence: Example

Independent or not?
* Event £; = Argentina wins the World Cup
* Event E, = Messi becomes the best striker

Independent or not?

* Event E; = Argentina wins against
Netherlands in the semifinals

* Event E, = Germany wins against Brazil in the
semifinals

Independence: Example

* Ratings of mortgage securities
— AAA = 1% probability of default (over X years)
— AA = 2% probability of default
— A =5% probability of default
— B = 10% probability of default
— C=50% probability of default
— D =100% probability of default

* You are a portfolio holder with 1000 AAA
securities?

— Are they all independent?
— Is the probability of default (0.01)1900 = 1029007

Conditional Probabilities

* Fortwo events E; and E5:

Pr|E; and E,]
Pr(E |
* |f two random variables (r.vs) are independent
Pr(X; = x3]|X; = x4]
__ PriX;=x1 and X,=x;] C
= T (by definition)
. Pr‘[X1=x1]PT[X2=x2] .
= T (by independence)

= Pr[Xz = XZ]

Pr|E,|E{] =

Union Bound

For any events Ey, ..., E:

Pr|E or E, or ...or Ej]
< Pl‘[El] + Pr[Ez] + ...+ Pr[Ek]

* Pro: Works even for dependent variables!

* Con: Sometimes very loose, especially for mutually
independent events

PrlE;or E, or ...or E;] =1 — Hé‘zl(l — Pr|E;])

Union Bound: Example

Events “Argentina wins the World Cup” and
“Messi becomes the best striker” are not
independent, but:

Pr[“Argentina wins the World Cup” or
“Messi becomes the best striker”] <
Pr[“Argentina wins the World Cup”] +
Pr[“Messi becomes the best striker”]

Independence and Linearity of
Expectation/Variance

* Linearity of expectation (even for dependent

variables!):
kK k
i=1 i=1

* Linearity of variance (oniy for pairwise independent
variables!)

Var

| k
Xi — 2 VClT'[Xi]
] =1

||'M =
p—

Part 2: Inequalities

* Markov inequality
* Chebyshev inequality
* Chernoff bound

Markov’s Inequality

» Foreveryc > 0: Pr[X > cE[X]]| < -

C

* Proof (by contradiction) Pr[X > C IE[X]] > %

E[X] =);i Pr[X =] (by definition)
> Yiccpx i PriX =] (pick only some i’s)
> Yizcrix) CE[X] - Pr[X = i] (i = cE[X])
= cE[X] X2 cgpx) PriX = i] (by linearity)
= cE[X] Pr|X = ¢ E[X]] (same as above)

> E|X] (by assumption Pr[X > C IE[X]] > %)

Markov’s Inequality

* Foreveryc > 0: Pr[X > C IE[X]] < %

* Corollary (¢’ = c E[X]):

E[X]

Foreveryc' > 0: Pr[IX > '] < ~

* Pro: always works!
* Cons:

— Not very precise
— Doesn’t work for the lower tail: Pr[X <c IE[X]]

Markov Inequality: Example

V=
Markov 1: For every ¢ > 0: ‘.:’
1 \
Pr[X > ¢ E[X]]| < -
 Example:
Pr[Value > 1.5 - E[Value]| = Pr[Value = 1.5 - 3.5] =
Pr{Value = 5.25] < 1—15 = g

Pr[Value > 2 -]E[Value]] = Pr[Value = 2 - 3.5]
1
= Pr[Value > 7] < >

Markov Inequality: Example

‘ - -
Markov 2: For every ¢ > 0: ‘.:’
E[X])
PriX>c] < ;
 Example:
Pr[Value > 4] < 24 = 22— 0,875 (= 0.5)
Pr[Value > 5] < 244 = 22207 (~ 0.33)
Pr[Value > 6] < 4% = 22 5 058 (~ 0.17)

Pr{Value >3] < 4% = 222117 (=1)

Markov Inequality: Example

Markov 2: For every ¢ > O: ‘
E[X] ‘
PriIX>c]<——

C
* Pr|Value < z| = Pr[(7 — Value) = z]:

Pr[Value < 3] < HZ2-Yuel _ 35 _ 875 (= 0.5)

“'

4 4-
Pr{Value < 2] < =4 = 22207 (= 0.33)
Pr{Value < 1] < =% = 225 058 (~ 0.17)
PriValue < 4] < =2 = 222117 (= 1)

Markov + Union Bound: Example

‘-:-
: :)
Markov 2: For every ¢ > 0: ‘.g’

Pr[XZC]SIE[CX])

 Example:

Pr[Value = 4 or Value < 3] <
Pr[Value = 4] + Pr[Value < 3] =2-0.875 =1.75
(=1)
Pr[Value = 5o0r Value <2 <2-0.7=14
(=~ 0.66)
Pr|Value = 6 or Value < 1] < 2-:0.58 = 1.16
(=~ 0.33)

Chebyshev’s Inequality

* Foreveryc > 0:

Pr [IX —E[X]| = ¢ JVar[X]] <

2
* Proof:

Pr [|X —E[X]| > ¢ JVar[Xj]

= Pr[|X — E[X]|* = c*Var[X]] (by squaring)

= Pr[|X — E[X]|? > CZIE[lX_ — E[X]|%]] (def. of Var)
<= (by Markov’s inequality)

c2

Chebyshev’s Inequality

* Foreveryc > 0O:

Pr[IX — E[X]| = C\/Var[X]] Sclz

* Corollary (¢’ = \/Var[X]):
For every ¢’ > O:
Var|X]

PrlX — E[X]| = 1 < —

Chebyshev: Example

* Foreveryc' > 0: Pr[|X —E[X]| =] <—;
C
E[Value| = 3.5; Var [Value] = 2.91

Pr[Value = 4 or Value < 3] =

Pr[|Value — 3.5] > 0.5] < %~1164(— 1)

Pr[Value = 5 or Value < 2] < % ~1.29 (= 0.66)

Pr[Value = 6 or Value < 1] < % ~ 0.47 (= 0.33)

Chebyshev: Example

e Roll a dice 10 times:

Value;y = Average value over 10 rolls
Pr|Value,y = 4 or Value, < 3] =7

* X; =value of thei-throll, X = i 2.10

e Variance (= by |near|ty for mdependent rvs)'

1
Var(x) = v _ZX. Ly zx
ar|X] ar | 75 i| =1g0Var

1OOZVa’r m 10-2.91 =0.291

)

Chebyshev: Example ".3.’

Roll a dice 10 times:

Value,, = Average value over 10 rolls
Pr|Valuey = 4 or Value;y, < 3] =7

Var|[Value,y] = 0.291 (if n rolls then 2.91 / n)

Pr|Valueyy = 4 or Value;y < 3] < % ~ 1.16

291 11.6

n-0.52 n

Pr[Value,, = 4 or Value,, < 3] <

Chernoff bound

* Let X ... X; be independent and identically
distributed r.vs with range [0,1] and
expectation L.

* Thenif X = %ZiXi and1 >0 >0,

uts?
Pri|X —ul = du] < 2exp 3

Chernoff bound (corollary)

* Let X ... X; be independent and identically
distributed r.vs with range [0, c] and
expectation L.

* Thenif X = %ZiXi and1 >0 >0,

uts?
Pri|X —ul = du] < 2exp 3

Chernoff: Example

t5?
e Pr[|X —pu| = 6u] < 2exp (— e)

* Roll a dice 10 times:
Value;y = Average value over 10 rolls
Pr|Value,y = 4 or Value,, < 3] =7
— X = Valueqyp, t = 10, c =6
— u= E[X;] =35
05 1

_ 5=

35 7

* Pr[Value,y = 4 or Valueyy < 3] < 2exp (— ziig) =
35

2exp (——) ~ 2+ 0.96 = 1.92

Chernoff: Example

2
e Pr[|X —pu| = 6u] < 2exp (— Hto)

3C
 Roll a dice 1000 times:

Valueqyo9 = Average value over 1000 rolls

Pr[Valuelooo > 4 or Valu81000 < 3] =7
— X = Valuelooo, t = 1000, c=6
_os_1
- 0=3577
* Pr[Value,y = 4 or Value,;, < 3] <

2exp (~2180) = 2y (20)’

2-exp(—3.96) = 2-0.02 = 0.04

Chernoff v.s Chebyshev: Example _

\
\
Leto = Var[X;] : '
) . B / Var|X] o
Chebyshev: Pr(|X —ul = '] < —==—
2
* Chernoff: Pr[|X —u| = éu] <2 exp(M;(Z)

If t is very big:

* Values u, 0, d,c, c’ are all constants!
— Chebyshev: Pr[|X —u|=2z] =0 (%)
— Chernoff: Pr[|X — u| = z] = e~ %®

Chernoff v.s Chebyshev: Example _

Vot
%
Large values of t is exactly what we need! \ g’

* Chebyshev: Pr[|X —pu| =2z] =0 (%)

e Chernoff: Pr[|X — u| = z] = e~ %@

So is Chernoff always better for us?
* Yes, if we have i.i.d. variables.

* No, if we have dependent or only pairwise
independent random varaibles.

* |If the variables are not identical — Chernoff-type
bounds exist.

Answers to the puzzles

You see a sequence of values a4, ..., a,, arriving one by one:

* (Easy)

— If all a;s are different and have values between 1 and n + 1,
which value is missing?

— You have O(logn) space
— Answer: missingvalue =" i — X1, a;
* (Harder)

— How can you maintain a uniformly random sample of S
values out of those you have seen so far?

— You can store exactly S values at any time

— Answer: Store first a4, ..., as. When you see a; fori > §, with
probability S/i replace random value from your storage with
a;.

Part 3: Morris’s Algorithm

* (Very hard, “Count the number of players”)

— What is the total number of values up to error
+ en?

— You have O(loglogn /€?) space and can be
completely wrong with some small probability

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits
* |nitialize X to O
* When an item arrives, increase X by 1 with

probability ziX

« When the stream is over, output 2% — 1

Claim: E[2¥]=n+1

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits

* Initialize X to O, when an item arrives, increase X
by 1 with probability

Claim: E[2%] =n+1

* Letthe vaIue after seeing n items be X,

E[2%n] = Zpr JE[2%7| X,y =]

= 2j=0Prl¥n—s =] (5 271 + (1 - 5)2/)
= Dj=o Pr[Xp—1 = (27 + 1) =1 + E[2%n—1]

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits
* Initialize X tcl) 0, when an item arrives, increase X by 1 with
probabilityZ—X

Claim: E[2%%] = %nz + %n +1

E[27%] =) Pr{2%n-1 =] B[22 2501 = J]
=0

=3z oprizie =1 (2472 + (1 -2)2)

= z Pr[2%n-1 = j](j? + 3j) = E[2%%n-1] + 3E[2%n-1]

j=0

(n —1)°
3 > +3(n-1)/2 +1+3n

Morris’s Algorithm: Alpha-version

Maintains a counter X using loglogn bits

* Initialize X to O, when an item arrives,
increase X by 1 with probability ziX

e E[2*]=n+ 1, Var[2%] = 0(n?)

* [s this good?

Morris’s Algorithm: Beta-version

Maintains t counters X1, ..., X¢ using loglog n bits
for each

./
* |nitialize X' s to 0, when an item arrives, increase
/ . . |
each X' by 1 independently with probability e

. Output Z = %(Zlezx" —1)

e E[2%i] =n + 1, Var[2¥i] = 0(n?)
; 2

e Var[Z] = Var (% ¢ 2% 1) ~0 ("7)

. C
e Claim:Ift > E—Zthen Pr||Z —n| >en] <1/3

Morris’s Algorithm: Beta-version

Maintains t counters X1, ..., Xt using loglogn
bits for each

+ Output Z = —(¥f_, 2% — 1)
2
. Var[Z] = Var (1 t_ 2% — 1) — 0 ("—)

. C
e Claim:Ift = E—Zthen Pr]|Z —n| >en] <1/3

2
—Pr||Z —n|>en| < varlZ] _ O(n—)- -

e2n? t e2n?

—Ift > 6—2 we can make this at most —

Morris’s Algorithm: Final

What if | want the probability of error to be
really small, i.e. Pr[|Z — n| > en] < 67?

Same Chebyshev-based analysis: t = O (L)

€26
Do these stepsm = 0O (log %) times

independently in parallel and output the
median answer.

loglog n-log%
€2

Total space: O (

Morris’s Algorithm: Final

* Do thesestepsm = 0 (log () times

mdependently in parallel and output the median
answer Z™

Maintains t counters X1, ..., X¢ using loglog n bits
for each

e |nitialize Xl s to 0, when an item arrives, mcrease
each X! by 1 independently with probablllty —

 Output Z = ;(Zizlzx‘ —1)

Morris’s Algorithm: Final Analysis

Claim: Pr[|Z™ —n|>en] <6

* Let Y; be an indicator r.v. for the event that
Z; —n| < en, where Z; is the i-th trial.

* let Y: Zi Yl

o Pr[|Z™ —n| > en] < Pr[Y S%‘ <

Pr|ly — E[Y]| = Z| < Pr|ly — E[Y]| 2 4| <

exp(€) < exp (—cﬁ.og%) <0

Thank youl!

* Questions?

* Next time:
—More streaming algorithms
— Testing distributions

