Badger Rampage: Multi-Dimensional Balanced Partitioning of Facebook-scale Graphs

Grigory Yaroslavtsev
(Indiana University, Bloomington) http://grigory.us/blog

Dmitry Avdyukhin (Indiana University), Sergey Pupyrev (Facebook)

$2^{\text {nd }}$ Workshop on Local Algorithms, MIT, June 14, 2018

"Three Schools of Thought" in Algorithms \& Complexity

- Boston (MIT \& Harvard)
- Youthful \& innovative attacks on problems, driven by PhD students with new ideas ("grad student descent")
- "Relentless optimism ;)": faster algorithms, e.g.
sublinear time, gradient descent, unconditional results

"Three Schools of Thought" in Algorithms \& Complexity

- New York \& Chicago (Princeton, NYU, U Chicago)
- Abstract and skeptical theory building, driven by fundamental questions and big agendas
- "Life is hard...": polynomial-time, hardness of approximation, conditional hardness, beyond-worst case analysis

"Three Schools of Thought" in Algorithms \& Complexity

- Bay area (Stanford \& Berkeley)
- No time for philosophy, driven by applications and societal needs
- "Let's start a company and change the society!": machine learning/Al, fairness, social networks, privacy

This talk

- "Boston school"
- Fast, optimistic and specific: sublinear time, streaming, distributed, gradient descent
- "Bay area school"
- Driven by applications, does it work in practice and scale to large data?

Balanced Graph Partitioning

- Partition $G(V, E)$ into k parts $\boldsymbol{V}_{\mathbf{1}}, \boldsymbol{V}_{\mathbf{2}}, \ldots, \boldsymbol{V}_{\boldsymbol{k}}$:
- Each part contains $(1 \pm \epsilon) \frac{|V|}{k}$ vertices
- \# of edges inside the parts is maximized
- Goal: make it work for the real Facebook graph
- Load balancing
- Community detection
- Selecting representative subsets for training
- ...

Facebook Graph

$\#$ vertices $\approx 2 \times 10^{9}, \#$ edges $\approx 10^{12}$

facebook

Hard in Theory, Important in Practice

- Minimizing the cut
- No constant-factor approximation for $\epsilon=0, k \geq 3$ unless P = NP [Andreev, Racke'06]
- Best approximation: polylog [Feige, Krauthgamer’02]
- Max n/2-UNCUT
$-\approx 0.64$ via SDP [Halperin, Zwick, IPCO’01]
- If approximate balance is allowed, what is the hardness of this problem?

Hard in Theory, Important in Practice

- Previous generation tools:
- METIS [Karypis, Kumar, ‘95]
- Google:
- Linear embedding: [Aydin, Bateni, Mirrokni, WSDM’16]
- Facebook:
- Label propagation: [Ugander, Backstrom, WSDM'13]
- SocialHash partitioner: [Kabiljo, Karrer, Pundir, Pupyrev, Shalita, Akhremtsev, Presta, VLDB’17]
- Spinner [Martella, Logothetis, Loukas, Siganos, ICDE'17]
- Some other papers:
- FENNEL [Tsourakakis, Gkantsidis, Radunovic, Vojnovic, WSDM'14]

Multidimensional Balanced Graph Partitioning

- Balance according to multiple weights (≥ 0)
- Each vertex i has d weights: $w_{i, 1}, w_{i, 2}, \ldots, w_{i, d}$
- Let $w_{j}(S)=\sum_{i \in S} w_{i j}$ for each $j \in[d]$
- Want $w_{j}\left(V_{t}\right)=\frac{(1 \pm \epsilon) w_{j}(\mathrm{~V})}{k}$ for each part V_{t}
- Balanced graph partitioning: $d=1, \forall i: w_{i 1}=1$
- Balance of the sum of degrees in each part:

$$
w_{i 2}=\operatorname{deg}(i)
$$

- Note: can be impossible as weights are unrelated

Existing approaches are combinatorial

- Local search, branch and bound, "linear embedding", etc ...
- Difficult to extend to the multi-dimensional case
- Don't scale very well
- Don't produce good results
- Our approach is gradient descent based:
- Easy to implement
- Scales well on Facebook-scale graphs
- Handles multiple balance constraints naturally

Quadratic Integer Program

- Variable x_{i} for each vertex:
- $i \in V_{1}: x_{i}=1$
- $i \in V_{2}: x_{i}=-1$

Maximize: $\quad \sum_{\left(i_{1}, i_{2}\right) \in E} \frac{1}{2}\left(x_{i_{1}} x_{i_{2}}+1\right)$
Subject to: $\quad\left|\sum_{i=1}^{n} w_{i j} x_{i}\right| \leq \epsilon \sum_{i=1}^{n} w_{i j} \quad \forall j \in[d]$

$$
x_{i} \in\{-1,1\} \quad \forall i \in V
$$

Non-convex relaxation

- $x_{i} \rightarrow$ continuous variables

$$
x_{i} \in[-1,1]
$$

Maximize: $\quad \sum_{\left(i_{1}, i_{2}\right) \in E} \frac{1}{2}\left(x_{i_{1}} x_{i_{2}}+1\right)$
Subject to: $\quad\left|\sum_{i=1}^{n} w_{i j} x_{i}\right| \leq \epsilon \sum_{i=1}^{n} w_{i j} \quad \forall j \in[d]$

$$
x_{i} \in[-1,1] \quad \forall i \in V
$$

Randomized Projected Gradient Descent

- Objective: $f(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$ (up to constants)
$-\nabla f(x)=A x, \quad \nabla^{2} f(x)=A$
- Projected Gradient Descent
- Set $\boldsymbol{x}_{0}=\mathbf{0}$
- For $i=1$... t :
- Gradient step: $\boldsymbol{y}_{i}=\boldsymbol{x}_{i}+\gamma \cdot \nabla f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\boldsymbol{x}_{i}(I+\gamma A)$
- Project on the feasible space: $\boldsymbol{x}_{i+1}=\operatorname{Proj}\left(\boldsymbol{y}_{i}\right)$
- Note that $\mathbf{x}_{0}=\mathbf{0}$ is a saddle point
- Add random noise: $\boldsymbol{x}_{i}^{\prime}=\boldsymbol{x}_{i}+N_{d}(0,1)$

Projection Step

- $\operatorname{Proj}\left(\boldsymbol{y}_{\boldsymbol{i}}\right)$ is $\boldsymbol{x}=$ closest * point to $\boldsymbol{y}_{\boldsymbol{i}}$ satisfying:

$$
\begin{aligned}
\left|\sum_{i=1}^{n} w_{i j} x_{i}\right| \leq \epsilon \sum_{i=1}^{n} w_{i j} \quad \forall j \in[d] \\
x_{i} \in[-1,1] \quad \forall i \in V
\end{aligned}
$$

${ }^{*}$ closest in ℓ_{2} (Euclidean distance)

- Projection is a computationally expensive step
- For $d=1$ can be done in $O(n)$ time [Maculan, et al. '03]
- For $d=2$ we give an $O\left(n \log ^{2} n\right)$ time algorithm
- Open: Give $\tilde{O}(n)$ time algorithm for any fixed d

Badger Rampage:

BalAnceD GRaph Partitioining via

RAndoMized Projected Gradient DEscent

- Set $\boldsymbol{x}_{0}=\mathbf{0}$
- For $i=1 \ldots t$:
- Gradient step: $\boldsymbol{y}_{i}=\left(\boldsymbol{x}_{i}+N_{d}(0,1)\right) \cdot(I+\gamma A)$
- Project on the feasible space: $\boldsymbol{x}_{i+1}=\operatorname{Proj}\left(\boldsymbol{y}_{i}\right)$
- \quad * If fractional values remain, use them as rounding probabilities
- Open: What can we say about convergence?
- Randomized PGD converges to a local minimum if all constraints are equalities [Ge, Huang, Jin, Yuan, COLT'15]
- With inequalities even computing Frank-Wolfe conditional gradient is NPhard

Projection Problem

- Feasible region: $B_{\infty} \cap\left(\cap_{j=1}^{d} S_{\epsilon}^{j}\right)$, where:
- l_{∞}-ball $B_{\infty}=\left\{x \in R^{n} \mid x_{i} \in[-1 ; 1]\right\}$
- Slice $\boldsymbol{S}_{\epsilon}^{j}=\left\{x \in R^{n}| | \sum_{i=1}^{n} w_{i j} x_{i} \mid \leq \epsilon \sum_{i=1}^{n} w_{i j}\right\}$
- Approaches:
- Solve exactly using KKT conditions
- Alternating projections:
$P_{B_{\infty}}\left(P_{S_{\epsilon}^{1}}\left(P_{S_{\epsilon}^{2}}\left(\ldots P_{S_{\epsilon}^{d}}\left(P_{B_{\infty}}(\ldots(y) \ldots)\right.\right.\right.\right.$
- Finds a point in the feasible space, not necessarily closest
- Dykstra's projection algorithm
- Converges to the projection

Projection problem

Minimize: $f(\boldsymbol{x})=\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$
Subject to:

$$
\begin{array}{ll}
x_{i}^{2} \leq 1 & \forall i \in[n] \\
\sum_{\substack{n \\
n}}^{n} w_{i j} x_{i} \leq c & \forall j \in[d] \\
\sum_{i=1}^{n} w_{i j} x_{i} \geq-c & \forall j \in[d]
\end{array}
$$

After simplifying KKT conditions...

- KKT is equivalent to finding $\lambda_{1}, \ldots, \lambda_{d}$ such that \boldsymbol{x} satisfies the constraints, where
$-x_{i}=\left[y_{i}-\sum_{j} \lambda_{j} w_{i j}\right]$, where [] is rounding to $[-1,1]$
- I.e. shift y by a lin. combination, then project on B_{∞}
- \boldsymbol{x} is the projection if it satisfies constraints:

$$
\begin{aligned}
& -\lambda_{j}<0 \Rightarrow \sum_{i} w_{i j} x_{i}=c \\
& -\lambda_{j}=0 \Rightarrow \sum_{i} w_{i j} x_{i} \in[-c, c] \\
& -\lambda_{j}>0 \Rightarrow \sum_{i} w_{i j} x_{i}=-c
\end{aligned}
$$

Finding $\lambda_{1}, \ldots, \lambda_{d}$

- For each j there are 3 cases:

$$
\begin{aligned}
& -\lambda_{j}<0 \Rightarrow \sum_{i} w_{i j} x_{i}=c \\
& -\lambda_{j}=0 \Rightarrow \sum_{i} w_{i j} x_{i} \in[-c, c] \\
& -\lambda_{j}>0 \Rightarrow \sum_{i} w_{i j} x_{i}=-c
\end{aligned}
$$

- $\operatorname{Tr} y 3^{d}$ combinations. Select the best point
- For each unknown λ_{j} we have equality constraints
- Projection on $B_{\infty} \cap\left(\cap_{i=1}^{d} A_{i}\right)$, where A_{i} are hyperplanes
- Can find $\lambda_{1}, \ldots, \lambda_{d}$ using nested binary search
$-O(n \log n)$ for $d=1$ and $O\left(n \log ^{2} n\right)$ for $d=2$
- Conjecture: $\tilde{O}(n)$ for any fixed d

Balanced Graph Partitioning

- Implementation in Apache Giraph

- Percentage of cut edges on subsets of the Facebook graph (allowed vertex imbalance - 3\%).

Graph	Badger Rampage	SocialHash	Spinner
FB-2.5B	5.11%	8.75%	13.30%
FB-55B	4.99%	11.75%	12.79%
FB-80B	5.21%	12.04%	8.64%
FB-400B	6.88%	5.82%	6.31%
FB-800B	5.52%	5.25%	6.83%

2D Balanced Graph Partitioning

- Percentage of cut edges on public graphs (allowed imbalance on vertices and degrees -1\%).

Graph	Badger Rampage- exact projection	Badger Rampage - alternating projection	Spinner
LiveJournal	6.74%	6.74%	9.53%
Orkut	5.14%	4.9%	5.68%
ego-Gplus	$\mathbf{1 2 \%}$	12.2%	44.5%

Step size selection (γ)

- Cut size per iteration as a function of γ

Future work

- $\tilde{O}(n)$ algorithm for fixed d ?
- Guarantees on convergence of Badger Rampage?
- Practical algorithm for more than 2 parts
- Currently use recursive partitioning
- Can modify the approach to support k parts, but time and memory increase by factor k

