
Badger Rampage: Multi-Dimensional
Balanced Partitioning

of Facebook-scale Graphs

Dmitry	Avdyukhin (Indiana	University),	Sergey	Pupyrev (Facebook)

2nd Workshop	on	Local	Algorithms,	MIT,	June	14,	2018

Grigory Yaroslavtsev
(Indiana	University,	Bloomington)

http://grigory.us/blog

“Three	Schools	of	Thought”	in	
Algorithms	&	Complexity

• Boston (MIT	&	Harvard)
– Youthful	&	innovative	attacks	on	problems, driven	by	
PhD	students	with	new	ideas	(“grad	student	descent”)

– “Relentless	optimism	;)”:	faster	algorithms,	e.g.	
sublinear	time,	gradient	descent,	unconditional	results

“Three	Schools	of	Thought”	in	
Algorithms	&	Complexity

• New	York	&	Chicago (Princeton,	NYU,	U	Chicago)
– Abstract	and	skeptical	theory	building,	driven	by	
fundamental	questions	and	big	agendas

– “Life	is	hard…”:	polynomial-time,	hardness	of	
approximation,	conditional	hardness,	beyond-worst	
case	analysis		

“Three	Schools	of	Thought”	in	
Algorithms	&	Complexity

• Bay	area (Stanford	&	Berkeley)
– No	time	for	philosophy,	driven	by	applications	and	
societal	needs

– “Let’s	start	a	company	and	change	the	society!”:	
machine	learning/AI,	fairness,	social	networks,	
privacy	

This	talk

• “Boston	school”
– Fast,	optimistic	and	specific:	
sublinear	time,	streaming,	
distributed,	gradient	descent

• “Bay	area	school”
– Driven	by	applications,	does	it	work	
in	practice	and	scale	to	large	data?

⬇

⬇

⬇

Balanced	Graph	Partitioning

• Partition	𝐺(𝑉, 𝐸) into	𝑘 parts	𝑽𝟏, 𝑽𝟐, … , 𝑽𝒌:

– Each	part	contains	(1 ± 𝜖) 0
1
vertices

– #	of	edges	inside	the	parts	is	maximized

• Goal:	make	it	work	for	the	real	Facebook	graph
– Load	balancing	
– Community	detection
– Selecting	representative	subsets	for	training
– …

Facebook	Graph
#	vertices	≈ 𝟐	×𝟏𝟎𝟗, #edges	≈ 𝟏𝟎𝟏𝟐

Hard	in	Theory,	Important	in	Practice

• Minimizing	the	cut	
– No	constant-factor	approximation	for	𝜖 = 0, 𝑘 ≥ 3
unless	P	=	NP	[Andreev,	Racke’06]

– Best	approximation:	polylog [Feige,	Krauthgamer’02]

• Max	n/2-UNCUT	
– ≈0.64	via	SDP	[Halperin,	Zwick,	IPCO’01]

• If	approximate	balance	is	allowed,	what	is	the	
hardness	of	this	problem?	

Hard	in	Theory,	Important	in	Practice
• Previous	generation	tools:
– METIS	[Karypis,	Kumar,	‘95]

• Google:	
– Linear	embedding:	[Aydin,	Bateni,	Mirrokni,	WSDM’16]

• Facebook:	
– Label	propagation:	[Ugander,	Backstrom,	WSDM’13]
– SocialHash partitioner:	[Kabiljo,	Karrer,	Pundir,	Pupyrev,	
Shalita,	Akhremtsev,	Presta,	VLDB’17]

– Spinner	[Martella,	Logothetis,	Loukas,	Siganos,	ICDE’17]
• Some	other	papers:
– FENNEL	[Tsourakakis,	Gkantsidis,	Radunovic,	Vojnovic,	
WSDM’14]

Multidimensional	Balanced	Graph	
Partitioning

• Balance	according	to	multiple	weights	(≥ 0)
– Each	vertex	𝑖 has	𝒅 weights:			𝑤>,?, 𝑤>,@, … , 𝑤>,𝒅
– Let	𝑤C 𝑆 = ∑ 𝑤>C�

>∈H for	each	𝑗 ∈ [𝒅]

– Want	𝑤C 𝑉L = ?±M NO(P)
1

for	each	part	𝑉L

• Balanced	graph	partitioning:	𝒅 = 1, ∀𝑖: 𝑤>? = 1
• Balance	of	the	sum	of	degrees	in	each	part:

𝑤>@ = deg	(𝑖)
• Note:	can	be	impossible	as	weights	are	unrelated

Existing	approaches	are	combinatorial

• Local	search,	branch	and	bound,	“linear	
embedding”,	etc …

• Difficult	to	extend	to	the	multi-dimensional	case
– Don’t	scale	very	well
– Don’t	produce	good	results

• Our	approach	is	gradient	descent	based:	
– Easy	to	implement	
– Scales	well	on	Facebook-scale	graphs
– Handles	multiple	balance	constraints	naturally

Quadratic	Integer	Program

• Variable	𝑥> for	each	vertex:		
• 𝑖 ∈ 𝑽𝟏:	𝑥> = 1
• 𝑖 ∈ 𝑽𝟐:	𝑥> = −1

Maximize:		 ∑ 	?
@
𝑥>W𝑥>X + 1 	�

>W,>X ∈Z

Subject	to:					 ∑ 𝑤>C𝑥>[
>\? ≤ 𝜖 ∑ 𝑤>C[

>\? 		∀𝑗 ∈ [𝒅]
𝑥> ∈ −1,1 																							∀𝑖 ∈ 𝑉

𝑥> = 1		 𝑥> = −1		

Non-convex	relaxation

• 𝑥> → continuous	variables

Maximize:		 ∑ 	?
@
𝑥>W𝑥>X + 1 	�

>W,>X ∈Z

Subject	to:					 ∑ 𝑤>C𝑥>[
>\? ≤ 𝜖 ∑ 𝑤>C[

>\? 		∀𝑗 ∈ [𝒅]
𝑥> ∈ [−1,1]																							∀𝑖 ∈ 𝑉

𝑥> ∈ [−1,1]

Randomized	Projected	Gradient	Descent

• Objective:	𝑓 𝒙 = 𝒙a𝐴	𝒙 (up	to	constants)
– 𝛻𝑓 𝒙 = 𝐴𝒙, 	 𝛻@𝑓 𝒙 = 𝐴

• Projected	Gradient	Descent
– Set	𝒙d = 𝟎
– For	𝑖 = 1… 	𝑡:
• Gradient	step:	𝒚> = 𝒙> + 𝜸 ⋅ 𝛻𝑓 𝒙𝒊 = 	𝒙>(𝐼 + 𝜸𝐴)
• Project	on	the	feasible	space:		𝒙>k? = 𝑃𝑟𝑜𝑗(𝒚>)

• Note	that	𝐱d = 𝟎 is	a	saddle	point
– Add	random	noise:	𝒙>p = 𝒙> + 𝑁𝒅(0,1)

Projection	Step
• Proj(𝒚𝒊)	is	𝒙 =	closest∗ point	to	𝒚𝒊 satisfying:

s𝑤>C𝑥>

[

>\?

≤ 𝜖s𝑤>C

[

>\?

		∀𝑗 ∈ [𝒅]

𝑥> ∈ [−1,1]																							∀𝑖 ∈ 𝑉
∗ closest	in	ℓ@ (Euclidean	distance)

• Projection	is	a	computationally	expensive	step
• For	𝒅 = 1 can	be	done	in	𝑂(𝑛) time	[Maculan,	et	al.	‘03]
• For	𝒅 = 2 we	give	an	𝑂(𝑛 log@ 𝑛) time	algorithm
• Open: Give	𝑂z(𝑛) time	algorithm	for	any	fixed	𝒅

• Set	𝒙d = 𝟎
• For	𝑖 = 1… 	𝑡:
• Gradient	step:	𝒚> = (𝒙>+𝑁𝒅(0,1)) ⋅ (𝐼 + 𝜸𝐴)
• Project	on	the	feasible	space:		𝒙>k? = 𝑃𝑟𝑜𝑗(𝒚>)

Badger	Rampage:	
BalAnceD GRaph Partitioining via	

RAndoMized Projected	Gradient	DEscent

• ∗	If	fractional	values	remain,	use	them	as	rounding	probabilities
• Open:	What	can	we	say	about	convergence?

– Randomized	PGD	converges	to	a	local	minimum	if	all	constraints	are	
equalities [Ge,	Huang,	Jin,	Yuan,	COLT’15]

– With	inequalities	even	computing	Frank-Wolfe	conditional	gradient	is	NP-
hard

Projection	Problem
• Feasible	region:	𝑩� ∩ ⋂ 𝑺𝝐

𝒋�
C\? ,	where:

– ℓ�-ball	𝑩�= 𝑥 ∈ 𝑅[𝑥> ∈ [−1; 	1]}

– Slice	𝑺𝝐
𝒋 = 𝑥 ∈ 𝑅[∑ 𝑤>C	𝑥>[

>\? 	≤ 𝜖 ∑ 𝑤>C[
>\? }

• Approaches:
– Solve	exactly	using	KKT	conditions
– Alternating	projections:	
𝑃𝑩�(𝑃𝑺𝝐𝟏(𝑃𝑺𝝐𝟐(…𝑃𝑺𝝐𝒅(𝑃𝑩�(… 𝑦 …)
• Finds	a	point	in	the	feasible	space,	not	necessarily	closest

– Dykstra’s	projection	algorithm
• Converges	to	the	projection

Projection	problem
Minimize:	𝑓 𝒙 = 	 | 𝒙	 − 𝒚 |@@

Subject	to:	
																					𝑥>@	≤ 1																																		∀𝑖 ∈ 𝑛

																				s𝑤>C𝑥> ≤ 𝑐																								∀𝑗 ∈ [𝑑]
[

>\?

																				s𝑤>C𝑥> ≥ −𝑐																					∀𝑗 ∈ [𝑑]
[

>\?

After	simplifying	KKT	conditions…
• KKT	is	equivalent	to	finding	𝝀?, … , 𝝀𝒅 such	that	
𝒙 satisfies	the	constraints,	where
– 𝑥> = [𝑦>	−	∑ 𝝀C𝑤>C],�

C where	[]	is	rounding	to	[-1,1]
– I.e.	shift	𝑦 by	a	lin.	combination,	then	project	on	𝐵�

• 𝒙 is	the	projection	if	it	satisfies	constraints:
– 𝝀C < 0 ⇒ ∑ 𝑤>C𝑥>�

> = 𝑐
– 𝝀C = 0 ⇒ ∑ 𝑤>C𝑥>�

> ∈ −𝑐, 𝑐
– 𝝀C > 0 ⇒ ∑ 𝑤>C𝑥>�

> = −𝑐

Finding	𝜆?, … , 𝜆𝒅
• For	each	𝑗 there	are	3 cases:
– 𝝀C < 0 ⇒ ∑ 𝑤>C𝑥>�

> = 𝑐
– 𝝀C = 0 ⇒ ∑ 𝑤>C𝑥>�

> ∈ −𝑐, 𝑐
– 𝝀C > 0 ⇒ ∑ 𝑤>C𝑥>�

> = −𝑐
• Try	3� combinations.	Select	the	best	point
– For	each	unknown	𝝀C we	have	equality	constraints
– Projection	on	𝑩� ∩ ∩>\?𝒅 𝑨𝒊 , where	𝑨𝒊 are	hyperplanes

• Can	find	𝝀?, … , 𝝀𝒅 using	nested	binary	search
– 𝑂(𝑛 log 𝑛) for	𝒅 = 1 and	𝑂(𝑛 log@ 𝑛) for	𝒅 = 2
– Conjecture: 𝑂z(𝑛) for	any	fixed	𝒅

Balanced	Graph	Partitioning

• Implementation	in	Apache	Giraph

•Percentage	of	cut	edges	on	subsets	of	the	
Facebook	graph	(allowed	vertex	imbalance	– 3%).		

Graph Badger	Rampage SocialHash Spinner

FB-2.5B 5.11% 8.75% 13.30%

FB-55B 4.99% 11.75% 12.79%

FB-80B 5.21% 12.04% 8.64%

FB-400B 6.88% 5.82% 6.31%

FB-800B 5.52% 5.25% 6.83%

2D	Balanced	Graph	Partitioning
•Percentage	of	cut	edges	on	public	graphs	(allowed	
imbalance	on	vertices	and	degrees	– 1%).

Graph Badger	Rampage–
exact	projection

Badger	Rampage	–
alternating	projection Spinner

LiveJournal 6.74% 6.74% 9.53%

Orkut 5.14% 4.9% 5.68%	

ego-Gplus 12% 12.2% 44.5%

Step	size	selection	(𝜸)

•Cut	size	per	iteration	as	a	function	of	𝜸

Future	work

•𝑂z(𝑛) algorithm	for	fixed	𝒅?
•Guarantees	on	convergence	of	Badger	Rampage?

•Practical	algorithm	for	more	than	2 parts
– Currently	use	recursive	partitioning
– Can	modify	the	approach	to	support	𝑘 parts,	
but	time	and	memory	increase	by	factor	𝑘

