Massively Parallel Algorithms and Hardness of Single-Linkage Clustering

Joint work with Adithya Vadapalli (Indiana University)

Grigory Yaroslavtsev http://grigory.us

Algorithms for Big Data

- User's perspective: paradigm shift brought by cloud services
- Outsourcing computation and data storage is great for both businesses and researchers
- Cloud service providers: Amazon EC2, Google Compute Engine, Microsoft Azure, ...
- Open source stacks/frameworks: MapReduce/Hadoop, Apache Spark, etc.

Business perspective

- Pricings:
- https://cloud.google.com/pricing/
- https://aws.amazon.com/pricing/
- \sim Linear with space and time usage
- 100 machines: 5K \$/year
- 10000 machines: 0.5M \$/year
- You pay a lot more for using provided algorithms
- https://aws.amazon.com/machinelearning/pricing/

73,000 total hours per month
VM class: regular
Instance type: f1-micro
Region: United States
Sustained Use Discount: 30%
Effective Hourly Rate: \$0.0056
Estimated Component Cos \$4,905.60 per 1 year
$7,300,000$ total hours per month
VM class: regular
Instance type: f1-micro
Region: United States
Sustained Use Discount: 30\%

"Big Data Theory" = Turing meets Shannon

Computational Model

- Input: size n
- \boldsymbol{M} machines, space \boldsymbol{S} on each ($\boldsymbol{S}=\boldsymbol{n}^{1-\epsilon}, 0<\epsilon<1$)
- Constant overhead in total space: $\boldsymbol{M} \cdot \boldsymbol{S}=O(n)$
- Output: solution to a problem (often size $O(n)$)
- Doesn't fit on a single machine ($S \ll n$)

Input: size $n \Rightarrow$
\Rightarrow Output: size $O(n)$

S space

Computational Model

- Computation/Communication in R rounds:
- Every machine performs a near-linear time computation $=>$ Total running time $O\left(S^{1+o(1)} R\right)$
- Every machine sends/receives at most S bits of information $=>$ Total communication $O(n R)$.

Goal: Minimize R.
Ideally: $R=$ constant.

Algorithms for Graphs

- Dense graphs vs. sparse graphs
- Dense: $S>|V|$
- Linear sketching: one round
- "Filtering" [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11] ... [Bateni, Behnezhad, Derakshan, Hajiaghayi, Kiveris, Lattanzi, Mirrokni, NIPS'17]
- Sparse: $S \ll|V|$ (or $S \ll$ solution size)

Sparse graph problems appear hard (Big open question: connectivity in o(log $n)$ rounds?)

VS.

Two Conjectures

- Conj 1: (Connectivity) Given graph with $O(|V|)$ edges finding connected components requires $\Omega(\log |\mathrm{V}|)$ rounds
- Conj 2: (Two cycles) Distinguishing one cycles from two cycles requires $\Omega(\log |\mathrm{V}|)$ rounds
- [Roughgarden, Vassilvitskii, Wang SPAA'16]
- Give an $\Omega\left(\log _{s} n\right)$ lower bound
- Some evidence of relationship to $N C^{1} \subseteq P$

Geometric Graph Problems [ANOY'14]

Combinatorial problems on graphs in \mathbb{R}^{d}
Polynomial time ("easy")

- Minimum Spanning Tree
- Earth-Mover Distance =

Min Weight Bi-chromatic Matching

Nrihard ("hard")

- Steiner Tree
- Traveling Salesman
- Clustering (k-m trians, facility
- Steiner Tree
- Traveling Salesman
- Clustering (k-m trans, facility
- Steiner Tree
- Traveling Salesman
- Clustering (k-m trans, facility docrion, etc.)
 "Divide coriquer", easy to implement in Anasively Parallel
Computatronal Models, but bad running time-

MST: Single Linkage Clustering

- [Zahn'71] Clustering via MST (Single-linkage):
\boldsymbol{k} clusters: remove $\boldsymbol{k}-\mathbf{1}$ longest edges from MST
- Maximizes minimum intercluster distance

MST vs. Single Linkage Clustering

- [ANOY'14]: $(1+\epsilon)$-approx MST (in expectation)
- Single-linkage clustering can be arbitrarily bad:

Our Results

Approximation in $O(\log n)$ rounds

$\ell_{\mathbf{0}}$ Exact for $d=O(1)$
$\ell_{1}(1+\epsilon)$ for $d=O(1)$
$\ell_{2}(1+\epsilon)$ for $d=O(1)$

$$
\begin{aligned}
& 1.41-\epsilon \text { for } d=\Omega\left(\frac{\log n}{\epsilon^{2}}\right) \text { under Connectivity } \\
& 1.84-\epsilon \text { for } d=\Omega\left(\frac{\log n}{\epsilon^{2}}\right) \text { under Two Cycles }
\end{aligned}
$$

2 for $d=\Omega(n)$ under Connectivity [ANOY'14]
ℓ_{0} and ℓ_{1} hardness results hold for $O(1)$-sparse vectors, i.e. for inputs of size $O(\mathrm{n})$

Hardness for ℓ_{2}

Reduction from "One vs. Two Cycles"

- Vector v_{i} for each vertex, set $\boldsymbol{v}_{i}=\boldsymbol{e}_{i}$
- For each edge (i, j) update (for $\xi=1 / \sqrt{2}$):
$-\boldsymbol{v}_{i}=\boldsymbol{v}_{i}+\xi \boldsymbol{e}_{j}$
$-\boldsymbol{v}_{j}=\boldsymbol{v}_{j}+\xi \boldsymbol{e}_{i}$
- Apply Johnson-Lindenstrauss transform to reduce the dimension down to $d=O\left(\frac{\log n}{\epsilon^{2}}\right)$

Important that reduction can be done in $O(1)$ rounds

Hardness for ℓ_{2}

Reduction from "One vs. Two Cycles"

- Vector \boldsymbol{v}_{i} for each vertex, set $\boldsymbol{v}_{i}=\boldsymbol{e}_{i}$
- For each edge (i, j) update (for $\xi=1 / \sqrt{2}$):

$$
\begin{aligned}
-\boldsymbol{v}_{i} & =\boldsymbol{v}_{i}+\xi \boldsymbol{e}_{j} \\
-\boldsymbol{v}_{i} & =\boldsymbol{v}_{j}+\xi \boldsymbol{e}_{i}
\end{aligned}
$$

- $\left|\mid \boldsymbol{v}_{i}-\boldsymbol{v}_{j} \|_{2}=\sqrt{2}(\sqrt{2-\sqrt{2}})\right.$ if there is an edge (i, j)
- $\left|\mid \boldsymbol{v}_{i}-\boldsymbol{v}_{j} \|_{2}=2\right.$ if there is no edge (i, j)

Ratio between these cases gives hardness of $\sqrt{2+\sqrt{2}}$

General algorithm for $\ell_{1}, \ell_{2}, \ell_{\infty}$

- Input: vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- $E=\emptyset$
- Repeat $O(\log \boldsymbol{n})$ times sequentially:
- $E^{\prime}=$ set of edges of a $(1+\epsilon)$-approximate MST $-E=E \cup E^{\prime}$
- Run Boruvka's algorithm on E
- Drop k - 1 longest edges to get the clustering

Large geometric graphs

- Graph algorithms: Dense graphs vs. sparse graphs
- Dense: $S \gg|V|$.
- Sparse: $\boldsymbol{S} \ll|V|$.
- Our setting:
- Dense graphs, sparsely represented: O(n) space
- Output doesn't fit on one machine ($S \ll n$)
- Today: $(1+\epsilon)$-approximate MST [ANOY'14]
$-d=2$ (easy to generalize)
- $R=\log _{s} n=\mathrm{O}(1)$ rounds $\left(S=n^{\boldsymbol{\Omega}(\mathbf{1})}\right)$

$O(\log n)-\mathrm{MST}$ in $R=O(\log n)$ rounds

- Assume points have integer coordinates $[0, \ldots, \Delta]$, where $\Delta=O\left(n^{2}\right)$.

Impose an $O(\log n)$-depth quadtree
Bottom-up: Forseach cellin thequadtreem

- compute optimum Misis in sube clls
- Use only one feresmative frompeach cell on the next level

ϵL-nets

- ϵL-net for a cell C with side length L :

Collection \mathbf{S} of vertices in C, every vertex is at distance <= ϵL from some vertex in \mathbf{S}. (Fact: Can efficiently compute ϵ-net of size $O\left(\frac{1}{\epsilon^{2}}\right)$)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL-net from each cell on the next level
- Idea: Pay only $O(\epsilon L)$ for an edge cut by cell with side L
- Randomly shift the quadtree:
 O(1)-apprxximation per level

Randomly shifted quadtree

- Top cell shifted by a random vector in $[0, L]^{2}$

Impose a randomly shifted quadtree (top cell length $\mathbf{2 \Delta}$) Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL-net from each cell on the next level

Pay 5 instead of 4
 $\operatorname{Pr}[$ Badat $]=\Omega(1)$

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O(\log n)$ rounds

- Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length $\frac{2 \Delta}{\epsilon}$)
Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^{2} L$-net from each cell on the next level

$$
L=\Omega\left(\frac{1}{\epsilon}\right)
$$

$$
\operatorname{Pr}[\text { Bad Cut }]=\boldsymbol{O}(\epsilon)
$$

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O$ (1) rounds

- $O(\log n)$ rounds $=>O\left(\log _{s} n\right)=O(1)$ rounds
- Flatten the tree: ($\sqrt{M} \times \sqrt{M}$)-grids instead of (2×2) grids at each level.

Impose a randomly shifted $(\sqrt{M} \times \sqrt{M})$-tree
Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^{2} L$-net from each cell on the next level

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O(1)$ rounds

Theorem: Let $l=$ \# levels in a random tree P

$$
\mathbb{E}_{\boldsymbol{P}}[\mathbf{A L G}] \leq(1+O(\epsilon \operatorname{ld})) \mathbf{O P T}
$$

Proof (sketch):

- $\Delta_{P}(u, v)=$ cell length, which first partitions (u, v)
- New weights: $w_{P}(u, v)=\|u-v\|_{2}+\epsilon \Delta_{P}(u, v)$
$\|u-v\|_{2} \leq E_{P}\left[w_{P}(u, v)\right] \leq\left(1+O(\epsilon \in \| d \Delta) p \mid(u, v, v\rangle \|_{2}\right.$
- Our algorithmimplements Kruskalifor weights $\boldsymbol{w}_{\boldsymbol{P}}$

Thank you!

- Experiments in Apache Spark on largest vector datasets from UCI ML repository
$-\approx 11 \mathrm{M}$ vectors $=>960$ TB for adjacency matrix
- SIFT \& HIGGS datasets preprocessed with PCA
- More on my blog http://grigory.us/blog/
- CAML: http://caml.indiana.edu

