Massively Parallel Algorithms and
Hardness of Single-Linkage Clustering

Joint work with Adithya Vadapalli (Indiana University)

Grigory Yaroslavtsev
http://grigory.us

Algorithms for Big Data

* User’s perspective: paradigm shift brought by
cloud services

— Outsourcing computation and data storage is
great for both businesses and researchers

— Cloud service providers: Amazon EC2, Google
Compute Engine, Microsoft Azure, ...

— Open source stacks/frameworks:
MapReduce/Hadoop, Apache Spark, etc.

@ ClErEbED SPOF’QZ
amazon |EC 2 5) sToRM

L00¢g Combpute enge

* Pricings:
— https://cloud.google.com/pricing/

— https://aws.amazon.com/pricing/

 ~Linear with space and time usage
— 100 machines: 5K S/year
— 10000 machines: 0.5M $/year

* You pay a lot more for using provided
algorithms

— https://aws.amazon.com/machine-

learning/pricing/

“Big Data Theory” = Turing meets Shannon

Complexity

Computational Model
* Input:sizen
e M machines, space Soneach(S=n'"¢,0<e< 1)
— Constant overhead in total space: M-S = 0(n)

* Output: solution to a problem (often size O(n))

— Doesn’t fit on a single machine (§ K n)

Input: sizen = % = Output: size 0(n)
E" } M machines

o’

S space

Computational Model

* Computation/Communication in R rounds:

— Every machine performs a near-linear time
computation => Total running time 0(S1*°(LR)

— Every machine sends/receives at most S bits of
information => Total communication O(nR).

Goal: Minimize R.

Ideally: R = constant.

' < § bits

o’

S space

0(S1t°M) time

} M machines

Algorithms for Graphs

* Dense graphs vs. sparse graphs

— Dense: S > |V]
* Linear sketching: one round

* “Filtering” [Karloff, Suri Vassilvitskii, SODA’10; Ene, Im,
Moseley, KDD’11; Lattanzi, Moseley, Suri, Vassilvitskii,
SPAA’11; Suri, Vassilvitskii, WWW’11] ... [Bateni,
Behnezhad, Derakshan, Hajiaghayi, Kiveris, Lattanzi,
Mirrokni, NIPS'17]

— Sparse: S K< || (or § < solution size)

Sparse graph problems appear hard (Big open question:
connectivity in o(log n) rounds?)

C O~ ad

Two Conjectures

e Conj 1: (Connectivity) Given graph with
O(|V]) edges finding connected components
requires Q(log |V|) rounds

e Conj 2: (Two cycles) Distinguishing one cycles
from two cycles requires Q(log |V|) rounds

* [Roughgarden, Vassilvitskii, Wang SPAA'16]
— Give an Q(log¢n) lower bound
— Some evidence of relationship to NC! € P

Geometric Graph Problems [ANOY’14]

Combinatorial problems on graphs in R?

Polynomial time (“easy”)

* Minimum Spanning Tree
e Earth-Mover Distance =
Min Weight Bi-chromatic Matching

o llhard”)

* Steiner rex
* Traveling Salesman s tasy toimplement in
* Clustering (luee®®ns, facility Mgssively Parallel

Computc odels,
but bad running ti

oae®n etc.)

MST: Single Linkage Clustering

e [Zahn’71] Clustering via MIST (Single-linkage):
k clusters: remove k — 1 longest edges from MST

e Maximizes minimum intercluster distance

Objective: min(a,b,c)

MST vs. Single Linkage Clustering

* [ANOY’14]: (1 + €)-approx MST (in expectation)
* Single-linkage clustering can be arbitrarily bad:

, O,

o 00000 (o
1 1+ 100 —/

1 1

en > 100

— X (o)

Our Results

Approximation in
O(log n) rounds

Hardness of approx. in

fo Exactford = 0(1)

?1 (1+¢€)ford=0(1)
f5 (1+¢€)ford=0(1)

., (1+¢)ford=0(1)

o(logn) rounds

2 for d = 2 under Connectivity
3 for d = Q(n) under Two Cycles

2 for d = (0(n) under Connectivity
3 for d = Q(n) under Two Cycles

141 —eford =) (loegzn) under Connectivity
1.84 — e for d = Q.

logn

) under Two Cycles

€2

2 for d = ((n) under Connectivity
[ANOY’14]

¢ and £ hardness results hold for O(1)-sparse vectors, i.e. for inputs of size O(n)

Hardness for £,

Reduction from “One vs. Two Cycles”

* Vector v; for each vertex, set v; = e;

* For each edge (i, j) update (for & = 1/+/2):
—v; =V; +Se;
—-v; =v; +Se;

* Apply Johnson-Lindenstrauss transform to

. . 1
reduce the dimension downtod = O (szn)

Important that reduction can be done in O(1) rounds

Hardness for £,

Reduction from “One vs. Two Cycles”
* Vector v; for each vertex, set v; = e;

* For each edge (i,) update (for & = 1/v/2):

— V; =vi+€e]-

— V; =vj+€ei

° vi—vj

. v,;—vj

= \/E(\/Z — \/f) if there is an edge (i, j)

= 2 if there is no edge (i,)

Ratio between these cases gives hardness of \/2 ++/2

General algorithm for €, €,, € -

Input: vectors vy, ..., U, € R4

E=0¢

Repeat O(log n) times sequentially:

— E’ = set of edges of a (1 + €)-approximate MST
—E=EUE'

Run Boruvka’s algorithm on E

Drop k — 1 longest edges to get the clustering

Large geometric graphs

* Graph algorithms: Dense graphs vs. sparse graphs
— Dense: S > |V].
— Sparse: § < |V].

* QOur setting:
— Dense graphs, sparsely represented: O(n) space

— Output doesn'’t fit on one machine (§ K n)

* Today: (1 + €)-approximate MST [ANOY’14]
— d = 2 (easy to generalize)
— R =loggn = 0(1) rounds (§ = n®D)

O(logn)-MSTin R = O(logn) rounds

e Assume points have integer coordinates [0, ..., A], where
A =0(n?).

Impose an O (log n) -depth quadtree
Bottom-up: Forzes

— compute oftiFL
— Useonlyo

. Wrong representative:
V .\/ O(1)-approximation per level

} ' i
blﬂ?{ﬁ' B baaca T M i
\z @ d ¥ ° ————p
|
q I °° < q

Y
ﬂ

(o
' ' I9UunN

ive fremleach ce

on the next level

€L-nets
eL-net for a cell C with side length L:

Collection S of vertices in C, every vertex is at distance <= elL from some
vertex in S. (Fact: Can efficiently compute e-net of size O (6—2))

Bottom-up: For each cell in the quadtree

— Compute optimum MSTs in subcells
— Use eL-net from each cell on the next level

Idea: Pay only O(€L) for an edge cut by cell with side L
Randomly shift the quadtree:
Pricut edge of length ¥Wb9nL [xprésehtatitearge errors

O(1)-appr{ximation per level

A N

L L L

Randomly shifted quadtree

* Top cell shifted by a random vector in [0, L]?
Impose a randomly shifted quadtree (top cell length 2A)

Bottom-up: For each cell in the quadtree
— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

t 17 Pay 5 jnstead of 4

2

Ll] Pr[Ba%]a(ffl L 01)
1

(14 €)-MSTinR = 0O(log n) rounds

 |dea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length ZG—A)

Bottom-up: For each node (cell) in the quadtree

— compute optimum Minimum Spanning Forests in subcells,
using edges of length < €L

— Use only €?L-net from each cell on the next level

N

L=00)

AT
I Pr[Bad Cut] = O(e€)

(1+€)-MSTinR = 0(1) rounds

* O(logn) rounds => O(logg n) = O(1) rounds
— Flatten the tree: (VM X+ M)-grids instead of (2x2) grids at each

level.
} 9t = no

=

Impose a randomly shifted (v M X+ M)-tree
Bottom-up: For each node (cell) in the tree
— compute optimum MSTs in subcells via edges of length < €L

— Use only €?L-net from each cell on the next level

(1+€)-MSTinR = 0(1) rounds

Theorem: Let [= # levels in a random tree P
Ep[ALG] < (1 + O(eld))OPT

Proof (sketch):

* Ap(u,v) = cell length, which first partitions (u, v)

* New weights:

Hu —vH2 <

e QOur algorith

Thank you!

* Experiments in Apache Spark on largest vector
datasets from UCI ML repository

— =~11M vectors => 960 TB for adjacency matrix
— SIFT & HIGGS datasets preprocessed with PCA

* More on my blog http://grigory.us/blog/
 CAML: http://caml.indiana.edu

