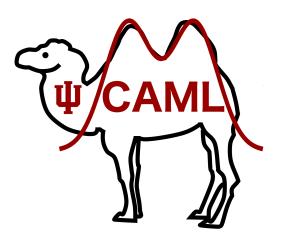
Massively Parallel Algorithms and Hardness of Single-Linkage Clustering

Joint work with Adithya Vadapalli (Indiana University)

Grigory Yaroslavtsev http://grigory.us



Algorithms for Big Data

- User's perspective: paradigm shift brought by cloud services
 - Outsourcing computation and data storage is great for both businesses and researchers
 - Cloud service providers: Amazon EC2, Google
 Compute Engine, Microsoft Azure, ...
 - Open source stacks/frameworks:

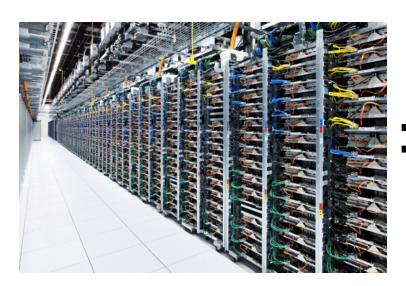
MapReduce/Hadoop, Apache Spark, etc.

Business perspective

- Pricings:
 - <u>https://cloud.google.com/pricing/</u>
 - https://aws.amazon.com/pricing/
- ~Linear with space and time usage
 - 100 machines: 5K \$/year
 - 10000 machines: 0.5M \$/year
- You pay a lot more for using provided algorithms
 - <u>https://aws.amazon.com/machine-learning/pricing/</u>

100 x				0
73,000 to	tal hours per mo	nth		
VM class:	regular			
Instance	type: f1-micro			
Region: L	Inited States			
Sustained	<u>d Use Discount</u> : 3	.0% ?		
Effective	Hourly Rate: \$0.0	056		
Estimate	d Component C	os \$4,905.	60 per 1 y	ear
1000 x			-	6
730,000 t	otal hours per m	onth		
VM class:	regular			
Instance	type: f1-micro			
Region: L	Inited States			
Sustained	<u>d Use Discount</u> : 3	.0% ?		
Effective	Hourly Rate: \$0.0	056		
Estimate	d Component C	o : \$49,056	5.00 per 1	year
10000 x			1	0
7,300,000) total hours per	month		
VM class:	regular			
Instance	type: f1-micro			
Region: L	Inited States			
Sustained	d Use Discount: 3	.0% ?		
	Hourly Rate: \$0.0			

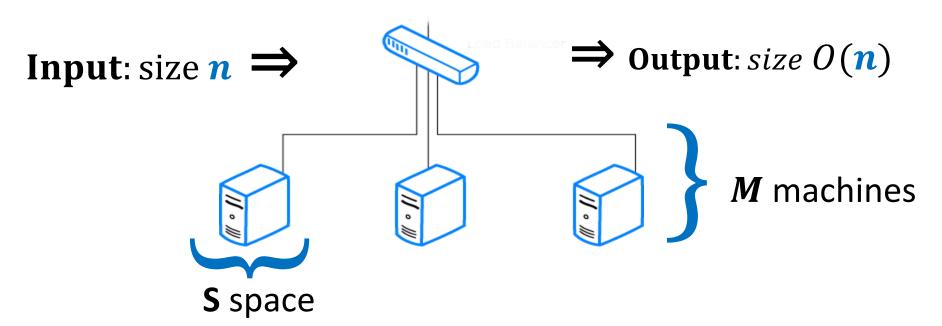
"Big Data Theory" = Turing meets Shannon



CPU time / Computational Complexity **Network** Info ١d omunication Complexity

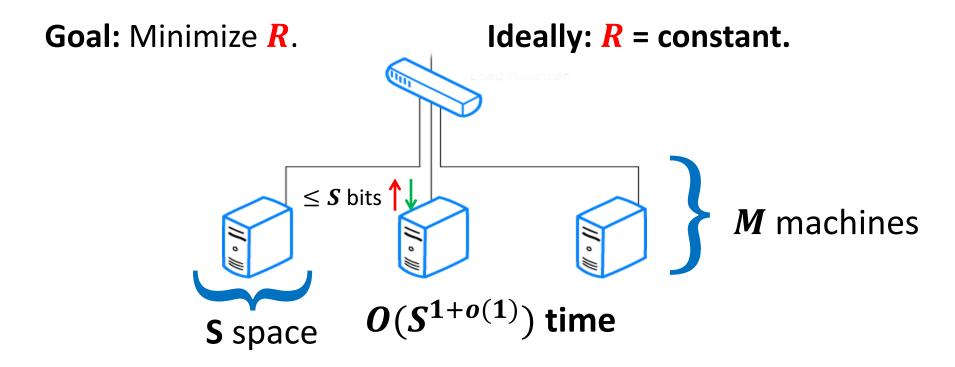
Computational Model

- Input: size n
- *M* machines, space *S* on each ($S = n^{1-\epsilon}$, $0 < \epsilon < 1$) - Constant overhead in total space: $M \cdot S = O(n)$
- Output: solution to a problem (often size O(n))
 Doesn't fit on a single machine (S << n)



Computational Model

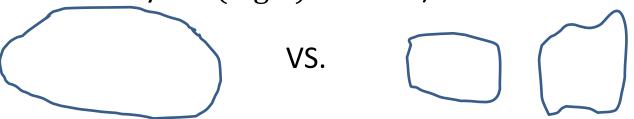
- Computation/Communication in **R** rounds:
 - Every machine performs a near-linear time computation => Total running time O(S^{1+o(1)}R)
 - Every machine sends/receives at most S bits of information => Total communication O(nR).



Algorithms for Graphs

- **Dense graphs** vs. sparse graphs
 - Dense: $S \gg |V|$
 - Linear sketching: one round
 - "Filtering" [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11] ... [Bateni, Behnezhad, Derakshan, Hajiaghayi, Kiveris, Lattanzi, Mirrokni, NIPS'17]
 - Sparse: $S \ll |V|$ (or $S \ll$ solution size)

Sparse graph problems appear hard (**Big open question**: connectivity in $o(\log n)$ rounds?)



Two Conjectures

- Conj 1: (Connectivity) Given graph with
 O(|V|) edges finding connected components
 requires Ω(log |V|) rounds
- Conj 2: (Two cycles) Distinguishing one cycles from two cycles requires Ω(log |V|) rounds
- [Roughgarden, Vassilvitskii, Wang SPAA'16]
 - Give an $\Omega(\log_{S} n)$ lower bound
 - Some evidence of relationship to $NC^1 \subseteq P$

Geometric Graph Problems [ANOY'14]

eed new

Arora-Mitchell-style

easy to implement in

Computational Models,

but bad running time

Massively Parallel

'Divide ar

theory!

conquer",

Combinatorial problems on graphs in \mathbb{R}^d

Polynomial time ("easy")

- Minimum Spanning Tree
- Earth-Mover Distance =

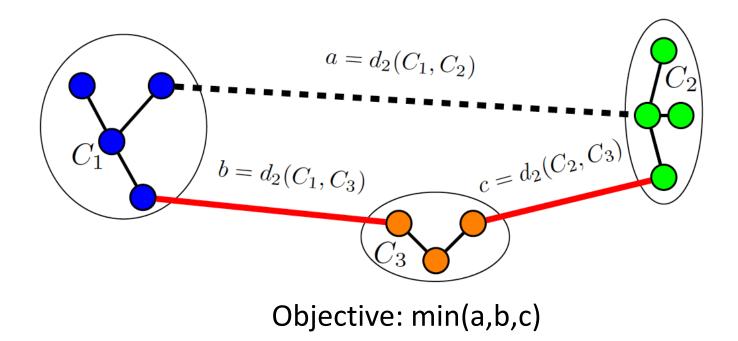
Min Weight Bi-chromatic Matching

Mard ("hard")

- Steiner Tree
- Traveling Salesman
- Clustering (k-medians, facility location, etc.)

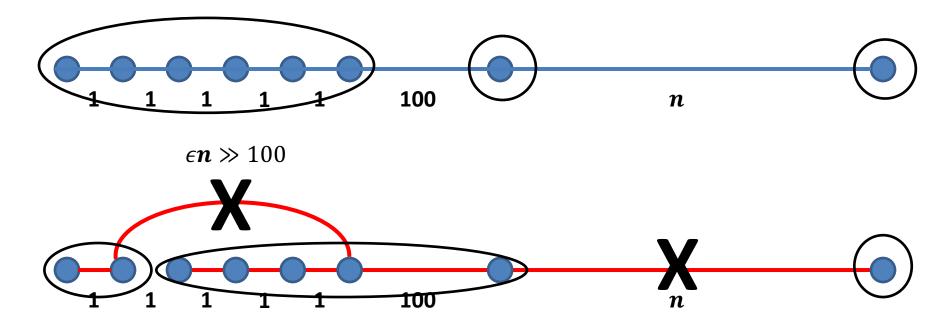
MST: Single Linkage Clustering

- [Zahn'71] **Clustering** via MST (Single-linkage):
- k clusters: remove k 1 longest edges from MST
- Maximizes **minimum** intercluster distance



MST vs. Single Linkage Clustering

- [ANOY'14]: $(1 + \epsilon)$ -approx MST (in expectation)
- Single-linkage clustering can be arbitrarily bad:



Our Results

	Approximation in $O(\log n)$ rounds	Hardness of approx. in $o(\log n)$ rounds
ℓ_0	Exact for $d = O(1)$	2 for $d = 2$ under Connectivity 3 for $d = \Omega(n)$ under Two Cycles
ℓ_1	$(1+\epsilon)$ for $\mathbf{d} = O(1)$	2 for $d = \Omega(n)$ under Connectivity 3 for $d = \Omega(n)$ under Two Cycles
ℓ_2	$(1+\epsilon)$ for $\mathbf{d} = O(1)$	1.41 - ϵ for $\mathbf{d} = \Omega\left(\frac{\log n}{\epsilon^2}\right)$ under Connectivity 1.84 - ϵ for $\mathbf{d} = \Omega\left(\frac{\log n}{\epsilon^2}\right)$ under Two Cycles
ℓ_{∞}	$(1+\epsilon)$ for $\mathbf{d} = O(1)$	2 for $d = \Omega(n)$ under Connectivity [ANOY'14]

 ℓ_0 and ℓ_1 hardness results hold for O(1)-sparse vectors, i.e. for inputs of size O(n)

Hardness for ℓ_2

Reduction from "One vs. Two Cycles"

- Vector v_i for each vertex, set $v_i = e_i$
- For each edge (i, j) update (for $\xi = 1/\sqrt{2}$):

$$-\boldsymbol{v}_i = \boldsymbol{v}_i + \boldsymbol{\xi} \boldsymbol{e}_j$$

$$-v_j = v_j + \xi e_i$$

• Apply Johnson-Lindenstrauss transform to reduce the dimension down to $d = O\left(\frac{\log n}{\epsilon^2}\right)$

Important that reduction can be done in O(1) rounds

Hardness for ℓ_2

Reduction from "One vs. Two Cycles"

- Vector \boldsymbol{v}_i for each vertex, set $\boldsymbol{v}_i = \boldsymbol{e}_i$
- For each edge (i, j) update (for $\xi = 1/\sqrt{2}$):

$$-\boldsymbol{v}_i = \boldsymbol{v}_i + \boldsymbol{\xi} \boldsymbol{e}_j$$

$$-\boldsymbol{v}_i = \boldsymbol{v}_j + \boldsymbol{\xi} \boldsymbol{e}_i$$

•
$$\left\| \boldsymbol{v}_i - \boldsymbol{v}_j \right\|_2 = \sqrt{2} \left(\sqrt{2} - \sqrt{2} \right)$$
 if there is an edge (i, j)

•
$$||\boldsymbol{v}_i - \boldsymbol{v}_j||_2 = 2$$
 if there is no edge (i, j)

Ratio between these cases gives hardness of $\sqrt{2} + \sqrt{2}$

General algorithm for $\ell_1, \ell_2, \ell_\infty$

- Input: vectors $v_1, \dots, v_n \in \mathbb{R}^d$
- $E = \emptyset$
- Repeat $O(\log n)$ times sequentially: - E' = set of edges of a $(1 + \epsilon)$ -approximate MST

 $-E = E \cup E'$

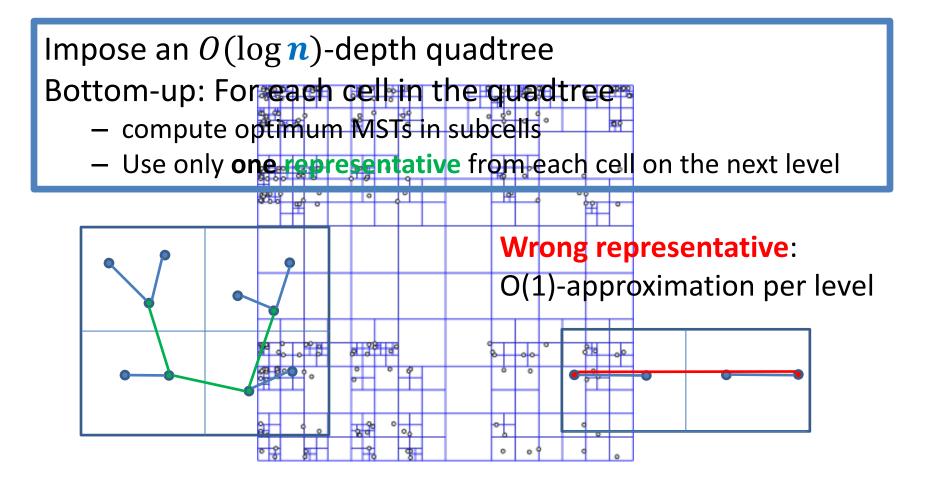
- Run Boruvka's algorithm on E
- Drop k-1 longest edges to get the clustering

Large geometric graphs

- Graph algorithms: **Dense graphs** vs. sparse graphs
 - Dense: $S \gg |V|$.
 - Sparse: $S \ll |V|$.
- Our setting:
 - Dense graphs, sparsely represented: O(n) space
 - Output doesn't fit on one machine ($S \ll n$)
- Today: $(1 + \epsilon)$ -approximate MST [ANOY'14]
 - d = 2 (easy to generalize)
 - $\mathbf{R} = \log_{\mathbf{S}} \mathbf{n} = O(1)$ rounds ($\mathbf{S} = \mathbf{n}^{\Omega(1)}$)

$O(\log n)$ -MST in $\mathbf{R} = O(\log n)$ rounds

• Assume points have integer coordinates $[0, ..., \Delta]$, where $\Delta = O(n^2)$.

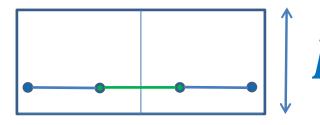


EL-nets

εL-net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance <= *εL* from some vertex in S. (Fact: Can efficiently compute *ε*-net of size O (¹/_{ε²}))

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level
- Idea: Pay only O(*EL*) for an edge cut by cell with side *L*
- Randomly shift the quadtree: Pr[cut edge of length Mong] presentation per level
 O(1)-approximation per level



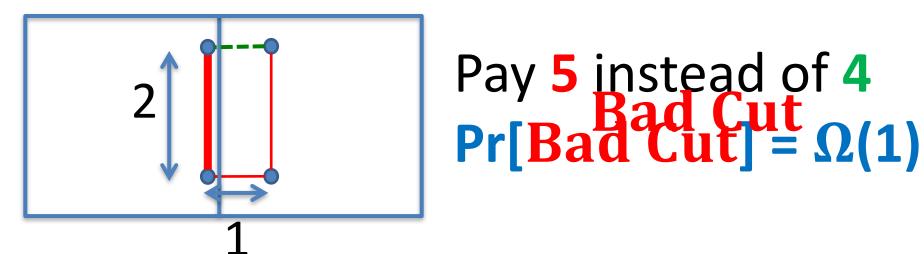


Randomly shifted quadtree

• Top cell shifted by a random vector in $[0, L]^2$

Impose a randomly shifted quadtree (top cell length 2Δ) Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level



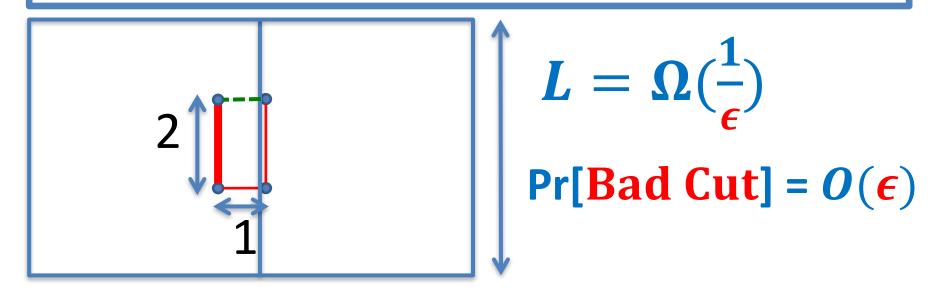
$(1 + \epsilon)$ -MST in **R** = $O(\log n)$ rounds

• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length $\frac{2\Delta}{\epsilon}$)

Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level



$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

- $O(\log n)$ rounds => $O(\log_s n)$ = O(1) rounds
 - Flatten the tree: $(\sqrt{M} \times \sqrt{M})$ -grids instead of (2x2) grids at each level.

Impose a randomly shifted ($\sqrt{M} \times \sqrt{M}$)-tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

Theorem: Let l = # levels in a random tree P $\mathbb{E}_{P}[ALG] \leq (1 + O(\epsilon ld))OPT$

Proof (sketch):

- $\Delta_P(u, v)$ = cell length, which first partitions (u, v)
- New weights: $w_P(u, v) = ||u v||_2 + \epsilon \Delta_P(u, v)$ $||u - v||_2 \leq \mathbb{E}_P[w_P(u, v)] \leq (1 + O(\epsilon d))||(u, v)v||_2$
- Our algorithm implements Kruskal for weights w_P

Thank you!

• Experiments in Apache Spark on largest vector datasets from UCI ML repository

 $-\approx$ 11M vectors => 960 TB for adjacency matrix

– SIFT & HIGGS datasets preprocessed with PCA

- More on my blog <u>http://grigory.us/blog/</u>
- CAML: <u>http://caml.indiana.edu</u>