
Grigory Yaroslavtsev
http://grigory.us

Massively	Parallel	Algorithms	and	
Hardness	of	Single-Linkage	Clustering

Joint	work	with	Adithya Vadapalli (Indiana	University)

Algorithms	for	Big	Data

• User’s	perspective:	paradigm	shift	brought	by	
cloud	services
– Outsourcing	computation	and	data	storage	is	
great	for	both	businesses	and	researchers

– Cloud	service	providers:	Amazon	EC2,	Google	
Compute	Engine,	Microsoft	Azure,	…

– Open	source	stacks/frameworks:	
MapReduce/Hadoop,	Apache	Spark,	etc.

Business	perspective
• Pricings:
– https://cloud.google.com/pricing/
– https://aws.amazon.com/pricing/

• ~Linear	with	space and	time usage
– 100	machines:	5K	$/year	
– 10000	machines:	0.5M	$/year

• You	pay	a	lot	more for	using	provided	
algorithms
– https://aws.amazon.com/machine-
learning/pricing/

“Big	Data	Theory”	=	Turing	meets	Shannon

= +
Network	Time	/
Information	and	
Communication	
Complexity	

CPU	time	/	
Computational	
Complexity

Computational	Model
• Input:	size	n
• 𝑴machines,	space	𝑺 on	each	(𝑺 =	𝒏'()	,	0 < 𝜖 < 1)
– Constant	overhead	in	total	space:	𝑴 ⋅ 𝑺	 = 	𝑂(𝒏)

• Output:	solution	to	a	problem	(often	size	O(𝒏))
– Doesn’t	fit	on	a	single	machine	(𝑺 ≪ 	𝒏)

} 𝑴	machines}
S	space

𝐈𝐧𝐩𝐮𝐭: size	𝒏 ⇒ ⇒	𝐎𝐮𝐭𝐩𝐮𝐭: 𝑠𝑖𝑧𝑒	𝑂(𝒏)

} 𝑴	machines}
S	space

Computational	Model
• Computation/Communication	in	𝑹 rounds:
– Every	machine	performs	a	near-linear	time
computation	=>	Total	running	time	𝑂(𝑺𝟏G𝒐(𝟏)𝑹)

– Every	machine	sends/receives	at	most	𝑺 bits of	
information	=>	Total	communication	𝑂(𝒏𝑹).

Goal:Minimize	𝑹.																								Ideally:	𝑹 =	constant.

𝑶(𝑺𝟏G𝒐(𝟏)) time

≤ 𝑺 bits

Algorithms	for	Graphs
• Dense	graphs vs.	sparse	graphs
– Dense:	𝑺 ≫ |𝑉|
• Linear	sketching:	one	round
• “Filtering”	[Karloff,	Suri	Vassilvitskii,	SODA’10;	Ene,	Im,	
Moseley,	KDD’11;	Lattanzi,	Moseley,	Suri,	Vassilvitskii,	
SPAA’11;	Suri,	Vassilvitskii,	WWW’11]	… [Bateni,	
Behnezhad,	Derakshan,	Hajiaghayi,	Kiveris,	Lattanzi,	
Mirrokni,	NIPS’17]

– Sparse:	𝑺 ≪ |𝑉|	(or	𝑺 ≪ solution	size)
Sparse	graph	problems	appear	hard	(Big	open	question:	
connectivity	in	o(log	𝑛) rounds?)

VS.

Two	Conjectures

• Conj	1:	(Connectivity) Given	graph	with	
𝑂(|𝑉|) edges	finding	connected	components	
requires	Ω(log	|V|)	rounds

• Conj 2:	(Two	cycles) Distinguishing	one	cycles	
from	two	cycles	requires	Ω(log	|V|)	rounds

• [Roughgarden,	Vassilvitskii,	Wang	SPAA‘16]
– Give	an	Ω(log𝑺𝑛) lower	bound
– Some	evidence	of	relationship	to	𝑁𝐶' ⊆ 𝑃

Polynomial	time (“easy”)
• Minimum	Spanning	Tree
• Earth-Mover	Distance	=	
Min	Weight	Bi-chromatic	Matching

NP-hard (“hard”)
• Steiner	Tree
• Traveling	Salesman
• Clustering	(k-medians,	facility	

location,	etc.)

Geometric	Graph	Problems	[ANOY’14]

Combinatorial	problems	on	graphs	in	ℝ𝒅

Arora-Mitchell-style	
“Divide	and	Conquer”,	
easy		to	implement	in	
Massively	Parallel	
Computational	Models,	
but	bad	running	time

}
} Need	new	theory!

MST:	Single	Linkage	Clustering
• [Zahn’71]	Clustering via	MST	(Single-linkage):	
𝒌 clusters:	remove	𝒌 − 𝟏 longest	edges	from	MST

• Maximizes	minimum intercluster distance

Objective:	min(a,b,c)

• [ANOY’14]:	(1 + 𝜖)-approx MST	(in	expectation)
• Single-linkage	clustering	can	be	arbitrarily	bad:

1 1 1 1 1 100 𝒏

1 1 1 1 1 100 𝒏

𝜖𝒏 ≫ 100

X
X

MST	vs.	Single	Linkage	Clustering

Our	Results
Approximation	in	
𝑂 log		𝒏 rounds

Hardness	of approx.	in	
𝑜(log	𝑛) rounds

ℓ𝟎 Exact	for	𝒅 = 𝑂(1) 2	for	𝒅 = 2	under	Connectivity
3	for	𝒅 = Ω(𝑛) under	Two	Cycles

ℓ𝟏 (1 + 𝜖) for	𝒅 = 𝑂(1) 2	for	𝒅 = Ω(𝑛) under	Connectivity
3	for	𝒅 = Ω(𝑛) under	Two	Cycles

ℓ𝟐 (1 + 𝜖) for	𝒅 = 𝑂(1)
1.41 − 𝜖	for	𝒅 = Ω bcd e

)f
under	Connectivity

1.84 − 𝜖	for	𝒅 = Ω bcd e
)f

under	Two	Cycles

ℓh (1 + 𝜖) for	𝒅 = 𝑂(1) 2	for	𝒅 = Ω(𝑛) under	Connectivity	
[ANOY’14]

ℓ𝟎	 and	ℓ𝟏	hardness	results	hold	for	O(1)-sparse	vectors,	i.e.	for	inputs	of	size	O(n)

Hardness	for	ℓ𝟐
Reduction	from	“One	vs.	Two	Cycles”
• Vector	𝑣j for	each	vertex,	set	𝒗j = 𝒆j
• For	each	edge	(𝑖, 𝑗) update	(for	𝝃 = 1/ 2�):
– 𝒗j = 𝒗j + 𝝃𝒆s
– 𝒗s = 𝒗s + 𝝃𝒆j

• Apply	Johnson-Lindenstrauss transform	to	
reduce	the	dimension	down	to	𝒅 = 	𝑂 bcd e

)f
	

Important	that	reduction	can	be	done	in	O(1)	rounds

Hardness	for	ℓ𝟐
Reduction	from	“One	vs.	Two	Cycles”
• Vector	𝒗j for	each	vertex,	set	𝒗j = 𝒆j
• For	each	edge	(𝑖, 𝑗) update	(for	𝝃 = 1/ 2�):
– 𝒗j = 𝒗j + 𝝃𝒆s
– 𝒗j = 𝒗s + 𝝃𝒆j

• 𝒗j − 𝒗s t
= 2� 2	 − 2� 	

�
if	there	is	an	edge	(𝑖, 𝑗)

• 𝒗j − 𝒗s t
= 2	if	there	is	no	edge	 𝑖, 𝑗

Ratio	between	these	cases	gives	hardness	of	 2 + 2�
�

General	algorithm	for	ℓ', ℓt, ℓh
• Input:	vectors	𝑣', … , 𝑣𝒏 ∈ ℝ𝒅

• 𝐸 = ∅
• Repeat	𝑂 log𝒏 	times	sequentially:
– 𝐸’ =	set	of	edges	of	a	(1	 + 𝜖)-approximate	MST
– 𝐸 = 𝐸 ∪ 𝐸{

• Run	Boruvka’s algorithm	on	𝐸
• Drop	𝑘 − 1 longest	edges	to	get	the	clustering

Large	geometric	graphs
• Graph	algorithms:	Dense	graphs vs.	sparse	graphs
– Dense:	𝑺 ≫ |𝑉|.	
– Sparse:	𝑺 ≪ |𝑉|.	

• Our	setting:
– Dense	graphs,	sparsely	represented:	O(n)	space
– Output	doesn’t	fit	on	one	machine	(𝑺 ≪ 	𝒏)

• Today:	(1 + 𝜖)-approximate	MST	[ANOY’14]
– 𝒅 = 2 (easy	to	generalize)	
– 𝑹 = log𝑺 𝒏=	O(1)	rounds	(𝑺 = 𝒏𝛀(𝟏))

𝑂(log	𝑛)-MST	in 𝑅 = 𝑂(log	𝑛)		rounds	
• Assume	points	have	integer	coordinates	 0,… , Δ ,	where	
Δ = 𝑂 𝒏𝟐 	.

Impose	an	𝑂(log	𝒏)-depth	quadtree
Bottom-up:	For	each	cell	in	the	quadtree

– compute	optimum	MSTs	in	subcells
– Use	only	one representative from	each	cell	on	the	next	level

Wrong	representative:	
O(1)-approximation	per	level

Wrong	representative:	
O(1)-approximation	per	level

𝝐𝑳-nets
• 𝝐𝑳-net	for	a	cell	C	with	side	length	𝑳:

Collection	S of	vertices	in	C,	every	vertex	is	at	distance	<=	𝝐𝑳 from	some	
vertex	in	S.	(Fact:	Can	efficiently	compute	𝝐-net	of	size	𝑂 '

𝝐f
)

Bottom-up:	For	each	cell	in	the	quadtree
– Compute	optimum	MSTs	in	subcells
– Use	𝝐𝑳-net	from	each	cell	on	the	next	level

• Idea:	Pay	only	O(𝝐𝑳)	for	an	edge cut	by	cell	with	side	𝑳
• Randomly	shift	the	quadtree:	
Pr 𝑐𝑢𝑡	𝑒𝑑𝑔𝑒	𝑜𝑓	𝑙𝑒𝑛𝑔𝑡ℎ	ℓ	𝑏𝑦	𝑳 ∼ ℓ/𝑳 – charge	errors

𝑳 𝑳𝜖𝑳

Randomly	shifted	quadtree
• Top	cell	shifted	by	a	random	vector	in	 0, 𝑳 t

Impose	a	randomly	shifted quadtree (top	cell	length	𝟐𝚫)
Bottom-up:	For	each	cell	in	the	quadtree
– Compute	optimum	MSTs	in	subcells
– Use	𝝐𝑳-net	from	each	cell	on	the	next	level

Pay	5 instead	of	4
Pr[𝐁𝐚𝐝	𝐂𝐮𝐭]	=	𝛀(1)

2

1

𝐁𝐚𝐝	𝐂𝐮𝐭

1 + 𝝐 -MST	in 𝐑 = 𝑂(log		𝑛)		rounds	
• Idea: Only	use	short	edges	inside	the	cells

Impose	a	randomly	shifted quadtree (top	cell	length	𝟐𝚫
𝝐	
)

Bottom-up:	For	each	node	(cell)	in	the	quadtree
– compute	optimum	Minimum	Spanning	Forests in	subcells,	
using	edges	of	length≤ 𝝐𝑳

– Use	only	𝝐𝟐𝑳-net	from	each	cell	on	the	next	level

2

1
Pr[𝐁𝐚𝐝	𝐂𝐮𝐭]	=	𝑶(𝝐)

𝑳 = 𝛀(𝟏
𝝐
)

1 + 𝝐 -MST	in 𝐑 = 𝑂(1)		rounds
• 𝑂(log	𝒏) rounds	=>	O(log𝑺 𝒏)	=	O(1)	rounds
– Flatten	the	tree:	(𝑴� × 𝑴�)-grids	instead	of	(2x2)	grids	at	each	
level.

Impose	a	randomly	shifted (𝑴� × 𝑴�)-tree
Bottom-up:	For	each	node	(cell)	in	the	tree	
– compute	optimum	MSTs	in	subcells via	edges	of	length ≤ 𝝐𝑳
– Use	only	𝝐𝟐𝑳-net	from	each	cell	on	the	next	level

⇒ } 𝑴� = 𝒏¥(')

1 + 𝝐 -MST	in 𝐑 = 𝑂(1)		rounds
Theorem:	Let	𝒍 =	#	levels	in	a	random	tree	P

𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓	
Proof	(sketch):	
• 𝚫𝑷(𝑢, 𝑣) =	cell	length,	which	first	partitions	(𝑢, 𝑣)
• New	weights:𝒘𝑷 𝑢, 𝑣 = 𝑢	 − 𝑣 t + 𝝐𝚫𝑷 𝑢, 𝑣

𝑢	 − 𝑣 t ≤ 𝔼𝑷[𝒘𝑷 𝑢, 𝑣] ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢	 − 𝑣 t

• Our	algorithm	implements	Kruskal for	weights	𝒘𝑷

𝑢 𝑣
𝚫𝑷 𝑢, 𝑣

Thank	you!

• Experiments	in	Apache	Spark	on	largest	vector	
datasets	from	UCI	ML	repository	
– ≈11M	vectors	=>	960	TB	for	adjacency	matrix
– SIFT	&	HIGGS	datasets	preprocessed	with	PCA

• More	on	my	blog	http://grigory.us/blog/
• CAML:	http://caml.indiana.edu

