Parallel Algorithms for Geometric Graph Problems

Grigory Yaroslavtsev 361 Levine
 http://grigory.us

STOC 2014, joint work with Alexandr Andoni, Krzysztof Onak and Aleksandar Nikolov.

Theory Seminar: Fall 14

- Fridays $12 \mathrm{pm}-1 \mathrm{pm}$
- 512 Levine / 612 Levine
- Homepage: http://theory.cis.upenn.edu/seminar/
- Google Calendar: see link above
- Announcements:
- Theory list:
http://lists.seas.upenn.edu/mailman/listinfo/theory-group

"The Big Bang Data Theory"

What should TCS say about big data?

- Usually:
- Running time: (almost) linear, sublinear, ...
- Space: linear, sublinear, ...
- Approximation: $(1+\epsilon)$, best possible, \ldots
- Randomness: as little as possible, ...
- Special focus today: rOUNd complexity

Round Complexity

Information-theoretic measure of performance

- Tools from information theory (Shannon'48)
- Unconditional results (lower bounds)

Example today:

- Approximating Geometric Graph Problems

Approximation in Graphs

1930-50s: Given a graph and an optimization problem...

Transportation Problem: Tolstoi [1930]

Minimum Cut (RAND):
Harris and Ross [1955] (declassified, 1999)

Approximation in Graphs

1960s: Single processor, main memory (IBM 360)

Approximation in Graphs

1970s: NP-complete problem - hard to solve exactly in time polynomial in the input size

"Black Book"

Approximation in Graphs

Approximate with multiplicative error $\boldsymbol{\alpha}$ on the worstcase graph G :

$$
\max _{G} \frac{\operatorname{Algorithm}(G)}{\text { Optimum }(G)} \leq \boldsymbol{\alpha}
$$

Generic methods:

- Linear programming
- Semidefinite programming
- Hierarchies of linear and semidefinite programs
- Sum-of-squares hierarchies

The New: Approximating Geometric Problems in Parallel Models

1930-70s to 2014

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Miznael R Garsy / Oavd S. wionnson

The New: Approximating Geometric Problems in Parallel Models

Geometric graph (implicit):
Euclidean distances between n points in \mathbb{R}^{d}

Already have solutions for old NP-hard problems
(Traveling Salesman, Steiner Tree, etc.)

- Minimum Spanning Tree (clustering, vision)
- Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in \mathbb{R}^{d}
Polynomial time ("easy")

- Minimum Spanning Tree
- Earth-Mover Distance = Min Weight Bi-chromatic Matching

Normard ("hard")

easy to implement in
Massmand Parallel
Computational vruans

MST: Single Linkage Clustering

- [Zahn'71] Clustering via MST (Single-linkage):
k clusters: remove $\boldsymbol{k}-1$ longest edges from MST
- Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Earth-Mover Distance

- Computer vision: compare two pictures of moving objects (stars, MRI scans)

Computational Model

- Input: n points in a d-dimensional space (d constant)
- \boldsymbol{M} machines, space \boldsymbol{S} on each ($\boldsymbol{S}=\boldsymbol{n}^{\alpha}, 0<\alpha<1$)
- Constant overhead in total space: $\boldsymbol{M} \cdot \boldsymbol{S}=O(n)$
- Output: solution to a geometric problem (size O(n))
- Doesn't fit on a single machine ($S \ll n$)

Input: n points \Rightarrow
\Rightarrow Output: size $0(n)$

S space

Computational Model

- Computation/Communication in R rounds:
- Every machine performs a near-linear time computation $=>$ Total running time $O\left(n^{1+o(1)} R\right)$
- Every machine sends/receives at most S bits of information => Total communication $O(n R)$.

Goal: Minimize \boldsymbol{R}.
Our work: $R=$ constant.
\mathbf{S} space
$O\left(S^{1+o(1)}\right)$ time

MapReduce-style computations

YАНоО! Google

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
- Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM
- Can be done in $O\left(\log _{s} n\right)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

- Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models
Con: Many parameters, hard to design algorithms

- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13]
Pros:
- Inspired by modern systems (Hadoop, MapReduce, Dryad, ...)
- Few parameters, simple to design algorithms
- New algorithmic ideas, robust to the exact model specification
- \# Rounds is an information-theoretic measure => can prove unconditional lower bounds
- Between linear sketching and streaming with sorting

Previous work

- Dense graphs vs. sparse graphs
- Dense: $S \gg n$ (or $S \gg$ solution size)
"Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD’11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri, Vassilvitskii, WWW'11]
- Sparse: $\boldsymbol{S} \ll n$ (or \boldsymbol{S} << solution size)

Sparse graph problems appear hard (Big open question: (s, t)-connectivity in o(log n) rounds?)

VS.

Large geometric graphs

- Graph algorithms: Dense graphs vs. sparse graphs
- Dense: $S \gg n$.
- Sparse: $\boldsymbol{S} \ll \boldsymbol{n}$.
- Our setting:
- Dense graphs, sparsely represented: $0(n)$ space
- Output doesn't fit on one machine ($S \ll n$)
- Today: $(1+\epsilon)$-approximate MST
$-d=2$ (easy to generalize)
- $R=\log _{s} n=\mathrm{O}(1)$ rounds $\left(S=n^{\boldsymbol{\Omega}(\mathbf{1})}\right)$

$O(\log n)-\mathrm{MST}$ in $R=O(\log n)$ rounds

- Assume points have integer coordinates $[0, \ldots, \Delta]$, where $\Delta=O\left(n^{2}\right)$.

Impose an $O(\log n)$-depth quadtree Bottom-up: Foreach cellin thequadtreem

- compute optimum MSTs in subeclls
- Use only one feresintative frompeach cell on the next level

ϵL-nets

- ϵL-net for a cell C with side length L :

Collection \mathbf{S} of vertices in C , every vertex is at distance <= ϵL from some vertex in \mathbf{S}. (Fact: Can efficiently compute ϵ-net of size $O\left(\frac{1}{\epsilon^{2}}\right)$)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL-net from each cell on the next level
- Idea: Pay only $O(\epsilon L)$ for an edge cut by cell with side L
- Randomly shift the quadtree:
 O(1)-apprqximation per level

Randomly shifted quadtree

- Top cell shifted by a random vector in $[0, L]^{2}$

Impose a randomly shifted quadtree (top cell length $\mathbf{2 \Delta}$)
Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL-net from each cell on the next level

Pay 5 instead of 4
 $\operatorname{Pr}[$ Baadeut $]=\Omega(1)$

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O(\log n)$ rounds

- Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length $\frac{2 \Delta}{\epsilon}$)
Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^{2} L$-net from each cell on the next level

$$
L=\Omega\left(\frac{1}{\epsilon}\right)
$$

$$
\operatorname{Pr}[\text { Bad Cut }]=\boldsymbol{O}(\epsilon)
$$

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O$ (1) rounds

- $O(\log n)$ rounds $=>O\left(\log _{s} n\right)=O(1)$ rounds
- Flatten the tree: $(\sqrt{\boldsymbol{m}} \times \sqrt{\boldsymbol{m}})$-grids instead of (2×2) grids at each level.

Impose a randomly shifted $(\sqrt{\boldsymbol{m}} \times \sqrt{\boldsymbol{m}})$-tree
Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^{2} L$-net from each cell on the next level

$(1+\boldsymbol{\epsilon})-\mathrm{MST}$ in $\mathbf{R}=O$ (1) rounds

Theorem: Let $l=$ \# levels in a random tree \boldsymbol{P}

$$
\mathbb{E}_{P}[\mathbf{A L G}] \leq(1+O(\epsilon \operatorname{ld})) \mathbf{O P T}
$$

Proof (sketch):

- $\Delta_{P}(u, v)=$ cell length, which first partitions (u, v)
- New weights: $w_{P}(u, v)=\|u-v\|_{2} \dagger \epsilon \Delta_{P}(u, v)$
$\|u-v\|_{2} \leq E_{P}\left[w_{P}(u, v)\right] \leq(1+O(\epsilon\| \| v)) p((u, v)\rangle \|_{2}$
- Our algorithmimpiements Kiruskal for weights $\boldsymbol{w}_{\boldsymbol{P}}$

"Solve-And-Sketch" Framework

$(1+\epsilon)$-MST:

- "Load balancing": partition the tree into parts of the same size
- Almost linear time: Approximate Nearest Neighbor data structure [Indyk'99]
- Dependence on dimension d (size of ϵ-net is $O\left(\frac{d}{\epsilon}\right)^{d}$)
- Generalizes to bounded doubling dimension
- Basic version is teachable (Jelani Nelson's "Big Data" class at Harvard)
- Implementation in progress...

"Solve-And-Sketch" Framework

$(1+\epsilon)$-Earth-Mover Distance, Transportation Cost

- No simple "divide-and-conquer" Arora-Mitchell-style algorithm (unlike for general matching)
- Only recently sequential $(1+\epsilon)$-apprxoimation in $O_{\epsilon}\left(n \log ^{O(1)} n\right)$ time [Sharathkumar, Agarwal '12]
Our approach (convex sketching):
- Switch to the flow-based version
- In every cell, send the flow to the closest net-point until we can connect the net points

"Solve-And-Sketch" Framework

Convex sketching the cost function for τ net points

- $F: \mathbb{R}^{\tau-1} \rightarrow \mathbb{R}=$ the cost of routing fixed amounts of flow through the net points
- Function $F^{\prime}=F+$ "normalization" is monotone, convex and Lipschitz, $(1+\epsilon)$ approximates F
- We can $(1+\epsilon)$-sketch it using a lower convex hull

Thank you! http://grigory.us

Open problems:

- Exetension to high dimensions?
- Probably no, reduce from connectivity => conditional lower bound : $\Omega(\log n)$ rounds for MST in ℓ_{∞}^{n}
- The difficult setting is $d=\Theta(\log n)$ (can do JL)
- Streaming alg for EMD and Transporation Cost?
- Our work:
- First near-linear time algorithm for Transportation Cost
- Is it possible to reconstruct the solution itself?

