Parallel Algorithms for Geometric Graph Problems

Grigory Yaroslavtsev

361 Levine

http://grigory.us

STOC 2014, joint work with Alexandr Andoni, Krzysztof Onak and Aleksandar Nikolov.

Theory Seminar: Fall 14

- Fridays 12pm—1pm
- 512 Levine / 612 Levine
 - Homepage: http://theory.cis.upenn.edu/seminar/
 - Google Calendar: see link above
- Announcements:
 - Theory list:

http://lists.seas.upenn.edu/mailman/listinfo/theory-group

"The Big Bang Data Theory"

What should TCS say about big data?

- Usually:
 - Running time: (almost) linear, sublinear, ...
 - Space: linear, sublinear, ...
 - **Approximation**: $(1 + \epsilon)$, best possible, ...
 - Randomness: as little as possible, ...
- Special focus today: **round** complexity

Round Complexity

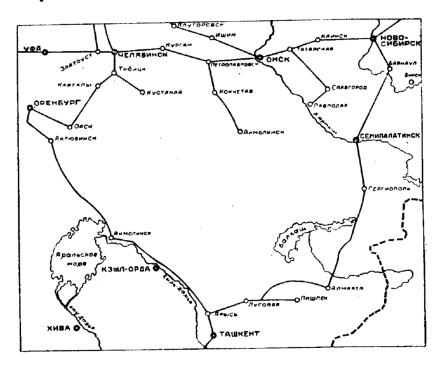
Information-theoretic measure of performance

- Tools from information theory (Shannon'48)
- Unconditional results (lower bounds)

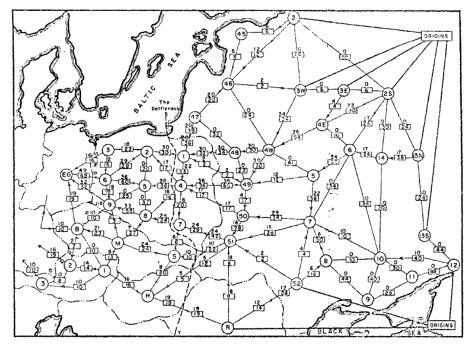
Example today:

Approximating Geometric Graph Problems

1930-50s: Given a graph and an optimization problem...



Transportation Problem: Tolstoi [1930]

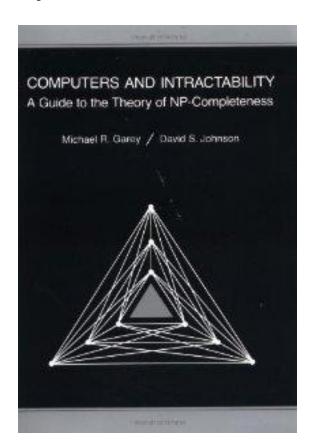


Minimum Cut (RAND): Harris and Ross [1955] (declassified, 1999)

1960s: Single processor, main memory (IBM 360)

1970s: NP-complete problem – hard to solve exactly in time polynomial in the input size

"Black Book"



Approximate with multiplicative error α on the worst-case graph G:

$$max_G \frac{Algorithm(G)}{Optimum(G)} \leq \alpha$$

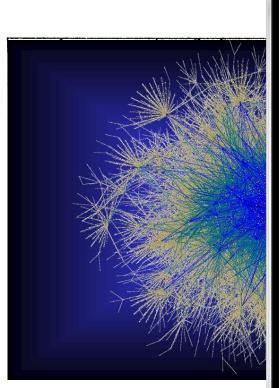
Generic methods:

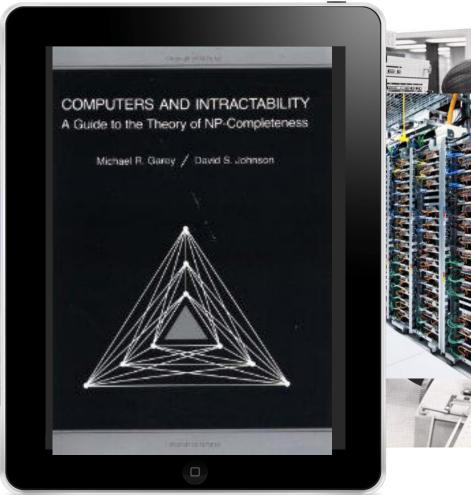
- Linear programming
- Semidefinite programming
- Hierarchies of linear and semidefinite programs
- Sum-of-squares hierarchies

• ...

The New: Approximating Geometric Problems in Parallel Models

1930-70s to 2014

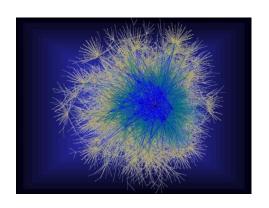




The New: Approximating Geometric Problems in Parallel Models

Geometric graph (implicit):

Euclidean distances between **n** points in \mathbb{R}^d

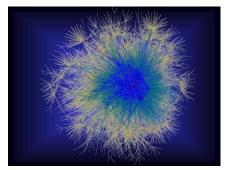


Already have solutions for old NP-hard problems (Traveling Salesman, Steiner Tree, etc.)

- Minimum Spanning Tree (clustering, vision)
- Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in \mathbb{R}^d



Polynomial time ("easy")

- Minimum Spanning Tree
- Earth-Mover Distance =

Min Weight Bi-chromatic Matching

whard ("hard")

- Steiner Tree
- Traveling Salesman
- Clustering (k-medians, facility location, etc.)

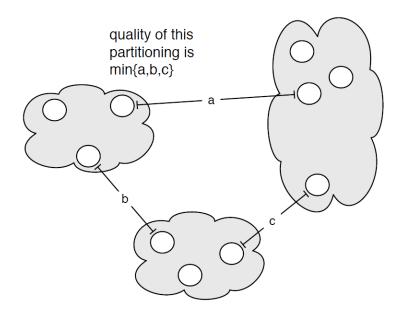
eed new

MST: Single Linkage Clustering

• [Zahn'71] **Clustering** via MST (Single-linkage):

k clusters: remove k-1 longest edges from MST

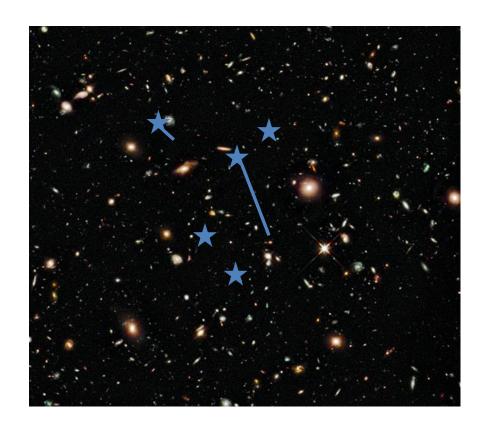
Maximizes minimum intercluster distance

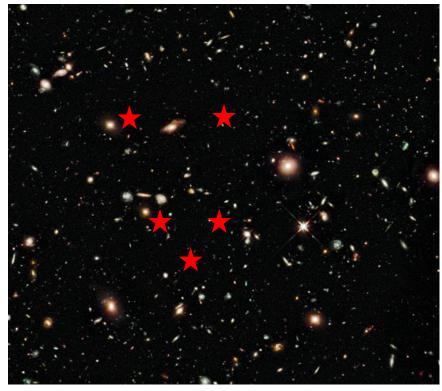


[Kleinberg, Tardos]

Earth-Mover Distance

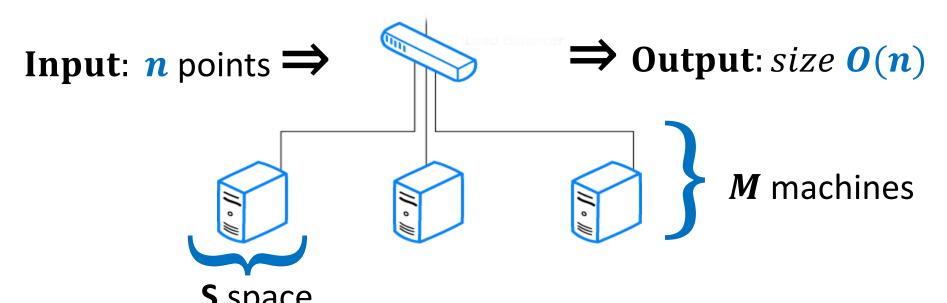
 Computer vision: compare two pictures of moving objects (stars, MRI scans)





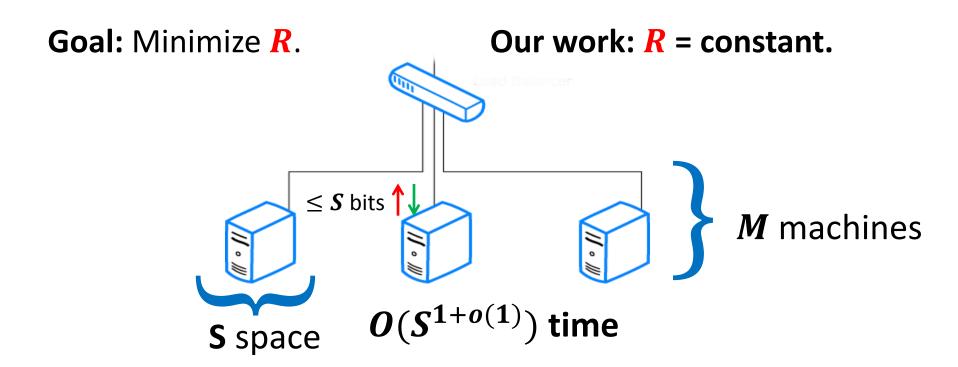
Computational Model

- Input: n points in a d-dimensional space (d constant)
- *M* machines, space *S* on each ($S = n^{\alpha}$, $0 < \alpha < 1$)
 - Constant overhead in total space: $\mathbf{M} \cdot \mathbf{S} = O(\mathbf{n})$
- Output: solution to a geometric problem (size O(n))
 - Doesn't fit on a single machine ($S \ll n$)



Computational Model

- Computation/Communication in R rounds:
 - Every machine performs a **near-linear time** computation => Total running time $O(n^{1+o(1)}R)$
 - Every machine sends/receives at most S bits of information => Total communication O(nR).



MapReduce-style computations

YAHOO! Google

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
 - Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM
 - Can be done in $O(\log_s n)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13]
 Pros:
 - Inspired by modern systems (Hadoop, MapReduce, Dryad, ...)
 - Few parameters, simple to design algorithms
 - New algorithmic ideas, robust to the exact model specification
 - #Rounds is an information-theoretic measure => can prove unconditional lower bounds
 - Between linear sketching and streaming with sorting

Previous work

- Dense graphs vs. sparse graphs
 - Dense: $S \gg n$ (or $S \gg$ solution size)

"Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]

- Sparse: $S \ll n$ (or $S \ll$ solution size)

Sparse graph problems appear hard (**Big open question**: (s,t)-connectivity in $o(\log n)$ rounds?)

Large geometric graphs

- Graph algorithms: Dense graphs vs. sparse graphs
 - Dense: $S \gg n$.
 - Sparse: $S \ll n$.

Our setting:

- Dense graphs, sparsely represented: O(n) space
- Output doesn't fit on one machine ($S \ll n$)
- Today: $(1 + \epsilon)$ -approximate MST
 - d = 2 (easy to generalize)
 - $-R = \log_S n = O(1)$ rounds $(S = n^{\Omega(1)})$

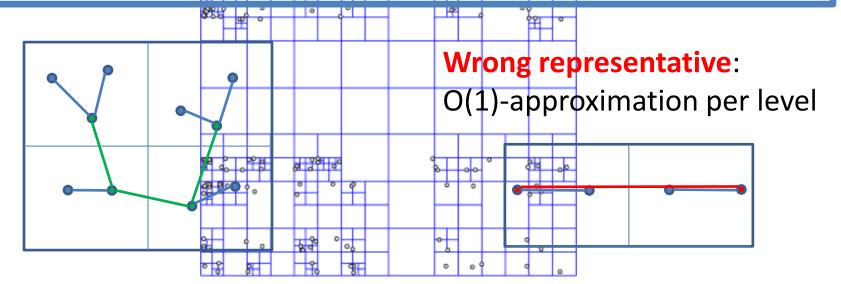
$O(\log n)$ -MST in $R = O(\log n)$ rounds

• Assume points have integer coordinates $[0, ..., \Delta]$, where $\Delta = O(n^2)$.

Impose an $O(\log n)$ -depth quadtree

Bottom-up: For each cell in the quadtree

- compute optimum MSTs in subcells
- Use only one representative from each cell on the next level



EL-nets

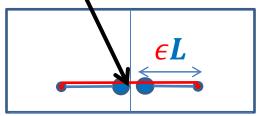
• ϵL -net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance \leftarrow ϵL from some vertex in S. (Fact: Can efficiently compute ϵ -net of size $O\left(\frac{1}{\epsilon^2}\right)$)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level
- Idea: Pay only $O(\epsilon L)$ for an edge cut by cell with side L
- Randomly shift the quadtree:

 Pr[cut edge of length Whonk] presentation per level

 O(1)-approximation per level



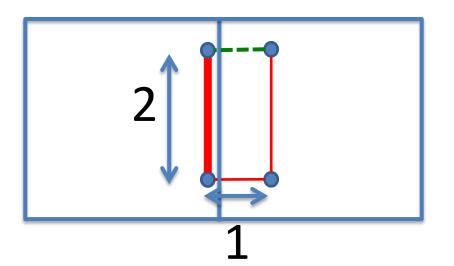
Randomly shifted quadtree

• Top cell shifted by a random vector in $[0, L]^2$

Impose a randomly shifted quadtree (top cell length 2Δ)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level



Pay 5 instead of 4

Pr[Bad Cut] = $\Omega(1)$

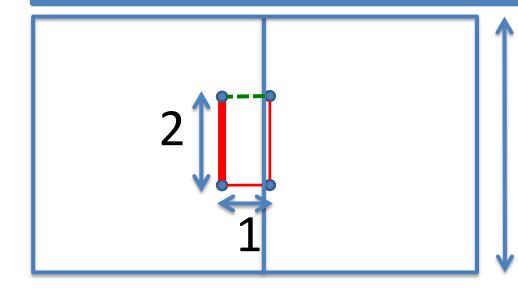
$(1 + \epsilon)$ -MST in $\mathbf{R} = O(\log n)$ rounds

Idea: Only use short edges inside the cells

Impose a **randomly shifted** quadtree (top cell length $\frac{2\Delta}{\epsilon}$)

Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level



$$L = \Omega(\frac{1}{\epsilon})$$

$$Pr[Bad Cut] = O(\epsilon)$$

$$(1 + \epsilon)$$
-MST in $\mathbf{R} = O(1)$ rounds

- $O(\log n)$ rounds => $O(\log_s n)$ = O(1) rounds
 - Flatten the tree: $(\sqrt{m} \times \sqrt{m})$ -grids instead of (2x2) grids at each level.

Impose a randomly shifted $(\sqrt{m} \times \sqrt{m})$ -tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = 0(1)$ rounds

Theorem: Let l = # levels in a random tree P $\mathbb{E}_{P}[\mathsf{ALG}] \leq \left(1 + O(\epsilon ld)\right)\mathsf{OPT}$

Proof (sketch):

- $\Delta_P(u, v)$ = cell length, which first partitions (u, v)
- New weights: $w_P(u,v) = ||u-v||_2 + \epsilon \Delta_P(u,v)$ $||u-v||_2 \le \mathbb{E}_P[w_P(u,v)] \le (1 + O(\epsilon d))||u-v||_2$
- Our algorithm implements Kruskal for weights w_P

"Solve-And-Sketch" Framework

$(1+\epsilon)$ -MST:

- "Load balancing": partition the tree into parts of the same size
- Almost linear time: Approximate Nearest Neighbor data structure [Indyk'99]
- Dependence on dimension d (size of ϵ -net is $O\left(\frac{d}{\epsilon}\right)^a$)
- Generalizes to bounded doubling dimension
- Basic version is teachable (Jelani Nelson's ``Big Data'' class at Harvard)
- Implementation in progress...

"Solve-And-Sketch" Framework

$(1 + \epsilon)$ -Earth-Mover Distance, Transportation Cost

- No simple "divide-and-conquer" Arora-Mitchell-style algorithm (unlike for general matching)
- Only recently sequential $(1 + \epsilon)$ -approximation in $O_{\epsilon}(n \log^{O(1)} n)$ time [Sharathkumar, Agarwal '12]

Our approach (convex sketching):

- Switch to the flow-based version
- In every cell, send the flow to the closest net-point until we can connect the net points

"Solve-And-Sketch" Framework

Convex sketching the cost function for τ net points

- $F: \mathbb{R}^{\tau-1} \to \mathbb{R}$ = the cost of routing fixed amounts of flow through the net points
- Function F' = F + "normalization" is monotone, convex and Lipschitz, $(1 + \epsilon)$ -approximates F
- We can $(1 + \epsilon)$ -sketch it using a lower convex hull

Thank you! http://grigory.us

Open problems:

- Exetension to high dimensions?
 - Probably no, reduce from connectivity => conditional lower bound : $\Omega(\log n)$ rounds for MST in ℓ_{∞}^{n}
 - The difficult setting is $d = \Theta(\log n)$ (can do JL)
- Streaming alg for EMD and Transporation Cost?
- Our work:
 - First near-linear time algorithm for Transportation
 Cost
 - Is it possible to reconstruct the solution itself?