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Matchings in Graphs
Matching: A collection of vertex-disjoint edges.

Perfect Matching: Every vertex is in the matching.

Maximum Matching problem: Find a matching with a largest number
of edges.
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Matchings in Graphs
Maximum matching is a fundamental problem with many
applications.

Many celebrated algorithms for matchings: Ford-Fulkerson,
Edmond’s, Hopcroft-Karp, Mucha-Sankowski, Madry’s, . . .
Studied in various computational models: distributed, dynamic,
online, streaming, . . .

This talk: sublinear space algorithms for computing approximate
matchings in dynamic graph streams.
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Dynamic Graph Streams
The input graph is presented as a sequence of edge insertions
and deletions.

Stream:
Edge-frequency vector:
#»

f =
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
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Dynamic Graph Streams
The input graph is presented as a sequence of edge insertions
and deletions.

Stream: +e1

Edge-frequency vector:
#»

f =
[
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
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Dynamic Graph Streams
The input graph is presented as a sequence of edge insertions
and deletions.

Stream: +e1,+e7

Edge-frequency vector:
#»

f =
[
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

]
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Dynamic Graph Streams
The input graph is presented as a sequence of edge insertions
and deletions.

Stream: +e1,+e7,+e11

Edge-frequency vector:
#»

f =
[
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0

]
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Dynamic Graph Streams
The input graph is presented as a sequence of edge insertions
and deletions.

Stream: +e1,+e7,+e11,−e1

Edge-frequency vector:
#»

f =
[
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0

]
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Dynamic Graph Streams
The input graph is presented as a sequence of edge insertions
and deletions.
Algorithm makes a single pass over the entire input but only has
a small space to store information about the input as it passes
by.
At the end of the sequence, the algorithm outputs a solution
using the stored information.
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Linear Sketches
For a graph G with n vertices:

Let #»

f be the edge-frequency vector representing G.
Let M be an s× n2 dimensional matrix (possibly randomly
chosen) for some parameter s.
The s-dimensional vector M · #»

f is a linear sketch of G:

 M


s×n2

·


#»

f


n2

=



s

Requires O(s) for storage =⇒ O(s) size for storing the graph
instead of O(n2).
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Linear Sketches and Dynamic Graph Streams
Linear sketches are main technique for computing in dynamic graph
streams:

Maintain a linear sketch of the input graph during the stream.
I When an edge ei is updated: M · ( #»

f ± #»ei) = M · #»

f ±M · #»ei

At the end of the stream, apply an arbitrary function to M · #»

f
to compute the answer.
Space requirement of the algorithm:
O(s) for the linear sketch + random bits needed for storing M
implicitly.

Dynamic graph stream algorithms and linear sketches are (essentially)
equivalent [AHLW16, LNW14].
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Results in Dynamic Graph Streams
Linear sketches proved to be useful for various graph problems:

Connectivity, edge connectivity, minimum spanning tree, spectral
sparsification, triangle counting, densest subgraph, . . .
Most of them have essentially the same space requirement as
the best streaming algorithm for insertion-only streams.

An important missing problem is the maximum matching problem.
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Matching in Graph Streams
Insertion-only streams:

Exact computation requires Ω(n2) space [FKM+05].
2-approximation in O(n) space is trivial but no better than
2-approximation in o(n2) space is known.
Beating e

e−1 -approximation requires n1+Ω(1/ log logn)

space [Kap13, GKK12].
Lots and lots of other results: [McG05] [FKM+05] [EKS09]
[ELMS11] [GKK12] [KMM12] [Zel12] [AGM12] [AG13b] [Kap13]
[GO13] [KKS14] [CS14] [EHL+15] [AG13a] . . .

Dynamic graph streams:
Prior to our work, no non-trivial results were known for
single-pass algorithms.
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Our Results
We provide a complete resolution of matchings in dynamic graph
streams:

Theorem (Upper bound)
For any 0 ≤ ε ≤ 1/2, space of Õ(n2−3ε) is sufficient for computing
an nε-approximate maximum matching.
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Our Results
We provide a complete resolution of matchings in dynamic graph
streams:

Theorem (Upper bound)
For any 0 ≤ ε ≤ 1/2, space of Õ(n2−3ε) is sufficient for computing
an nε-approximate maximum matching.

Theorem (Lower bound)
For any ε ≥ 0, space of Ω̃(n2−3ε) is necessary for computing an
nε-approximate maximum matching.
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Our Results
We provide a complete resolution of matchings in dynamic graph
streams:

Theorem (Upper bound)
For any 0 ≤ ε ≤ 1/2, space of Õ(n2−3ε) is sufficient for computing
an nε-approximate maximum matching.

Theorem (Lower bound)
For any ε ≥ 0, space of Ω̃(n2−3ε) is necessary for computing an
nε-approximate maximum matching.

For ε > 1/2, Õ(n1−ε) space is necessary and sufficient for an
nε-approximation.
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Recent Related Work
Two recent results obtained independently and concurrently:

Upper bound Lower bound

[Kon15] Õ(n2−2ε) Ω̃(n3/2−4ε)

[CCE+16] Õ(n2−3ε) (ε≤1/2) -

This work
Õ(n2−3ε) (ε≤1/2)

Õ(n1−ε) (ε>1/2)
Ω̃(n2−3ε)
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Upper Bound
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nε-Approximation for Matchings
Theorem (Upper bound)
For any 0 < ε ≤ 1/2, space of Õ(n2−3ε) is sufficient for computing
an nε-approximate maximum matching in dynamic graph streams.

The algorithm needs only to store a linear sketch.
W.l.o.g. we can restrict our attention to bipartite graphs.
For simplicity, assume there is a perfect matching M? in the
input graph G(L,R,E).
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`0-sampler
Problem: How can we recover one edge from the edge-frequency
vector #»

f of G defined by a dynamic graph stream in a small space?
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`0-sampler
Problem: How can we recover one edge from the edge-frequency
vector #»

f of G defined by a dynamic graph stream in a small space?

Toy problem 1: What if we are promised that at the end of the
stream, there is exactly one edge in G, i.e., ‖ #»

f ‖0 = 1?
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`0-sampler
Problem: How can we recover one edge from the edge-frequency
vector #»

f of G defined by a dynamic graph stream in a small space?

Toy problem 1: What if we are promised that at the end of the
stream, there is exactly one edge in G, i.e., ‖ #»

f ‖0 = 1?
Solution:

1 Let M =
[
1, 2, . . . , n2

]
.

2 Return M · #»

f .
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`0-sampler
Problem: How can we recover one edge from the edge-frequency
vector #»

f of G defined by a dynamic graph stream in a small space?

Toy problem 2: If there is exactly one edge in G return it, otherwise
output FAIL.
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`0-sampler
Problem: How can we recover one edge from the edge-frequency
vector #»

f of G defined by a dynamic graph stream in a small space?

Toy problem 2: If there is exactly one edge in G return it, otherwise
output FAIL.
Solution:

1 Let M =
[

1, 2, . . . , n2

1, 1, . . . , 1

]
.

2 Let
[
x
y

]
= M · #»

f ; if y = 1 return x, otherwise output FAIL.
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`0-sampler
Problem: How can we recover one edge from the edge-frequency
vector #»

f of G defined by a dynamic graph stream in a small space?

Toy problem 3: Suppose there are exactly D edges in G, i.e.,
‖ #»

f ‖0 = D; return one edge in G w.p. 2/3, otherwise output FAIL.
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`0-sampler
Problem: How can we recover one edge from the edge-frequency
vector #»

f of G defined by a dynamic graph stream in a small space?

Toy problem 3: Suppose there are exactly D edges in G, i.e.,
‖ #»

f ‖0 = D; return one edge in G w.p. 2/3, otherwise output FAIL.
Solution:

1 Randomly sample D
n2 edge slots from G, i.e., 1

D
fraction of rows

in #»

f .
2 Run the algorithm from the previous part over the sub-sampled

graph.
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`0-sampler
Problem: How can we recover one edge from the edge-frequency
vector #»

f of G defined by a dynamic graph stream in a small space?

Theorem ([JST11])
There exists a distribution of over polylog(N)×N dimensional
matrices M , such that for any x ∈ RN , one random non-zero
element of x can be reconstructed from M · x w.h.p.

`0-samplers allow us to recover an edge between any two groups of
pre-specified vertices in dynamic graph streams.
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Warm-up: An Õ(n2−2ε) Space Algorithm
1 Group vertices in L and R

into n1−ε groups. L R
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Warm-up: An Õ(n2−2ε) Space Algorithm
1 Group vertices in L and R

into n1−ε groups. L R

nε

nε

nε

nε

nε

nε

nε

nε
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Warm-up: An Õ(n2−2ε) Space Algorithm
1 Group vertices in L and R

into n1−ε groups.
2 Maintain one `0-sampler

between any group in L and
any group in R.

L R

nε

nε

nε

nε

nε

nε

nε

nε
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Warm-up: An Õ(n2−2ε) Space Algorithm
1 Group vertices in L and R

into n1−ε groups.
2 Maintain one `0-sampler

between any group in L and
any group in R.

3 At the end of the stream,
sample one edge from each
`0-sampler and compute a
maximum matching on
sampled edges.

L R

nε

nε

nε

nε

nε

nε

nε

nε
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Analysis of the Õ(n2−2ε) Space Algorithm
Space requirement:

We picked n2−2ε `0-samplers: one per each pair in (L,R).
Each `0-sampler requires polylog(n) space.
Total of Õ(n2−2ε) space.
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Analysis of the Õ(n2−2ε) Space Algorithm
Approximation factor:

The perfect matching M? in G induces an nε-regular
(multi-)graph in the grouped graph G.

G
nε

nε

nε

nε

G
nε

nε

nε

nε
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Analysis of the Õ(n2−2ε) Space Algorithm
Approximation factor:

The perfect matching M? in G induces an nε-regular
(multi-)graph in the grouped graph G.
The `0-sampler between each matchable pair (connected by an
edge in M?) in G returns an edge (not necessarily from M?).

nε nε
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Analysis of the Õ(n2−2ε) Space Algorithm
Approximation factor:

The perfect matching M? in G induces an nε-regular
(multi-)graph in the grouped graph G.
The `0-sampler between each matchable pair (connected by an
edge in M?) in G returns an edge (not necessarily from M?).
The sampled edges have a matching of size n1−ε, i.e., an
nε-approximate maximum matching.
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Improving to an Õ(n2−3ε) Space Algorithm
Insight:

The graph G in the previous algorithm is an nε-regular
(multi-)graph.
Any nε-regular graph has nε edge-disjoint perfect matching.
The previous algorithm focused only on a single perfect
matching in G.

Can we sub-sample edges of G while still maintaining a large
matching in the sampled graph?
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An Õ(n2−3ε) Space Algorithm
1 Randomly group vertices in L

and R into n1−ε groups. L R
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An Õ(n2−3ε) Space Algorithm
1 Randomly group vertices in L

and R into n1−ε groups. L R

nε

nε

nε

nε

nε

nε

nε

nε
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An Õ(n2−3ε) Space Algorithm
1 Randomly group vertices in L

and R into n1−ε groups.
2 For each group Li ∈ L, pick
n1−2ε partner group in R
uniformly at random.

L R

nε

nε

nε

nε

nε

nε

nε

nε
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An Õ(n2−3ε) Space Algorithm
1 Randomly group vertices in L

and R into n1−ε groups.
2 For each group Li ∈ L, pick
n1−2ε partner group in R
uniformly at random.

3 Maintain one `0-sampler
between any two partner
group in L and R.

L R

nε

nε

nε

nε

nε

nε

nε

nε
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An Õ(n2−3ε) Space Algorithm
1 Randomly group vertices in L

and R into n1−ε groups.
2 For each group Li ∈ L, pick
n1−2ε partner group in R
uniformly at random.

3 Maintain one `0-sampler
between any two partner
group in L and R.

4 At the end of the stream,
sample one edge from each
`0-sampler and compute a
maximum matching on
sampled edges.

L R

nε

nε

nε

nε

nε

nε

nε

nε
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Analysis of the Õ(n2−3ε) Space Algorithm
Space requirement:

We picked n1−ε · n1−2ε = n2−3ε `0-samplers: one per each
partner pair in (L,R).
Each `0-sampler requires polylog(n) space.
Total of Õ(n2−3ε) space.
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Analysis of the Õ(n2−3ε) Space Algorithm
Approximation factor:

For each Li ∈ L, Ω(nε) groups in R are matchable (connected
by an edge in M?).

G
nε

nε

nε

nε

G
nε

nε

nε

nε
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Analysis of the Õ(n2−3ε) Space Algorithm
Approximation factor:

For each Li ∈ L, Ω(nε) groups in R are matchable (connected
by an edge in M?).
For each Li ∈ L, one matchable group Rj ∈ R is a partner.

G
nε

nε

nε

nε

G
nε

nε

nε

nε
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Analysis of the Õ(n2−3ε) Space Algorithm
Approximation factor:

For each Li ∈ L, Ω(nε) groups in R are matchable (connected
by an edge in M?).
For each Li ∈ L, one matchable group Rj ∈ R is a partner.
For each Li ∈ L, the matchable partner is chosen uniformly at
random from all matchable groups.
· · ·
The sampled edges have a matching of size Ω(n1−ε), i.e., an
O(nε)-approximate maximum matching.
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Analysis of the Õ(n2−3ε) Space Algorithm
Approximation factor:

For each Li ∈ L, Ω(nε) groups in R are matchable (connected
by an edge in M?).
For each Li ∈ L, one matchable group Rj ∈ R is a partner.
For each Li ∈ L, the matchable partner is chosen uniformly at
random from all matchable groups.
· · ·
The sampled edges have a matching of size Ω(n1−ε), i.e., an
O(nε)-approximate maximum matching.

Conclusion: There exists an nε-approximation algorithm for
matchings in Õ(n2−3ε) space.
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Lower Bound
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Lower Bound for nε-Approximation
Theorem (Lower bound)
For any ε ≥ 0, space of Ω̃(n2−3ε) is necessary for computing an
nε-approximate maximum matching.

We prove the lower bound for linear sketches.
Combined with the work of [AHLW16], this provides a tight
lower bound for all dynamic graph stream algorithms.
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Simultaneous Communication Model
We prove the lower bound using simultaneous communication
complexity:

The input graph is edge partitioned between k players
P 1, . . . , P k.
There exists another party called the coordinator, with no input.
Players simultaneously send a message to the coordinator and
the coordinator outputs the final matching.
Communication measure: maximum # of bits send by any
player.
Players have access to public randomness.
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Connection to Linear Sketches
If there exists a randomized linear sketch A of size s for a problem P ,
then the randomized simultaneous communication complexity of P is
at most O(s).

P 1 P 2 . . . P k

Coordinator

A · x = A · (x1 + . . .+ xk)

A · x1 A · x2 A · xk

Hence, a communication lower bound in this model implies an
identical space lower bound for linear sketching algorithms.
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Ruzsa-Szemerédi Graphs
We prove our lower bound using a construction based on
Ruzsa-Szemerédi graphs.

Definition ((r, t)-RS graphs)
A graph G(V,E) whose edges can be partitioned into t induced
matchings of size r each.

1 Example. A (2, 4)-RS graph
on 8 vertices:
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Ruzsa-Szemerédi Graphs
We prove our lower bound using a construction based on
Ruzsa-Szemerédi graphs.

Definition ((r, t)-RS graphs)
A graph G(V,E) whose edges can be partitioned into t induced
matchings of size r each.

1 Example. A (2, 4)-RS graph
on 8 vertices:
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Ruzsa-Szemerédi Graphs
We prove our lower bound using a construction based on
Ruzsa-Szemerédi graphs.

Definition ((r, t)-RS graphs)
A graph G(V,E) whose edges can be partitioned into t induced
matchings of size r each.

1 Example. A (2, 4)-RS graph
on 8 vertices:
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Ruzsa-Szemerédi Graphs
We prove our lower bound using a construction based on
Ruzsa-Szemerédi graphs.

Definition ((r, t)-RS graphs)
A graph G(V,E) whose edges can be partitioned into t induced
matchings of size r each.

1 Example. A (2, 4)-RS graph
on 8 vertices:
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Ruzsa-Szemerédi Graphs
We prove our lower bound using a construction based on
Ruzsa-Szemerédi graphs.

Definition ((r, t)-RS graphs)
A graph G(V,E) whose edges can be partitioned into t induced
matchings of size r each.

1 Example. A (2, 4)-RS graph
on 8 vertices:
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Ruzsa-Szemerédi Graphs
How dense a graph with many large induced matching can be?
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Ruzsa-Szemerédi Graphs
How dense a graph with many large induced matching can be?

Theorem ([AMS12])
There exists an (r, t)-RS graph on N vertices and Ω(N2) edges with
t = N1+o(1) induced matchings of size r = N1−o(1).
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Ω̃(n2−3ε) Lower Bound: Distribution

Parameters:

k ≈ nε, r = n1−ε−o(1), t = n1−ε

Each of the k players is given an (r, t)-RS
graph on n1−ε vertices.

Local view
of P i
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Ω̃(n2−3ε) Lower Bound: Distribution

Parameters:

k ≈ nε, r = n1−ε−o(1), t = n1−ε

Each of the k players is given an (r, t)-RS
graph on n1−ε vertices.
One induced matching (red edges) of each
player’s graph is special.

Special matching
of P i
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Ω̃(n2−3ε) Lower Bound: Distribution

Parameters:

k ≈ nε, r = n1−ε−o(1), t = n1−ε

Each of the k players is given an (r, t)-RS
graph on n1−ε vertices.
One induced matching (red edges) of each
player’s graph is special.
Across the players, vertices in the special
matchings are unique, while other vertices
are shared.

Global view
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Ω̃(n2−3ε) Lower Bound: Distribution

P 1 :

P 2 :

≈ n1−ε

≈ n1−ε

r

r

≈ n1−ε

r

r
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Ω̃(n2−3ε) Lower Bound: Distribution
Parameters:

k ≈ nε, r = n1−ε−o(1), t = n1−ε

Special matchings are necessary for any
large matching.

Global view
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Ω̃(n2−3ε) Lower Bound: Distribution
Parameters:

k ≈ nε, r = n1−ε−o(1), t = n1−ε

Special matchings are necessary for any
large matching.
To obtain o(n2−3ε) communication, the
players have to compress their graph by an
Ω(nε) factor.

Global view
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Ω̃(n2−3ε) Lower Bound: Distribution
Parameters:

k ≈ nε, r = n1−ε−o(1), t = n1−ε

Special matchings are necessary for any
large matching.
To obtain o(n2−3ε) communication, the
players have to compress their graph by an
Ω(nε) factor.
Players are oblivious to the identity of their
special matching.

Global view
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Ω̃(n2−3ε) Lower Bound: Distribution
Parameters:

k ≈ nε, r = n1−ε−o(1), t = n1−ε

Special matchings are necessary for any
large matching.
To obtain o(n2−3ε) communication, the
players have to compress their graph by an
Ω(nε) factor.
Players are oblivious to the identity of their
special matching.

Conclusion: Assuming each player sends only
o(n2−3ε) bits, the coordinator cannot output an
nε-approximate maximum matching.

Global view
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Conclusion and Open Problems
Space of Õ(n2−3ε) is both sufficient and necessary for computing an
nε-approximate maximum matching in dynamic graph streams.

Open question: Can we improve the trivial 2-approximation algorithm
for matchings in insertion-only streams?
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Questions?
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