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Results 
Stronger Direct Sum Theorem in communication complexity 
for equality-type function 

𝑅𝜹 𝑓
𝒌 ≥ Ω 𝒌 𝑅𝜹

𝒌

(𝑓) 

 
𝐷𝜇𝑘,𝛿 𝑓

𝑘 ≥ Ω 𝑘  𝐷
𝜇,
𝛿
𝑘

𝑓  

Optimal lower  bounds for sketching problems: 

• Johnson-Lindenstrauss transform for n vectors  
• Pairwise ℓ1- and ℓ2-distance estimation 
• Matrix multiplication 
• Join size estimation of multiple databases 
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Stronger Direct Sum Theorem in communication complexity 
for equality-type functions 

𝑅𝜹 𝑓
𝒌 ≥ Ω 𝒌 𝑅𝜹

𝒌

(𝑓) 

 
𝐷𝜇𝒌,𝜹 𝑓

𝒌 ≥ Ω 𝒌  𝐷
𝜇,
𝜹
𝒌

𝑓  } Yao’s principle 



Communication Complexity 

• 2 deterministic players: Alice and Bob 

• Joint function 𝑓 

• Communicate and compute 𝑓 

Alice Bob 

… 

Π 

𝑓(𝑥, 𝑦) 

𝑥 𝑦 

Π 𝑥, 𝑦  denotes 
transcript or output 



Communication Complexity 

• 2 deterministic players: Alice and Bob  

• Joint function 𝑓 

• Communicate and compute 𝑓 

 

 

 

 

 

• Ex: 𝑥, 𝑦 ∈ 0,1 𝑛, want to output 𝑥 = 𝑦  

Alice Bob 

… 

Π 

𝑥 𝑦 

? 

𝑓(𝑥, 𝑦) 



Communication Complexity 

• Consider distribution 𝜇 over inputs 

• Goal: Compute 𝑓(𝑥, 𝑦) for all but 𝛿 𝜇-fraction of 
inputs while minimizing longest communication 

 

 

 
 

 

• Distributional complexity 

   𝐷𝜇,𝛿 𝑓 = minimum communication over all 𝛿-protocols 

𝑥 

𝑦 

error 

right 



Multiple Instances 

Alice Bob 

𝑓(𝑥1, 𝑦1) 

𝑥1 𝑥2 𝑥𝑘 
… 

𝑦1 𝑦2 𝑦𝑘 
… 

𝑓(𝑥2, 𝑦2) 

𝑓(𝑥𝑘 , 𝑦𝑘) 
… 
𝑓𝑘(𝒙, 𝒚) 



Multiple Instances 

• Goal: Compute 𝑓𝑘(𝒙, 𝒚) for all but 𝛿 𝜇𝑘-fraction of 
inputs while minimizing longest communication 

 

• Distributional complexity: 𝐷𝜇𝑘,𝛿 𝑓
𝑘  

Alice 

𝑓(𝑥1, 𝑦1) 

𝑥1 𝑥2 𝑥𝑘 
… 

𝑦1 𝑦2 𝑦𝑘 
… 

𝑓(𝑥2, 𝑦2) 

𝑓(𝑥𝑘 , 𝑦𝑘) 
… 

Bob 𝑓𝑘(𝒙, 𝒚) 



Multiple Instances 

• Sometimes a bit: in the private randomness model 

      𝐷
𝜇,
1

3

𝐸𝑄𝑛 ≥ Ω log 𝑛       but      𝐷
𝜇,
1

3

𝐸𝑄𝑛
𝑛 = 𝑂(𝑛) [FKNN95] 

Main question: How much can we save against solving each 
independently? 

𝐷𝜇𝑘,𝛿 𝑓
𝑘 ≥ Ω 𝑘  𝐷

𝜇,
𝛿
𝑘

𝑓  
? 



Multiple Instances 

• Direct sum theorems 

– 𝐷𝜇𝑘,𝛿 𝑓
𝑘 ≥ Ω 𝑘 .𝐷𝜇,𝛿(𝑓)                                                   [BBCR 10] 

– 𝐷𝜇𝑘,𝛿 𝑓
𝑘 ≥ Ω 𝑘 .𝐷𝜇,𝛿(𝑓) for product 𝜇                             [BBCR 10] 

– 𝐷
𝜇𝑘,𝛿
𝑟 𝑓𝑘 ≥ Ω 𝑘 . 𝐷𝜇,𝛿

𝑟 𝑓 − 𝑟 − 𝑟. 𝐷𝜇,𝛿
𝑟 𝑓                     [BR 11] 

 

𝐷𝜇𝑘,𝛿 𝑓
𝑘 ≥ Ω 𝑘 .𝐷

𝜇,
𝛿
𝑘

𝑓  
? 

• Direct product theorems 

– 𝐷
𝜇𝑘,1− 1−

1

3

𝑘 𝑓𝑘 ≥ Ω 𝑘 .𝐷𝜇,1
3

(𝑓)                                          [BRWY] 

None attains above bound 



Information Complexity 

• Information cost: For protocol Π and 𝑋, 𝑌 ∼ 𝜇, information 
revealed about input is  

 

IC𝜇 Π = I Π 𝑋, 𝑌 ;  𝑋, 𝑌 = 𝐻 𝑋, 𝑌 − 𝐻(𝑋, 𝑌|Π) 
 

• Information complexity:  

          IC𝜇,𝛿(𝑓) = min information cost over all 𝛿-protocols 

 

 

 

 

• For non-product 𝜇 we will work with conditional information 
complexity IC𝜇,𝛿(𝑓|𝜈)  

? 

Connection: Communication is at least information 
 

                                        𝐷𝜇,𝛿 𝑓 ≥ IC𝜇,𝛿(𝑓) 



Protocols with Abortion 
? 

Def: A protocol Π 𝜷, 𝜹 -computes 𝑓 if  

• (Abortion)  Pr Π 𝑋, 𝑌 = 𝒂𝒃𝒐𝒓𝒕 ≤ 𝜷 

•    (Error)      Pr Π 𝑋, 𝑌 ≠ 𝑓 𝑋, 𝑌   Π 𝑋, 𝑌 ≠ 𝑎𝑏𝑜𝑟𝑡) ≤ 𝜹 

𝑥 

𝑦 

error 

abort 

right 

Obs: Stronger guarantee than being wrong with prob. ≈ 𝜷 + 𝜹 

IC𝜇,𝜷,𝜹(𝑓) = min information cost over all protocols that  

                         𝜷, 𝜹 -compute 𝑓 



Stronger Direct Sum Theorem 

Theorem: For every communication problem 

Solving k copies with error 𝜹 requires solving  each copy with 

constant abortion and error 
𝜹

𝒌
 



Stronger Direct Sum Theorem 

Theorem: For every communication problem 𝑓, mixture of 
product distributions 𝜇, 𝝂 and 𝜹 > 0  

IC𝜇𝒌,𝜹 𝑓
𝒌|𝝂𝒌 ≥ Ω 𝒌  IC

𝜇,
𝜹
10,𝑂
𝜹
𝒌

𝑓|𝝂  

Also holds for one-way and bounded-round communication 

• The distribution 𝜇 of (X,Y) is a product distribution  if 
𝜇(𝑋, 𝑌) = 𝜇𝑥 𝑋 𝜇𝑦(𝑌) 

• 𝜇, 𝝂  is a mixture of product distributions, if for every 𝒕 
the distribution (𝜇|𝝂 = 𝒕) is a product distribution 



Stronger Direct Sum Theorem 

Theorem: For every communication problem and product 𝜇 

IC𝜇𝒌,𝜹 𝑓
𝒌 ≥ Ω 𝒌 IC

𝜇,
𝜹
10,𝑂
𝜹
𝒌

𝑓  

𝑥1 

𝑦1 

𝑥2 

𝑦2 

𝑥3 

𝑦3 
… 𝒘 = 
𝑥𝑘 

𝑦𝑘  

𝒘 



Stronger Direct Sum Theorem 
Proof: Consider protocol Π that computes 𝑓𝒌 with prob 1 − 𝜹. Want to show  

I Π 𝑾 ;  𝑾 ≥ Ω 𝒌 IC
𝜇,
𝜹
10,𝑂
𝜹
𝒌

𝑓  

   
1) Chain rule:  

I(Π(𝑾);𝑊) = I(Π(𝑾); 𝑊𝑖|𝑾<𝑖)

𝑘

𝑖=1

 

By averaging suffices to show that for at least Ω 𝒌  values of 𝒊 

I(Π(𝑾);𝑊𝑖|𝑾<𝑖)  ≥ IC𝜇, 𝜹10,𝑂
𝜹
𝒌

𝑓  

 

Want to obtain from Π a protocol with abortion to solve 𝑖-th copy 𝑓𝑖
𝒌 with 

error prob 
𝜹

𝒌
 and information cost at most  

I(Π(𝑾);𝑊𝑖|𝑾<𝑖) 



Stronger Direct Sum Theorem 
2) Conditioning amplifies success: For typical 𝑖 

 

• Pr Π<𝑖 𝑾 ≠ 𝑓<𝑖
𝒌 𝑾 ≤ 𝜹 

• Pr Π𝑖 𝑾 ≠ 𝑓𝑖
𝒌 𝑾  | Π<𝑖(𝑾) = 𝑓<𝑖

𝒌 (𝑾) = 𝑂
𝜹

𝒌
 

 

This is because 

1 − 𝜹 ≤ Pr Π = 𝑓𝒌 =  Pr Π𝑖 = 𝑓𝑖
𝒌  Π<𝑖 = 𝑓<𝑖

𝒌 )  

𝑖=1..𝑘

 

3) Theorem: For a typical 𝑖 there exists a prefix 𝒘<𝑖 ∈ X
i−1 × Yi−1 and a set G of 

fixings of the suffix of Π such that:  

1. Information cost only changes by a constant factor after fixing 𝒘<𝑖   

2. G is a constant fraction of all fixings 

3. For every fixing (𝒘<𝑖 , 𝒘>𝑖 ∈ 𝐆) the error probability on 𝑊𝑖 is ≤
𝜹

10
   

4. Pr Π𝑖 𝒘<𝒊𝑊𝒊𝒘>𝒊 ≠ 𝑓𝑖
𝒌 𝑊𝒊  | Π<𝑖(𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑓<𝑖

𝒌 (𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑂
𝜹

𝒌
 

 

 



Stronger Direct Sum Theorem 

Protocol with abortion for solving 𝑓𝑖
𝑘 

… 

𝑥2 𝑦2 

Alice Bob 

𝑖 = 2 

 Therorem: For a typical 𝑖 there exists a prefix 𝒘<𝑖 ∈ X
i−1 × Yi−1 and a set 

G of fixings of the suffix of Π such that:  
1. Information cost only changes by a constant factor after fixing 𝒘<𝑖   
2. G is a constant fraction of all fixings 

3. For every fixing (𝒘<𝑖 , 𝒘>𝑖 ∈ 𝐆) the error probability on 𝒘<𝑖 is ≤
𝜹

10
   

4. Pr Π𝑖 𝒘<𝒊𝑊𝒊𝒘>𝒊 ≠ 𝑓𝑖
𝒌 𝑊𝒊  | Π<𝑖(𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑓<𝑖

𝒌 (𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑂
𝜹

𝒌
 



Stronger Direct Sum Theorem 

Alice 

1 

𝑥2 

0 

𝑦2 

Bob 

… … 

Protocol with abortion for solving 𝑓𝑖
𝑘 

• Fix the prefix 𝒘<𝑖 and sample 𝑾>𝑖 

𝑖 = 2 

 Therorem: For a typical 𝑖 there exists a prefix 𝒘<𝑖 ∈ X
i−1 × Yi−1 and a set 

G of fixings of the suffix of Π and random seeds such that:  
1. Information cost only changes by a constant factor after fixing 𝒘<𝑖   
2. G is a constant fraction of all fixings 

3. For every fixing (𝒘<𝑖 , (𝒘>𝑖,r) ∈ 𝐆) the error probability on𝒘<𝑖 is ≤
𝜹

10
   

4. Pr Π𝑖 𝒘<𝒊𝑊𝒊𝒘>𝒊 ≠ 𝑓𝑖
𝒌 𝑊𝒊  | Π<𝑖(𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑓<𝑖

𝒌 (𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑂
𝜹

𝒌
 



Stronger Direct Sum Theorem 

Alice 

1 

𝑥2 

0 

𝑦2 

… … 

Bob 
… 

Protocol with abortion for solving 𝑓𝑖
𝑘 

• Fix the prefix 𝒘<𝑖 and sample 𝑾>𝑖 
• Run Π 

𝑖 = 2 

 Therorem: For a typical 𝑖 there exists a prefix 𝒘<𝑖 ∈ X
i−1 × Yi−1 and a set 

G of fixings of the suffix of Π and random seeds such that:  
1. Information cost only changes by a constant factor after fixing 𝒘<𝑖   
2. G is a constant fraction of all fixings 

3. For every fixing (𝒘<𝑖 , (𝒘>𝑖,r) ∈ 𝐆) the error probability on 𝒘<𝑖 is ≤
𝜹

10
   

4. Pr Π𝑖 𝒘<𝒊𝑊𝒊𝒘>𝒊 ≠ 𝑓𝑖
𝒌 𝑊𝒊  | Π<𝑖(𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑓<𝑖

𝒌 (𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑂
𝜹

𝒌
 



Stronger Direct Sum Theorem 

Alice 

1 

𝑥2 

0 

𝑦2 

… … 

Bob 
… 

abort 

Protocol with abortion for solving 𝑓𝑖
𝑘 

• Fix the prefix 𝒘<𝑖 and sample 𝑾>𝑖 
• Run Π 
• Verify if error on some copy 1,2, … 𝑖 − 1  
• If so, “abort” 

𝑖 = 2 

 Therorem: For a typical 𝑖 there exists a prefix 𝒘<𝑖 ∈ X
i−1 × Yi−1 and a set 

G of fixings of the suffix of Π and random seeds such that:  
1. Information cost only changes by a constant factor after fixing 𝒘<𝑖   
2. G is a constant fraction of all fixings 

3. For every fixing (𝒘<𝑖 , (𝒘>𝑖,r) ∈ 𝐆) the error probability on𝒘<𝑖 is ≤
𝜹

10
   

4. Pr Π𝑖 𝒘<𝒊𝑊𝒊𝒘>𝒊 ≠ 𝑓𝑖
𝒌 𝑊𝒊  | Π<𝑖(𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑓<𝑖

𝒌 (𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑂
𝜹

𝒌
 



Stronger Direct Sum Theorem 

Alice 

1 

𝑥2 

0 

𝑦2 

… … 

Bob 
… 

Protocol with abortion for solving 𝑓𝑖
𝑘 

• Fix a typical prefix 𝒘<𝑖 and sample 𝑾>𝑖 
• Run Π 
• Verify if error on some copy 1,2, … 𝑖 − 1  
• If so, “abort” 

• Else report 𝑖-th output 

𝑖 = 2 

 Therorem: For a typical 𝑖 there exists a prefix 𝒘<𝑖 ∈ X
i−1 × Yi−1 and a set 

G of fixings of the suffix of Π and random seeds such that:  
1. Information cost only changes by a constant factor after fixing 𝒘<𝑖   
2. G is a constant fraction of all fixings 

3. For every fixing (𝒘<𝑖 , (𝒘>𝑖,r) ∈ 𝐆) the error probability on𝒘<𝑖 is ≤
𝜹

10
   

4. Pr Π𝑖 𝒘<𝒊𝑊𝒊𝒘>𝒊 ≠ 𝑓𝑖
𝒌 𝑊𝒊  | Π<𝑖(𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑓<𝑖

𝒌 (𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑂
𝜹

𝒌
 



Stronger Direct Sum Theorem 

Protocol 
𝜹

10
, 𝑂
𝜹

𝒌
-computes 𝑓𝑖

𝑘 and has information cost exactly 

I Π 𝒘<𝑖𝑾≥𝒊 ;𝑊𝑖  

 

Protocol with abortion for solving 𝑓𝑖
𝒌 

• Fix a typical prefix 𝒘<𝑖 and sample 𝑾>𝑖 
• Run Π 
• Verify if error on some copy 1,2, … 𝑖 − 1  
• If so, “abort” 

• Else report 𝑖-th output 

 Therorem: For a typical 𝑖 there exists a prefix 𝒘<𝑖 ∈ X
i−1 × Yi−1 and a set 

G of fixings of the suffix of Π and random seeds such that:  
1. Information cost only changes by a constant factor after fixing 𝒘<𝑖   
2. G is a constant fraction of all fixings 

3. For every fixing (𝒘<𝑖 , (𝒘>𝑖,r) ∈ 𝐆) the error probability on 𝒘<𝑖 is ≤
𝜹

10
   

4. Pr Π𝑖 𝒘<𝒊𝑊𝒊𝒘>𝒊 ≠ 𝑓𝑖
𝒌 𝑊𝒊  | Π<𝑖(𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑓<𝑖

𝒌 (𝒘<𝒊𝑊𝒊𝒘>𝒊) = 𝑂
𝜹

𝒌
 



Recap 

Theorem: For every communication problem 

IC𝜇𝒌,𝛿 𝑓
𝒌|𝜈𝒌 ≥ Ω 𝒌  IC

𝜇,
1
20
,
𝛿
10
,𝑂
𝛿
𝑘

𝑓|𝜈  

Corollary: 

 𝐷𝜇𝒌,𝛿 𝑓
𝒌 ≥ Ω 𝑘  IC

𝜇,
1

20
,
𝛿

10
,𝑂
𝛿

𝒌

𝑓|𝜈 ≥ Ω(𝒌)𝐷
𝜇,
𝛿

𝒌

(𝑓) 

 

For equality-type problems 



Protocols with abortion 

• A protocol (𝜶,𝜷, 𝜹)-computes 𝒇 if with 
probability  ≥ (1 − 𝜶) over its randomness 

– It aborts with probability  ≤ 𝜷 

– Conditioned on non-abortion is correct w.p. 
≥ 𝟏 − 𝜹 

 

 
• (𝝁, 𝝂) is a convex combination of product distributions over 

((𝑋 × 𝑌) × 𝐷) (marginals: 𝝁 over (𝑋 ×  𝑌) and 𝝂 over D) 
• 𝑰𝑪𝝁,𝜶,𝜷,𝜹 𝒇 𝝂  = minimum information cost of a protocol which 

(𝜶,𝜷, 𝜹)-computes over (𝝁, 𝝂). 
• 𝑰𝑪𝝁,𝜹 𝒇 𝝂  = 𝑰𝑪𝝁,𝟎,𝟎,𝜹 𝒇 𝝂  
 

𝑥 

𝑦 

𝜹 

≤ 𝜷 



Strong direct sum 

• Strong direct sum: For every function 𝒇 and a convex 
combination of product distributions (𝝁, 𝝂) 

𝑰𝑪𝝁𝑘,𝜹 𝒇
𝑘 𝝂𝑘 ≥ Ω 𝑘  𝑰𝑪

𝝁,
𝟏
𝟐𝟎,
𝟏
𝟏𝟎,
𝜹
𝑘

𝒇 𝝂  

• Strong because of high success probability  (1 −
𝜹

𝑘
) 

• Gives an extra 𝐥𝐨𝐠 𝒌 in the lower bound as compared 
to a weak direct sum [Bar-Yossef, Jayram, Kumar, Sivakumar]   

  𝑰𝑪𝝁𝑘,𝜹 𝒇
𝑘 𝝂𝑘 ≥ Ω 𝑘  𝑰𝑪𝝁,𝜹 𝒇 𝝂  

 



One-way Equality with abortion 

• 𝐸𝑄ℓ(𝒙,𝒚) = 1 iff 𝒙 = 𝒚, where 𝒙, 𝒚 ∈ 0,1 ℓ  
 

• Theorem:  For ℓ = log(1/20𝜹) there exists (𝝁, 𝝂): 

𝑰𝑪
𝝁,
𝟏
𝟐𝟎,
𝟏
𝟏𝟎,𝜹

→ 𝐸𝑄ℓ 𝝂 = 𝛀(log(𝟏/𝜹)) 

 
• Corollary: solving 𝒌 copies of Equality with constant 

probability  requires one-way communication 𝛀(𝒌 log 𝒌) (for 
sufficiently long strings 𝑥𝑖 , 𝑦𝑖) 

 
•  Hard distribution ((𝑿 𝒀) 𝐷0𝑫) 

– Random variable for conditioning: (D0𝑫)∼ 𝑈( 0,1 ℓ+1)  

– If D0 = 0 then 𝑿 𝒀 ∼ 𝑈 0,1 ℓ × 𝑈 0,1 ℓ  
– If D0 = 1 then 𝑿 = 𝒀 = 𝑫  



Equality with abortion 
•  Hard distribution( 𝑿, 𝒀 , 𝐷0𝑫): 

– (D0𝑫)∼ 𝑈( 0,1 ℓ+1) 

– If D0 = 0 then 𝑿, 𝒀 ∼ 𝑈 0,1 ℓ × 𝑈 0,1 ℓ  

– If D0 = 1 then 𝑿 = 𝒀 = 𝑫 (≥
1

2
 of the mass on the diagonal) 

For ℓ = log
1

20𝛿
 

• 𝒑(𝒙,𝒙) = 200𝛿
2 + 10𝛿 

• 𝒑(𝒙,𝒚) = 200𝛿
2 

𝑝(𝒙,𝒚) 

𝑥 ∈ 0,1 ℓ 

𝑦 ∈ 0,1 ℓ 

𝑝(𝒙,𝑥) 

1 

1 

1 

1 

0 

0 



Equality with abortion 

• 𝑰𝑪𝝁,… 
→ 𝒇 𝝂 = min

𝑀
𝐼(𝑀 𝑿 ;𝑿, 𝒀|𝐷0𝑫) = min

𝑀
𝐼(𝑀 𝑿 ;𝑿|𝐷0𝑫) 

• 𝐼 𝑀 𝑿 ;𝑿 𝐷0𝑫 = 𝑯 𝑿 𝑫𝟎𝑫 −𝑯 𝑿 𝑴 𝑿 ,𝑫𝟎𝑫  

 

• 𝑯 𝑿 𝑫𝟎𝑫 ≥ Pr 𝐷0 = 0 ⋅ 𝐻(𝑿|𝐷0 = 0,𝑫)) = 1/2 log  (1/20𝛿) 
 

• By Fano’s inequality ([Cover, Thomas]):  
𝑯 𝑿 𝑴 𝑿 ,𝑫𝟎𝑫 ≤ 1 + 𝑝𝑒 log(|𝑠𝑢𝑝𝑝 𝑿 |) = 1 + 𝒑𝒆log  (1/20𝛿), 

where  𝒑𝒆 = min
g
Pr [𝑔 𝑀 𝑿,𝐷0𝑫 ≠ 𝑿] and 𝑔 is a deterministic function 

• Suffices to show that there exists a predictor with error 𝑝𝑒 ≤
2

5
<
1

2
     

  

Alice (x) Bob (y) 
M(x) 𝑥 = 𝑦? 



Predictor for Equality 

• A row 𝑥 is good if the protocol Π 𝑥, 𝑦 = 1 iff 𝑥 = 𝑦 

• If the Π 0,
𝟏

𝟏𝟎
, 𝜹 -computes 𝐸𝑄ℓ then ≤

𝟑

𝟏𝟎
 fraction of 

rows is not good: 
– Fraction of rows with an abortion on the diagonal (𝑥, 𝑥) is ≤ 𝟏/𝟓 

– Fraction of rows with an error is at most ≤ 𝟏/𝟏𝟎 

 
 

𝑥 ∈ 0,1 ℓ 

𝑦 ∈ 0,1 ℓ 

≤
𝟏

𝟏𝟎
 

𝜹 

• Predictor: If the row is good then 
Bob can simulate Π for every 𝑦 and 
recover 𝑥! 

• If Π
𝟏

𝟐𝟎
 
𝟏

𝟏𝟎
, 𝜹  -computes 𝐸𝑄ℓ  

    then 𝑝𝑒 ≤
3

10
 + 
𝟏

𝟐𝟎
<
2

5
   



Augmented indexing 

• Augmented indexing over large alphabet (𝑥𝑖 , 𝑦 ∈ [𝒎]) 
 
 
 
 

• Theorem:  For sufficiently large 𝒎 there exists (𝝁, 𝝂): 
𝑰𝑪
𝝁,
𝟏
𝟐𝟎,
𝟏
𝟏𝟎,
𝟏
𝒎

→ 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥 𝝂 = 𝛀(𝑵 𝑙𝑜𝑔 𝒎) 

 
• Corollary: Solving 𝒌 copies of Augmented Indexing 

(with const. prob.)  requires one-way communication 
𝛀(𝑵 𝒌 log 𝒌) (for sufficiently large alphabet size) 

 

Alice (𝑥1, … , 𝑥𝑁) Bob (𝒊, 𝑥1, … , 𝑥𝒊−1, 𝑦) 
M(x) 𝑥𝑖 = 𝑦? 



Application: JL-transform of n vectors 

• Let S be a distribution over 𝒌 × 𝑑 matrices, such that for 
any 𝑣1, … , 𝑣𝑛 ∈ 𝑅

𝑑  with prob. ≥ 1 − 𝜹 

𝑺𝑣𝑖  − 𝑺𝑣𝑗
2
= 1 ± 𝝐 𝑣𝑖 − 𝑣𝑗

2
 

 

• 𝒌 = # rows in 𝑺 ≥
𝟏

𝝐𝟐
log 
𝒏

𝜹
, dependence on n is new 

• Even if 𝑺 is allowed to depend on the first n/2 points 

• Any enconding 𝜙(𝑣1), … , 𝜙(𝑣𝑛) that allows pairwise ℓ𝑝-
distance estimation for 𝑝 ∈ 1,2  requires 

 Ω 𝒏 𝝐−2log
𝒏

𝜹
 log 𝑑 + log𝑀  bits  

    (M = max abs. value in 𝑣𝑖) 
 

 
 

 



Other applications 
• Sketching matrix products 

– Minimum number of columns in a 𝒏 × 𝒌 matrix S such that 
𝐶 = 𝐴𝑺𝑺𝑻𝐵 is a good approximation for 𝐴𝐵, where 𝐴, 𝐵 are 𝒏 × 𝒏 
matrices? 

– 𝐴𝐵 𝑖,𝑗  − 𝐶𝑖,𝑗 ≤ 𝝐 𝐴𝑖 2 𝐵
𝑗

2
 => 𝒌 = 𝑂(𝝐−2log

𝒏

𝜹
) [Sarlos] 

– 𝐴𝐵 − 𝐶
𝐹
≤ 𝝐 𝐴

𝐹
𝐵
𝐹

 => 𝒌 = 𝑂(𝝐−2log
1

𝜹
) [Clarkson,Woodruff] 

– Our result: entry-wise guarantee indeed requires 𝒌 = Ω(𝝐−2log
𝒏

𝜹
) 

  

• Optimality of database sketching [Alon, Gibbons, Matias, Szegedy] and 
mergeable summaries 

  



Open problems 
• Strong direct sum: For every function 𝒇 and a convex 

combination of product distributions (𝝁, 𝝂) 

𝑰𝑪𝝁𝑘,𝜹 𝒇
𝑘 𝝂𝑘 ≥ Ω 𝑘  𝑰𝑪

𝝁,
𝟏
𝟐𝟎,
𝟏
𝟏𝟎,
𝜹
𝑘

𝒇 𝝂  

• More problems with low-error one-way lower bounds? 

• Natural problems for low-error 2-way lower bounds 
(disjointness doesn’t work)? 

• Applications of direct sums to property testing? [Blais, Brody, 
Matulef ’11, Goldreich ‘13] 

• Strong direct sum for predicates g 𝑓 𝑥1, 𝑦1 , … 𝑓 𝑥𝑘 , 𝑦𝑘 ? 
For OR-EQUALITY (g = ∨, 𝑓 = 𝐸𝑄ℓ) there is a direct sum 
[Brody, Chakrabarti, Kondapally’12, Saglam, Tardos’13] 

 


