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Results

Stronger Direct Sum Theorem in communication complexity
for equality-type functions

Rs(f*) = QU)R5(f)
‘ Yao’s principle
D« s(f*) = Qk) Dﬂ%(f)

Optimal lower bounds for sketching problems:

* Johnson-Lindenstrauss transform for n vectors
* Pairwise ;- and ¥,-distance estimation

* Matrix multiplication

* Join size estimation of multiple databases



Communication Complexity

* 2 deterministic players: Alice and Bob
* Joint function f [1(x, y) denotes

. transcript or output
e Communicate and comput

fxy)




Communication Complexity

2 deterministic players: Alice and Bob
Joint function f
Communicate and compute f
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Ex: x,y € {0,1}", want to output x — y



Communication Complexity

* Consider distribution u over inputs

* Goal: Compute f(x,y) for all but 6 u-fraction of
inputs while minimizing longest communication

r—error

—~—— right

y

* Distributional complexity

D, s(f) = minimum communication over all §-protocols



Multiple Instances

f(x1:3’1)\
f(xz: YZ) >f"(x, y)

£ G v,




Multiple Instances

f(x1»Y1)\
f(x2,y2) - R (x, y)

£ G v,

X1 X2 Xk Y1 Y2 Yk

* Goal: Compute f*(x,y) for all but § u*-fraction of
inputs while minimizing longest communication

» Distributional complexity: D« 5(f*)



Multiple Instances

Main question: How much can we save against solving each
independently?

Dk 5(f) = Q(k) Dﬂ)g(f)

* Sometimes a bit: in the private randomness model
Dﬂl(EQn) > Q(logn) but Dug(EQ,’}) = 0(n) [FKNN95]
'3 '3



Multiple Instances

Dk s(f*) 2 Q(k).pﬂ%(f)

e Direct sum theorems

None attains above bound

* Direct product theorems

- D k() = a(Wk).D 1 (f) [BRWY]
ia-(1-3)



Information Complexity

 Information cost: For protocol I1 and (X,Y) ~ u, information
revealed about input is

IC, () = I(TI(X,Y); X,Y) = H(X,Y) — H(X, Y|II)

* Information complexity:
IC, s(f) = min information cost over all 6-protocols

Connection: Communication is at least information

D,s(f) =1C,s(f)

* For non-product u we will work with conditional information
complexity IC, s(f|v)



Protocols with Abortion

Def: A protocol IT (3, §)-computes f if
* (Abortion) Pr(I1(X,Y) = abort) < f
 (Error) Pr(II(X,Y) # f(X,Y)| I(X,Y) # abort) < 6

abort

error

right

y
Obs: Stronger guarantee than being wrong with prob. = ff + 6

IC, g,5(f) = min information cost over all protocols that
(B, 6)-compute f



Stronger Direct Sum Theorem

Theorem: For every communication problem

Solving k copies with error 6 requires solving each copy with

. )
constant abortion and error E



Stronger Direct Sum Theorem

* The distribution u of (X,Y) is a product distribution if

X, Y) = pr (X)py (Y)
* (u,v) is a mixture of product distributions, if for every t
the distribution (u|v = t) is a product distribution

Theorem: For every communication problem f, mixture of
product distributions (, v)and 6 > 0

Icﬂk,6(fk|vk) > O (k) ICM,%,O(%)(flv)

Also holds for one-way and bounded-round communication



Stronger Direct Sum Theorem

Theorem: For every communication problem and product u

1C,e5(F) 2 QUIIC, 5 o ()

f(x1:y1)N
Bob f(x2,¥2) >f""( w)

£ G i)

Y1Y2 Yk
X1, X2 | X3 Xk



Stronger Direct Sum Theorem

Proof: Consider protocol IT that computes f* with prob 1 — &. Want to show
IMw); w) = Q(k)IC O(g)(f)
k

”"1_01
1) Chain rule:

k
(W) W) = ) 1AW); WiW-)
i=1

By averaging suffices to show that for at least (k) values of i

MW, Wi W) =1C QO(%)(f)

H}lOJ

Want to obtam from II a protocol with abortion to solve i-th copyfl with
error prob and information cost at most

[(TI(W); Wi [W ;)



Stronger Direct Sum Theorem

2) Conditioning amplifies success: For typical i

- Pr((W) = fE(W)) <6

+ Pr(IL (W) = FEW) | W) = fE ) = 0 (2)

This is because

1-s<pr(i=f9) = | | Pe(m= £ 1 = £5)

i=1.k

3) Theorem: For a typical i there exists a prefix w.; € X1 x YI=! and a set G of
fixings of the suffix of Il such that:

1.
2.

3.

Information cost only changes by a constant factor after fixing w;
G is a constant fraction of all fixings

For every fixing (W.; , ws; € G) the error probability on W; is < 1%

5
Pr(I;(wo;Wyws;) # fXWp) | N (waWiwsy) = fE (W Wiws;)) = 0 (;)



Stronger Direct Sum Theorem

Therorem: For a typical i there exists a prefix w.; € X171 x Y"1 and a set
G of fixings of the suffix of II such that:

1.

2
3.
4

Information cost only changes by a constant factor after fixing w_;
G is a constant fraction of all fixings

. o : )
For every fixing (W.;, ws; € G) the error probability on w_; is < To

5
Pr(Ml;(We;Wiws; ) # f{*(W) | (Wi Wiws;) = f5 (W, Wiws)) = 0 (E)

Protocol with abortion for solving fik




Stronger Direct Sum Theorem

Therorem: For a typical i there exists a prefix w.; € X171 x Y"1 and a set
G of fixings of the suffix of I and random seeds such that:

1.

2
3.
4

Information cost only changes by a constant factor after fixing w_;
G is a constant fraction of all fixings

For every fixing (W.;, (W5 r) € G) the error probability onw; is < 1%

5
Pr(Ml;(We;Wiws; ) # f{*(W) | (Wi Wiws;) = f5 (W, Wiws)) = 0 (E)

Protocol with abortion for solving fik

* Fix the prefix w.; and sample W;




Stronger Direct Sum Theorem

Therorem: For a typical i there exists a prefix w.; € X171 x Y"1 and a set
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Stronger Direct Sum Theorem

Therorem: For a typical i there exists a prefix w.; € X171 x Y"1 and a set

G of fixings of the suffix of I and random seeds such that:
1. Information cost only changes by a constant factor after fixing w_;
G is a constant fraction of all fixings

10

2

3. Forevery fixing (W.;, (Ws; r) € G) the error probability onw; is < 2
5

4. Pr(l;(woWiws;) # fX(W) | Ty W Wiws)) = f5 (W Wiwsy)) = 0 (;)

Protocol with abortion for solving fik

* Fix the prefix w.; and sample W;

* Run Il

* Verify if error on some copy 1,2, ...i — 1
* |f so, “abort”




Stronger Direct Sum Theorem

Therorem: For a typical i there exists a prefix w.; € X171 x Y"1 and a set
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For every fixing (W.;, (W5 r) € G) the error probability onw; is < 1%

5
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Protocol with abortion for solving fik

* Fix a typical prefix w_; and sample W;

* Run Il

* Verify if error on some copy 1,2, ...i — 1
* |f so, “abort”

* Else report i-th output



Stronger Direct Sum Theorem

Therorem: For a typical i there exists a prefix w.; € X171 x Y"1 and a set
G of fixings of the suffix of I and random seeds such that:

1.

2
3.
4

Information cost only changes by a constant factor after fixing w_;
G is a constant fraction of all fixings

For every fixing (W.;, (Ws; r) € G) the error probability on w; is < 1%

&
Pr(M;(w;Wiws; ) # W) | i (WaWiws) = fL(waWiws)) = 0 (Z)

Protocol with abortion for solving fik

Fix a typical prefix w_; and sample W;
Run I1
Verify if error on some copy 1,2, ...1 — 1

* If so, “abort”

Else report i-th output

) ) : :
Protocol (E’ 0 (—))-computes fik and has information cost exactly

k

I(MIw; W), W;)



Recap

Theorem: For every communication problem

ki, k
Gy (M) 2 QU IC, 16 ) (FIV)

Corollary For equality-type problems
k
Dyrs(f*) 2 QR IC, 1 s ooy (fIV) = QD 5 ()

’20’10’



Protocols with abortion

A protocol (a, 8, 6)-computes f if with
probability = (1 — «) over its randomness

— It aborts with probability < X @

— Conditioned on non-abortion is correct w.p. @
>1—-0

(i, v) is a convex combination of product distributions over
(X XY) X D) (marginals:  over (X X Y)and v over D)

« IC, ;3 5(f|v) = minimum information cost of a protocol which

(a, B, 6)-computes over (i, v).
IC, s(flv)=1C,00s(fV)



Strong direct sum

Strong direct sum: For every function f and a convex
combination of product distributions (i, v)

IC ka(f"\vk) > O(k) IC 11 5(FIv)
20710k

Strong because of high success probability (1 — %)

Gives an extra log k in the lower bound as compared
to a weak direct sum [Bar-Yossef, Jayram, Kumar, Sivakumar]

IC . s(f*|v¥) = Q(k) IC,, 5(f]v)



One-way Equality with abortion
EQ*(x,y)=1iffx =y, where x,y € {0,1}*

Theorem: For 1,” log(1/206) there exists (u, v):
711 (EQ [v) = Q(log(1/6))

”20 100

Corollary: solving k copies of Equality with constant

probability requires one-way communication Q(k log k) (for
sufficiently long strings x;, y;)

Hard distribution ((X Y) DyD)

— Random variable for conditioning: (DyD)~ U({0,1}**1)
— If Dy = 0 then (X ¥) ~ U({0,1}*) x U({0,1}%)

— IfDg=1thenX =Y =D



Equality with abortion

* Hard distribution((X,Y), DyD):
— (DeD)~ U({0,1}*1)
— If Dy = 0then (X,Y) ~ U({0,1}*) x U({0,1}*)

— IfDg=1thenX =Y =D (= %of the mass on the diagonal)

y € {0,1}*

1
For £ = lOgﬁ
¢ p(x’x) — 20052 + 106
* Dixy) = 20052 x € {0,1}*




Equality with abortion

Alice (x)

M(x)

+ 1€ (fv) = minI(M(X); X, Y|DoD) = min(M(X); X|D,D)

Bob (y)

x =7y?

* I(M(X); X|DoD) = H(X|DoD) — H(X|M(X),DoD)

- H(X|DyD) = Pr[D, = 0] - H(X|D, = 0,D)) = 1/2log (1/205)

* By Fano’s inequality ([Cover, Thomas]):

H(X|M(X),DoD) <1 + pelog(|supp(X)|) =1 + pelog (1/200),
where p, = min Pr[g(M(X, DOD)) #+ X] and g is a deterministic function
g

: : : : 2 1
» Suffices to show that there exists a predictor with error p, < <3

>



Predictor for Equality

« Arow x is good if the protocol [1(x,y) = 1iffx =y

If the I1 (0,1—10, 6)-computes EQ{) then < 110 fraction of
rows is not good:

— Fraction of rows with an abortion on the diagonal (x,x) is< 1/5
— Fraction of rows with an errorisat most < 1/10 y € {0,1}*

* Predictor: If the row is good then
Bob can simulate II for every y and
recover x|

1 1 1
2

3
< 4 _ <tz
thenpe_lo+20<5




Augmented indexing

* Augmented indexing over large alphabet (x;,y € [m])

. M(x) Xi = y?
AllCe (xl, ...,XN) 7 BOb (i; X1, ---;xi—1;)’) l —

 Theorem: For sufficiently large m there exists (i, v):

IC” ; {1 { (Augmented Index|v) = Q(N log m)
H2010m

e Corollary: Solving k copies of Augmented Indexing
(with const. prob.) requires one-way communication
Q(N k log k) (for sufficiently large alphabet size)



Application: JL-transform of n vectors

Let S be a distribution over k X d matrices, such that for
any vq, ..., v, € R* withprob.>1—-4

Isv — syl =azo|vi-yl|,

k=#rowsin$§ > —log ( ) dependence on n is new

Evenif § is aIIowed to depend on the first n/2 points

Any enconding ¢(v,), ..., ¢ (vy) that allows pairwise £,-
distance estimation for p € {1,2} requires

¢) (n e‘zlogg (log d + log M)) bits

(M = max abs. value in v;)



Other applications

e Sketching matrix products

— Minimum number of columns in a n X k matrix S such that
C = ASSTB is a good approximation for AB, where A,B aren X n
matrices?

- |(AB)i,j — Ci,jl < E||Ai||2 |Bj”2 =>k = O(E_zlogg) [Sarlos]

_ 1
— ||AB — C||F < €||A||F||B| o => k=0(e 2logg) [Clarkson,Woodruff]

— Our result: entry-wise guarantee indeed requires k = Q(e‘zlogg)

e Optimality of database sketching [Alon, Gibbons, Matias, Szegedy] and
mergeable summaries



Open problems

Strong direct sum: For every function f and a convex
combination of product distributions (u, v)
1,5 (fV) 2 QU IC 1 1 5(fIV)
12010k
More problems with low-error one-way lower bounds?

Natural problems for low-error 2-way lower bounds
(disjointness doesn’t work)?

Applications of direct sums to property testing? [Blais, Brody,
Matulef '11, Goldreich ‘13]

Strong direct sum for predicates g(f(xl, V1), - f (X, yk))7

For OR-EQUALITY (g =V, f = EQ?) there is a direct sum
[Brody, Chakrabarti, Kondapally’12, Saglam, Tardos’13]



