# Beating the Direct Sum Theorem in Communication Complexity 

## Grigory Yaroslavtsev

Pennsylvania State University

Aarhus Universitet, Theory seminar

Joint work with Marco Molinaro (CMU) and David Woodruff (IBM) SODA'13

## Results

Stronger Direct Sum Theorem in communication complexity for equality-type functions

$$
\left.\begin{array}{c}
R_{\delta}\left(f^{k}\right) \geq \Omega(k) R_{\frac{\delta}{k}}(f) \\
D_{\mu^{k}, \delta}\left(f^{k}\right) \geq \Omega(k) D_{\mu, \frac{\delta}{k}}(f)
\end{array}\right\} \text { Yao's principle }
$$

Optimal lower bounds for sketching problems:

- Johnson-Lindenstrauss transform for n vectors
- Pairwise $\ell_{1}$ - and $\ell_{2}$-distance estimation
- Matrix multiplication
- Join size estimation of multiple databases


## Communication Complexity

- 2 deterministic players: Alice and Bob
- Joint function $f$
$\Pi(x, y)$ denotes transcript or output
- Communicate and comput



## Communication Complexity

- 2 deterministic players: Alice and Bob
- Joint function $f$
- Communicate and compute $f$

- Ex: $x, y \in\{0,1\}^{n}$, want to output $x \stackrel{?}{=} y$


## Communication Complexity

- Consider distribution $\mu$ over inputs
- Goal: Compute $f(x, y)$ for all but $\delta \mu$-fraction of inputs while minimizing longest communication

- Distributional complexity
$D_{\mu, \delta}(f)=$ minimum communication over all $\delta$-protocols


## Multiple Instances



## Multiple Instances



- Goal: Compute $f^{k}(\boldsymbol{x}, \boldsymbol{y})$ for all but $\delta \mu^{k}$-fraction of inputs while minimizing longest communication
- Distributional complexity: $D_{\mu^{k}, \delta}\left(f^{k}\right)$


## Multiple Instances

Main question: How much can we save against solving each independently?

$$
D_{\mu^{k}, \delta}\left(f^{k}\right) \geq \Omega^{?}(k) D_{\mu, \frac{\delta}{k}}(f)
$$

- Sometimes a bit: in the private randomness model

$$
D_{\mu, \frac{1}{3}}\left(E Q_{n}\right) \geq \Omega(\log n) \quad \text { but } \quad D_{\mu, \frac{1}{3}}\left(E Q_{n}^{n}\right)=O(n)[\text { FKNN95] }
$$

## Multiple Instances

$$
D_{\mu^{k}, \delta}\left(f^{k}\right) \stackrel{?}{\geq} \Omega(k) \cdot D_{\mu, \frac{\delta}{k}}(f)
$$

- Direct sum theorems

- Direct product theorems
$-D_{\mu^{k}, 1-\left(1-\frac{1}{3}\right)^{k}}\left(f^{k}\right) \geq \Omega(\sqrt{k}) \cdot D_{\mu, \frac{1}{3}}(f)$


## Information Complexity

- Information cost: For protocol $\Pi$ and $(X, Y) \sim \mu$, information revealed about input is

$$
\mathrm{IC}_{\mu}(\Pi)=\mathrm{I}(\Pi(X, Y) ; X, Y)=H(X, Y)-H(X, Y \mid \Pi)
$$

- Information complexity:
$\mathrm{IC}_{\mu, \delta}(f)=$ min information cost over all $\delta$-protocols

Connection: Communication is at least information

$$
D_{\mu, \delta}(f) \geq \mathrm{IC}_{\mu, \delta}(f)
$$

- For non-product $\mu$ we will work with conditional information complexity $\mathrm{IC}_{\mu, \delta}(f \mid v)$


## Protocols with Abortion

Def: A protocol $\Pi(\beta, \delta)$-computes $f$ if

- (Abortion) $\operatorname{Pr}(\Pi(X, Y)=$ abort $) \leq \beta$
- (Error) $\operatorname{Pr}(\Pi(X, Y) \neq f(X, Y) \mid \Pi(X, Y) \neq$ abort $) \leq \delta$


Obs: Stronger guarantee than being wrong with prob. $\approx \beta+\delta$
$\mathrm{IC}_{\mu, \beta, \delta}(f)=$ min information cost over all protocols that $(\beta, \delta)$-compute $f$

## Stronger Direct Sum Theorem

Theorem: For every communication problem
Solving k copies with error $\delta$ requires solving each copy with constant abortion and error $\frac{\delta}{k}$

## Stronger Direct Sum Theorem

- The distribution $\mu$ of $(\mathrm{X}, \mathrm{Y})$ is a product distribution if $\mu(X, Y)=\mu_{x}(X) \mu_{y}(Y)$
- $(\mu, v)$ is a mixture of product distributions, if for every $\boldsymbol{t}$ the distribution $(\mu \mid v=\boldsymbol{t})$ is a product distribution

Theorem: For every communication problem $f$, mixture of product distributions $(\mu, v)$ and $\delta>0$

$$
\mathrm{IC}_{\mu^{k}, \delta}\left(f^{k} \mid v^{k}\right) \geq \Omega(k) \mathrm{IC}_{\mu, \frac{\delta}{10}, o\left(\frac{\delta}{k}\right)}(f \mid v)
$$

Also holds for one-way and bounded-round communication

## Stronger Direct Sum Theorem

Theorem: For every communication problem and product $\mu$

$$
\mathrm{IC}_{\mu^{k}, \delta}\left(f^{k}\right) \geq \Omega(k) \mathrm{IC}_{\mu, \frac{\delta}{10}, O\left(\frac{\delta}{k}\right)}(f)
$$



$$
\boldsymbol{w}=\begin{array}{|l|l|l|l|l|}
\hline x_{1} \\
\hline y_{1} \\
\hline
\end{array} \left\lvert\, \begin{array}{|l|l|l|}
\hline x_{3} \\
y_{2} \\
\hline y_{3} \\
\hline y_{k} \\
\hline
\end{array}\right.
$$

## Stronger Direct Sum Theorem

Proof: Consider protocol $\Pi$ that computes $f^{k}$ with prob $1-\delta$. Want to show

$$
\mathrm{I}(\Pi(\boldsymbol{W}) ; \boldsymbol{W}) \geq \Omega(\boldsymbol{k}) \mathrm{IC}_{\mu, \frac{\delta}{10}, o\left(\frac{\delta}{k}\right)}(f)
$$

1) Chain rule:

$$
\mathrm{I}(\Pi(\boldsymbol{W}) ; W)=\sum_{i=1}^{k} \mathrm{I}\left(\Pi(\boldsymbol{W}) ; W_{i} \mid \boldsymbol{W}_{<i}\right)
$$

By averaging suffices to show that for at least $\Omega(k)$ values of $i$

$$
\mathrm{I}\left(\Pi(\boldsymbol{W}) ; W_{i} \mid \boldsymbol{W}_{<i}\right) \geq \mathrm{IC}_{\mu, \frac{\delta}{10}, o\left(\frac{\delta}{k}\right)}(f)
$$

Want to obtain from $\Pi$ a protocol with abortion to solve $i$-th copy $f_{i}^{k}$ with error prob $\frac{\delta}{k}$ and information cost at most

$$
\mathrm{I}\left(\Pi(\boldsymbol{W}) ; W_{i} \mid \boldsymbol{W}_{<i}\right)
$$

## Stronger Direct Sum Theorem

2) Conditioning amplifies success: For typical $i$

- $\operatorname{Pr}\left(\Pi_{<i}(\boldsymbol{W}) \neq f_{<i}^{k}(\boldsymbol{W})\right) \leq \delta$
- $\operatorname{Pr}\left(\Pi_{i}(\boldsymbol{W}) \neq f_{i}^{k}(\boldsymbol{W}) \mid \Pi_{<i}(\boldsymbol{W})=f_{<i}^{k}(\boldsymbol{W})\right)=O\left(\frac{\delta}{k}\right)$

This is because

$$
1-\delta \leq \operatorname{Pr}\left(\Pi=f^{k}\right)=\prod_{i=1 . . k} \operatorname{Pr}\left(\Pi_{i}=f_{i}^{k} \mid \Pi_{<i}=f_{<i}^{k}\right)
$$

3) Theorem: For a typical $i$ there exists a prefix $\boldsymbol{w}_{<i} \in \mathrm{X}^{\mathrm{i}-1} \times \mathrm{Y}^{\mathrm{i}-1}$ and a set $\mathbf{G}$ of fixings of the suffix of $\Pi$ such that:
1. Information cost only changes by a constant factor after fixing $\boldsymbol{w}_{<i}$
2. $\mathbf{G}$ is a constant fraction of all fixings
3. For every fixing ( $\boldsymbol{w}_{<i}, \boldsymbol{w}_{>i} \in \mathbf{G}$ ) the error probability on $W_{i}$ is $\leq \frac{\delta}{10}$
4. $\operatorname{Pr}\left(\Pi_{i}\left(\boldsymbol{w}_{<i} W_{i} \boldsymbol{w}_{>i}\right) \neq f_{i}^{k}\left(W_{\boldsymbol{i}}\right) \mid \Pi_{<i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)=f_{<i}^{k}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)\right)=O\left(\frac{\delta}{k}\right)$

## Stronger Direct Sum Theorem

Therorem: For a typical $i$ there exists a prefix $\boldsymbol{w}_{<i} \in \mathrm{X}^{\mathrm{i}-1} \times \mathrm{Y}^{\mathrm{i}-1}$ and a set G of fixings of the suffix of $\Pi$ such that:

1. Information cost only changes by a constant factor after fixing $\boldsymbol{w}_{<i}$
2. $\mathbf{G}$ is a constant fraction of all fixings
3. For every fixing $\left(\boldsymbol{w}_{<i}, \boldsymbol{w}_{>i} \in \mathbf{G}\right)$ the error probability on $\boldsymbol{w}_{<i}$ is $\leq \frac{\delta}{10}$
4. $\operatorname{Pr}\left(\Pi_{i}\left(\boldsymbol{w}_{<i} W_{i} \boldsymbol{w}_{>i}\right) \neq f_{i}^{k}\left(W_{\boldsymbol{i}}\right) \mid \Pi_{<i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right)=f_{<i}^{k}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)\right)=O\left(\frac{\delta}{k}\right)$

Protocol with abortion for solving $f_{i}^{k}$


## Stronger Direct Sum Theorem

Therorem: For a typical $i$ there exists a prefix $\boldsymbol{w}_{<i} \in \mathrm{X}^{\mathrm{i}-1} \times \mathrm{Y}^{\mathrm{i}-1}$ and a set G of fixings of the suffix of $\Pi$ and random seeds such that:

1. Information cost only changes by a constant factor after fixing $\boldsymbol{w}_{<i}$
2. $\mathbf{G}$ is a constant fraction of all fixings
3. For every fixing $\left(\boldsymbol{w}_{<i},\left(\boldsymbol{w}_{>i}, r\right) \in \mathbf{G}\right)$ the error probability on $\boldsymbol{w}_{<i}$ is $\leq \frac{\delta}{10}$
4. $\operatorname{Pr}\left(\Pi_{i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right) \neq f_{i}^{k}\left(W_{\boldsymbol{i}}\right) \mid \Pi_{<i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right)=f_{<i}^{k}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)\right)=O\left(\frac{\delta}{k}\right)$

## Protocol with abortion for solving $f_{i}^{k}$

- Fix the prefix $\boldsymbol{w}_{<i}$ and sample $\boldsymbol{W}_{>i}$



## Stronger Direct Sum Theorem

Therorem: For a typical $i$ there exists a prefix $\boldsymbol{w}_{<i} \in \mathrm{X}^{\mathrm{i}-1} \times \mathrm{Y}^{\mathrm{i}-1}$ and a set G of fixings of the suffix of $\Pi$ and random seeds such that:

1. Information cost only changes by a constant factor after fixing $\boldsymbol{w}_{<i}$
2. $\mathbf{G}$ is a constant fraction of all fixings
3. For every fixing $\left(\boldsymbol{w}_{<i},\left(\boldsymbol{w}_{>i,}, r\right) \in \mathbf{G}\right)$ the error probability on $\boldsymbol{w}_{<i}$ is $\leq \frac{\delta}{10}$
4. $\operatorname{Pr}\left(\Pi_{i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right) \neq f_{i}^{k}\left(W_{\boldsymbol{i}}\right) \mid \Pi_{<i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right)=f_{<i}^{k}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)\right)=O\left(\frac{\delta}{k}\right)$

Protocol with abortion for solving $f_{i}^{k}$

- Fix the prefix $\boldsymbol{w}_{<i}$ and sample $\boldsymbol{W}_{>i}$
- Run $\Pi$



## Stronger Direct Sum Theorem

Therorem: For a typical $i$ there exists a prefix $\boldsymbol{w}_{<i} \in \mathrm{X}^{\mathrm{i}-1} \times \mathrm{Y}^{\mathrm{i}-1}$ and a set G of fixings of the suffix of $\Pi$ and random seeds such that:

1. Information cost only changes by a constant factor after fixing $\boldsymbol{w}_{<i}$
2. $\mathbf{G}$ is a constant fraction of all fixings
3. For every fixing $\left(\boldsymbol{w}_{<i},\left(\boldsymbol{w}_{>i}, r\right) \in \mathbf{G}\right)$ the error probability on $\boldsymbol{w}_{<i}$ is $\leq \frac{\delta}{10}$
4. $\operatorname{Pr}\left(\Pi_{i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right) \neq f_{i}^{k}\left(W_{\boldsymbol{i}}\right) \mid \Pi_{<i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)=f_{<i}^{k}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)\right)=O\left(\frac{\delta}{k}\right)$

## Protocol with abortion for solving $f_{i}^{k}$

- Fix the prefix $\boldsymbol{w}_{<i}$ and sample $\boldsymbol{W}_{>i}$
- Run П
- Verify if error on some copy $1,2, \ldots i-1$
- If so, "abort"



## Stronger Direct Sum Theorem

Therorem: For a typical $i$ there exists a prefix $\boldsymbol{w}_{<i} \in \mathrm{X}^{\mathrm{i}-1} \times \mathrm{Y}^{\mathrm{i}-1}$ and a set G of fixings of the suffix of $\Pi$ and random seeds such that:

1. Information cost only changes by a constant factor after fixing $\boldsymbol{w}_{<i}$
2. $\mathbf{G}$ is a constant fraction of all fixings
3. For every fixing $\left(\boldsymbol{w}_{<i},\left(\boldsymbol{w}_{>i}, r\right) \in \mathbf{G}\right)$ the error probability on $\boldsymbol{w}_{<i}$ is $\leq \frac{\delta}{10}$
4. $\operatorname{Pr}\left(\Pi_{i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right) \neq f_{i}^{k}\left(W_{\boldsymbol{i}}\right) \mid \Pi_{<i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right)=f_{<i}^{k}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)\right)=O\left(\frac{\delta}{k}\right)$

## Protocol with abortion for solving $f_{i}^{k}$

- Fix a typical prefix $\boldsymbol{w}_{<i}$ and sample $\boldsymbol{W}_{>i}$
- Run П
- Verify if error on some copy $1,2, \ldots i-1$
- If so, "abort"
- Else report $i$-th output



## Stronger Direct Sum Theorem

Therorem: For a typical $i$ there exists a prefix $\boldsymbol{w}_{<i} \in \mathrm{X}^{\mathrm{i}-1} \times \mathrm{Y}^{\mathrm{i}-1}$ and a set G of fixings of the suffix of $\Pi$ and random seeds such that:

1. Information cost only changes by a constant factor after fixing $\boldsymbol{w}_{<i}$
2. $\mathbf{G}$ is a constant fraction of all fixings
3. For every fixing $\left(\boldsymbol{w}_{<i},\left(\boldsymbol{w}_{>i,}, r\right) \in \mathbf{G}\right)$ the error probability on $\boldsymbol{w}_{<i}$ is $\leq \frac{\delta}{10}$
4. $\operatorname{Pr}\left(\Pi_{i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right) \neq f_{i}^{k}\left(W_{\boldsymbol{i}}\right) \mid \Pi_{<i}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>\boldsymbol{i}}\right)=f_{<i}^{k}\left(\boldsymbol{w}_{<i} W_{\boldsymbol{i}} \boldsymbol{w}_{>i}\right)\right)=O\left(\frac{\delta}{k}\right)$

Protocol with abortion for solving $f_{i}^{k}$

- Fix a typical prefix $\boldsymbol{w}_{<i}$ and sample $\boldsymbol{W}_{>i}$
- Run $\Pi$
- Verify if error on some copy $1,2, \ldots i-1$
- If so, "abort"
- Else report $i$-th output

Protocol $\left(\frac{\delta}{10}, O\left(\frac{\delta}{k}\right)\right)$-computes $f_{i}^{k}$ and has information cost exactly $\mathrm{I}\left(\Pi\left(\boldsymbol{w}_{<i} \boldsymbol{W}_{\geq i}\right) ; W_{i}\right)$

## Recap

Theorem: For every communication problem

$$
\mathrm{IC}_{\mu^{k}, \delta}\left(f^{k} \mid v^{k}\right) \geq \Omega(k) \mathrm{IC}_{\mu, \frac{1}{20}, \frac{\delta}{10}, O\left(\frac{\delta}{k}\right)}(f \mid v)
$$

Corollary For equality-type problems

$$
D_{\mu^{k}, \delta}\left(f^{k}\right) \geq \Omega(k) \mathrm{IC}_{\mu, \frac{1}{20}, \frac{\delta}{10}, O\left(\frac{\delta}{k}\right)}(f \mid v) \geq \Omega(k) D_{\mu, \frac{\delta}{k}}(f)
$$

## Protocols with abortion

- A protocol $(\alpha, \boldsymbol{\beta}, \delta)$-computes $\boldsymbol{f}$ if with probability $\geq(1-\alpha)$ over its randomness
- It aborts with probability $\leq \boldsymbol{\beta}$
- Conditioned on non-abortion is correct w.p. $\geq 1-\delta$


## $\leq \beta$

$\delta$

- $(\mu, v)$ is a convex combination of product distributions over $((X \times Y) \times D)$ (marginals: $\mu$ over $(X \times Y)$ and $\nu$ over D)
- $I \boldsymbol{C}_{\mu, \alpha, \beta, \delta}(\boldsymbol{f} \mid v)=$ minimum information cost of a protocol which $(\alpha, \beta, \delta)$-computes over $(\mu, v)$.
- IC $\boldsymbol{C}_{\mu, \delta}(\boldsymbol{f} \mid v)=\boldsymbol{I} \boldsymbol{C}_{\mu, 0,0, \delta}(\boldsymbol{f} \mid v)$


## Strong direct sum

- Strong direct sum: For every function $\boldsymbol{f}$ and a convex combination of product distributions ( $\mu, v$ )

$$
\boldsymbol{I C} \boldsymbol{\mu}^{k}, \delta\left(\boldsymbol{f}^{k} \mid v^{k}\right) \geq \Omega(k) \boldsymbol{I} \boldsymbol{C}_{\mu, \frac{1}{20}, \frac{1}{10}, \frac{\delta}{k}}(\boldsymbol{f} \mid v)
$$

- Strong because of high success probability $\left(1-\frac{\delta}{k}\right)$
- Gives an extra $\log \boldsymbol{k}$ in the lower bound as compared to a weak direct sum [Bar-Yossef, Jayram, Kumar, Sivakumar]

$$
\boldsymbol{I} \boldsymbol{C}_{\mu^{k}, \delta}\left(\boldsymbol{f}^{k} \mid \boldsymbol{v}^{k}\right) \geq \Omega(k) \boldsymbol{I} \boldsymbol{C}_{\mu, \delta}(\boldsymbol{f} \mid v)
$$

## One-way Equality with abortion

- $E Q^{\ell}(x, y)=1$ iff $x=y$, where $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}^{\ell}$
- Theorem: For $\ell=\log (1 / 20 \delta)$ there exists $(\mu, v)$ :

$$
I C_{\mu, \frac{1}{20}, \frac{1}{10}, \delta}^{\rightarrow}\left(E Q^{\ell} \mid \nu\right)=\Omega(\log (\mathbf{1} / \delta))
$$

- Corollary: solving $\boldsymbol{k}$ copies of Equality with constant probability requires one-way communication $\boldsymbol{\Omega}(\boldsymbol{k} \log \boldsymbol{k})$ (for sufficiently long strings $x_{i}, y_{i}$ )
- Hard distribution ((X $\left.\boldsymbol{Y}) D_{0} \boldsymbol{D}\right)$
- Random variable for conditioning: $\left(\mathrm{D}_{0} \boldsymbol{D}\right) \sim U\left(\{0,1\}^{\ell+1}\right)$
- If $\mathrm{D}_{0}=0$ then $(\boldsymbol{X} \boldsymbol{Y}) \sim U\left(\{0,1\}^{\ell}\right) \times U\left(\{0,1\}^{\ell}\right)$
- If $\mathrm{D}_{0}=1$ then $\boldsymbol{X}=\boldsymbol{Y}=\boldsymbol{D}$


## Equality with abortion

- Hard distribution $\left((\boldsymbol{X}, \boldsymbol{Y}), D_{0} \boldsymbol{D}\right)$ :
$-\left(\mathrm{D}_{0} \boldsymbol{D}\right) \sim U\left(\{0,1\}^{\ell+1}\right)$
- If $\mathrm{D}_{0}=0$ then $(\boldsymbol{X}, \boldsymbol{Y}) \sim U\left(\{0,1\}^{\ell}\right) \times U\left(\{0,1\}^{\ell}\right)$
- If $\mathrm{D}_{0}=1$ then $\boldsymbol{X}=\boldsymbol{Y}=\boldsymbol{D}$ ( $\geq \frac{1}{2}$ of the mass on the diagonal)

For $\ell=\log \frac{1}{20 \delta}$

- $p_{(x, x)}=200 \delta^{2}+10 \delta$
- $\boldsymbol{p}_{(x, y)}=200 \delta^{2}$



## Equality with abortion

## Alice (x)

## Bob (y)

- $\boldsymbol{I} \boldsymbol{C}_{\mu} \vec{\mu}_{, \ldots}(\boldsymbol{f} \mid v)=\min _{M} I\left(M(\boldsymbol{X}) ; \boldsymbol{X}, Y \mid D_{0} \boldsymbol{D}\right)=\min _{M} I\left(M(\boldsymbol{X}) ; \boldsymbol{X} \mid D_{0} \boldsymbol{D}\right)$
- $I\left(M(X) ; \boldsymbol{X} \mid D_{0} \boldsymbol{D}\right)=H\left(X \mid D_{0} D\right)-H\left(X \mid M(X), D_{0} \boldsymbol{D}\right)$
- $\left.\boldsymbol{H}\left(\boldsymbol{X} \mid D_{0} \boldsymbol{D}\right) \geq \operatorname{Pr}\left[D_{0}=0\right] \cdot H\left(\boldsymbol{X} \mid D_{0}=0, \boldsymbol{D}\right)\right)=1 / 2 \log (1 / 20 \delta)$
- By Fano's inequality ([Cover, Thomas]):
$\boldsymbol{H}\left(\boldsymbol{X} \mid \boldsymbol{M}(\boldsymbol{X}), \boldsymbol{D}_{0} \boldsymbol{D}\right) \leq 1+p_{e} \log (|\operatorname{supp}(\boldsymbol{X})|)=1+\boldsymbol{p}_{\boldsymbol{e}} \log (1 / 20 \delta)$,
where $\boldsymbol{p}_{\boldsymbol{e}}=\min _{\mathrm{g}} \operatorname{Pr}\left[g\left(M\left(\boldsymbol{X}, D_{0} \boldsymbol{D}\right)\right) \neq \boldsymbol{X}\right]$ and $g$ is a deterministic function
- Suffices to show that there exists a predictor with error $p_{e} \leq \frac{2}{5}<\frac{1}{2}$


## Predictor for Equality

- A row $x$ is good if the protocol $\Pi(x, y)=1$ iff $x=y$
- If the $\Pi\left(0, \frac{1}{10}, \delta\right)$-computes $E Q^{\ell}$ then $\leq \frac{\mathbf{3}}{\mathbf{1 0}}$ fraction of rows is not good:
- Fraction of rows with an abortion on the diagonal $(x, x)$ is $\leq \mathbf{1} / \mathbf{5}$
- Fraction of rows with an error is at most $\leq \mathbf{1 / 1 0}$

```
y\in{0,1\mp@subsup{}}{}{\ell}
```

- Predictor: If the row is good then Bob can simulate $\Pi$ for every $y$ and recover $x$ !
- If $\Pi\left(\frac{1}{20} \frac{1}{10}, \delta\right)$-computes $E Q^{\ell} \quad x \in\{0,1\}^{\ell}$ then $p_{e} \leq \frac{3}{10}+\frac{1}{20}<\frac{2}{5}$



## Augmented indexing

- Augmented indexing over large alphabet $\left(x_{i}, y \in[m]\right)$

Alice $\left(x_{1}, \ldots, x_{N}\right) \xrightarrow{\mathrm{M}(\mathrm{x})} \xrightarrow{\operatorname{Bob}\left(i, x_{1}, \ldots, x_{i-1}, y\right)} \xrightarrow{x_{i}=y ?}$

- Theorem: For sufficiently large $m$ there exists $(\mu, v)$ : $I \boldsymbol{C}_{\mu, \frac{1}{20}, \frac{1}{10}, \frac{1}{m}}^{\rightarrow}($ Augmented Index $\mid v)=\boldsymbol{\Omega}(\boldsymbol{N} \log m)$
- Corollary: Solving $\boldsymbol{k}$ copies of Augmented Indexing (with const. prob.) requires one-way communication $\boldsymbol{\Omega}(\boldsymbol{N} \boldsymbol{k} \log \boldsymbol{k})$ (for sufficiently large alphabet size)


## Application: JL-transform of $\mathbf{n}$ vectors

- Let $\mathbf{S}$ be a distribution over $\boldsymbol{k} \times d$ matrices, such that for any $v_{1}, \ldots, v_{n} \in R^{d}$ with prob. $\geq 1-\delta$

$$
\left|\left|\boldsymbol{S} v_{i}-\boldsymbol{S} v_{j}\left\|_{2}=(1 \pm \epsilon)| | v_{i}-v_{j}\right\|_{2}\right.\right.
$$

- $\boldsymbol{k}=\#$ rows in $S \geq \frac{1}{\epsilon^{2}} \log \left(\frac{n}{\delta}\right)$, dependence on n is new
- Even if $S$ is allowed to depend on the first $\mathrm{n} / 2$ points
- Any enconding $\phi\left(v_{1}\right), \ldots, \phi\left(v_{n}\right)$ that allows pairwise $\ell_{p^{-}}$ distance estimation for $p \in\{1,2\}$ requires

$$
\Omega\left(n \epsilon^{-2} \log \frac{n}{\delta}(\log d+\log M)\right) \text { bits }
$$

( $\mathrm{M}=\max$ abs. value in $v_{i}$ )

## Other applications

- Sketching matrix products
- Minimum number of columns in a $n \times \boldsymbol{k}$ matrix $\mathbf{S}$ such that $C=A \boldsymbol{S S}^{\boldsymbol{T}} B$ is a good approximation for $A B$, where $A, B$ are $\boldsymbol{n} \times \boldsymbol{n}$ matrices?
$-\left|(A B)_{i, j}-C_{i, j}\right| \leq\left.\left.\epsilon| | A_{i}\right|_{2}| | B^{j}\right|_{2} \Rightarrow \boldsymbol{k}=O\left(\epsilon^{-2} \log \frac{n}{\delta}\right)$ [Sarlos]

- Our result: entry-wise guarantee indeed requires $\boldsymbol{k}=\Omega\left(\epsilon^{-2} \log \frac{n}{\delta}\right)$
- Optimality of database sketching [Alon, Gibbons, Matias, Szegedy] and mergeable summaries


## Open problems

- Strong direct sum: For every function $\boldsymbol{f}$ and a convex combination of product distributions ( $\mu, v$ )

$$
I C_{\mu^{k}, \delta}\left(f^{k} \mid v^{k}\right) \geq \Omega(k) I C_{\mu, \frac{1}{20}, \frac{1}{10}, \frac{\delta}{k}}(\boldsymbol{f} \mid v)
$$

- More problems with low-error one-way lower bounds?
- Natural problems for low-error 2-way lower bounds (disjointness doesn't work)?
- Applications of direct sums to property testing? [Blais, Brody, Matulef '11, Goldreich '13]
- Strong direct sum for predicates $\mathrm{g}\left(f\left(x_{1}, y_{1}\right), \ldots f\left(x_{k}, y_{k}\right)\right)$ ? For OR-EQUALITY $\left(g=v, f=E Q^{\ell}\right)$ there is a direct sum [Brody, Chakrabarti, Kondapally'12, Saglam, Tardos'13]

