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[F,-Sketching

Input x € {0,1}"

Parity = Linear function over GF,: @;cs x;

Deterministic linear sketch: set of k parities:
£(x) = D es, Xi; Diyes, Xiys 3 Diges, Xi,

E.g8. x4 @ x3 D X425 X230 D X305 X566 i---

Randomized linear sketch: distribution over k
parities (random 54, S5, ..., Sj):

f(x) — ®i1651 xll; @ize.SZ xlz; "'; @ikESk xlk



Linear sketching over IF,

 Given f(x):{0,1}"* - {0,1}
* Question:

Can one recover f(x) from a small (k << n) linear
sketch over [F,?

* Allow randomized computation (99% success)
— Probability over choice of random sets
— Sets are known at recovery time

— Recovery is deterministic (w.l.0.g)



Puzzle: Open Problem 78 on Sublinear.info

Shared randomness

Alice: x € {V \ Bob: y € {0,1}"
M(x)

ff=f(x®dy)

>

* Conjecture: (Almost) shortest message is a

randomized [F,-sketch
* https://sublinear.info/index.php?title=0Open Problems:78




Multi-player version

Shared randomness
P/ 4 A R ®_ f+_f(x1€9 D xpn)

1 \
|
|

.Ml(xl) 'Mz(xz ‘ .M (xl i— 1)‘

x1 €{0,1}* x, € {0,1}" x5 €{0,1}* x; € {0,1}" xy € {0,1}"

Thm [Hosseini, Lovett, ¥.”18; ECCC TR18-169]

For N = 10n a protocol where each M; is at most
¢ bits = 3 a randomized IF,-sketch of size O(c)




Multi-player version over Z,,

Shared randomness

LT A AR O f+_f(x1+ -+ xy)
/ I | \
\
\
.M1(x1) .Mz(xz; ‘ .M (xu i— 1) D
xleZp xZEZp xgeZg xiEZ;} xNEZ;}

Thm [Hosseini, Lovett, Y.”18; ECCC TR18-169]

For N = 10n log p a protocol where each M; is at most ¢
bits = 3 a randomized Z,,-sketch of dimension O(c)

*Holds even for M;(x;, M, M>, ..., M;_,) instead of M;(x;, M;_;)




Motivation: Distributed Computing

Distributed computation among M machines:
—x = (x4, X3, ..., Xy) (more generally x =@, x;)

— M machines can compute sketches locally:
£(x1), ..., £(x1)
— Send them to the coordinator who computes:

Li(x) =4;(x1) D - D ¥;(x};) (coordinate-wise XORs)
— Coordinator computes f(x) with kM communication

» RO 1 0o 0o 0o o
X1 X2



Motivation: Streaming

* x generated through a sequence of updates
* Updates iy, ..., L,,;: update i; flips bit at position i;

£(x) allows to recover f(x) with k bits of space



Frequently Asked Questions

Q: Why IF, updates instead of +17
— Often doesn’t help if you know the sign
Q: How to store random sets?

— Derandomize using Nisan’s PRG — extra O(log n) factor
In space

Q: Some applications?

— Essentially all dynamic graph streaming algorithms can
be based on Ly-sampling

— Ly-sampling can be done optimally using [F,-sketching
[Kapralov et al. FOCS’17]

Q: Why not allow to compute f approximately?
— Stay tuned



Deterministic vs. Randomized

* Fact: f has a deterministic sketch if and only if

—f=9(Dies, Xi,;Dies, Xi,5 1 Dies, Xi,)
— Equivalent to “f has Fourier dimension k"
* Randomization can help:

—OR: f(x) =x4 V- Vx,

— Has “Fourier dimension” = n

— Pick t = log1/6 random sets Sy, ..., S;

— If there is j such that @iesj x; = 1 output 1,
otherwise output O

— Error probability 6



Fourier Analysis

e f(xq,...,x,):{0,1}"* - {0,1}

* Notation switch:

—0-1
- 1--1

* fi-11" - (=113

* Functions as vectors form a vector Space.

f{-11" > {-1,1} e fe{-1,1}*

* Inner product on functions = “correlation”:

(F.9)=2" ) fRIO) = Exiaaplf()g00)

xe{—1,1}"

11l 2 = T ) = JIExN{_l,l}n[fZ(x)] — 1 (for Boolean only)




“Main Characters” are Parities

* For § C [n] let character ys(x) = [1;c5 x;

* Fact: Every function f:{—1,1}" —» {—1,1}is
uniquely represented as a multilinear polynomial

[ ) = ) FS)xs(0)
SCn]

* f(S) a.k.a. Fourier coefficient of f on S

* f(S) = (f,xs) = Ex(—1,1)m f(x)xs(x)]
* Y. f(5)? = 1 (Parseval)



Fourier Dimension

* Fourier sets S = vectors in F}

* “f has Fourier dimension k" = a k-dimensional
subspace 4y, in Fourier domain has all weight

> Fe?=1

SCAy,
[ o) = ) FOXs) = ) FOs@)
SCcn] SCAj

* PickabasisSq,...,S5,in Ay:

— Sketch: x5, (%), ..., X5, (X)
— Forevery S € A, thereexists Z € |k]: S =@z S;

Xs(x) =@jez xs5,(x)



Deterministic Sketching and Noise

Suppose “noise” has bounded norm
f=g9 & h = k-dimensional @ “noise”
e Sparse Fourier noise (via [Sanyal’15])
— f = k-dimensional @ “Fourier L-noise”

— “noise” = # non-zero Fourier coefficients of noise
0

(aka “Fourier sparsity”)
/2
— Linear sketch size: k + O(HnoiseH )
0

— Our work: can’t be improved even with randomness and
even for uniform x, e.g for "addressing function”.



How Randomization Handles Noise

* Ly-noise in original domain (via hashing a la OR)
— f = k-dim. @ “Ly-noise”
— F,-sketch size: k + O(log Hnoisel ‘O)
— Optimal (but only existentially, i.e. 3f: ...)

* Li-noise in the Fourier domain (via [Bruck,
Smolensky ‘92; Grolmusz’'97])

— f = k-dim. @ “Fourier L,-noise”

— [F,-sketch size: k + 0(‘ ‘n?i?e‘ E)

— Example = k-dim. @ small decision tree / DNF / etc.



Randomized Sketching: Hardness

* Not y-concentrated on k -dim. Fourier subspaces

— For V k -dim. Fourier subspace A :

Y F?=1-y

* Thm. Any k -dim. [F,-sketch makes error 1_2W

 Converse doesn’t hold, i.e. concentration is not
enough



Randomized Sketching: Hardness

* Not y-concentrated on o(n)-dim. Fourier
subspaces:
— Almost all symmetric functions, i.e. f(x) = h(}; x;)

* If not Fourier-close to constant or @}, x;
* E.g. Majority (not an extractor even for O(1/n))

— Tribes (balanced DNF)
— Recursive majority: Maj°* = Maj; o Majs ...o Majs



Approximate Fourier Dimension

* Not y-concentrated on k -dim. Fourier subspaces
— V k -dim. Fourier subspace A: }s¢4 f($?=1-vy
— Any k -dim. linear sketch makes error %2(1 — +/y)

* Definition (Approximate Fourier Dimension)

— dim,, (f) = smallest d such that f is y-concentrated
on some Fourier subspace of dimension d

Si 48 = f(S1+ S, +53)
g oo R

f(Sl)/'// / F S, +,533' ,':




Sketching over Uniform Distribution +
Approximate Fourier Dimension

* Sketching error over uniform distribution of x.

* dim.(f)-dimensional sketch gives error 1 — €:
— Fix dim,(f)-dimensional A:Y.cc, f(8)? =€

— Output: g(x) = sign(Tseq F(S)xs(x)):

= > _
xNU({Plrm}n)[g(X) f(x)] =e=errorl—e

1-—€
e We show a basic refinement = error - 1[

— Pick O from a carefully chosen distribution 3

— Output: gg(x) = Slgn(ZSEA f(S)xs(x) — 9)

+1



1-way Communication Complexity of
XOR-functions

Shared randomness

Alice: x € {V \ Bob: y € {0,1}"
AV
A A

« Examples: [ff=fx®y)
* f(z) =0OR-,(z;) = f™: (not) Equality
* f(z) = (“Z”o> d) = f*: Hamming Dist > d

* RI(f*) =min.[M]| so that Bob’s error prob. €




Communication Complexity of
XOR-functions

* Well-studied (often for 2-way communication):
— [Montanaro,Osborne], ArXiv’'09
— [Shi, Zhang], QIC’09,
— [Tsang, Wong, Xie, Zhang], FOCS’13
— [O’Donnell, Wright, Zhao,Sun,Tan], CCC’14
— [Hatami, Hosseini, Lovett], FOCS’16

* Connections to log-rank conjecture [Lovett’14]:

— Even special case for XOR-functions still open



Deterministic 1-way Communication
Complexity of XOR-functions

Alice: x € {0,1}" Bob: y € {0,1}"
AV
A A
ffr=f(x®y)

« D1 (f*) = min.|M| so that Bob is always correct

e [Montanaro-Osborne’09]: D* (f) = D”"(f)

« D"™(f) = deterministic [F,-sketch complexity of f*
« DL (fY) = D"™(f) = Fourier dimension of f



1-way Communication Complexity of
XOR-functions

Shared randomness

Alice: x € {V \ Bob: y € {0,1}"
A——V
B A

f(xDy)
* R1(f) = min.|M]| so that Bob’s error prob. €

e REM(f*) = rand. F,-sketch complexity (error € )

* RE(f) < RE™M(S) |
* Conjecture: RI(f") =~ RE"(f)?




RE(f) = RE™(f)?

As we show holds for:

* Majority, Tribes, recursive majority, addressing
function

e (Almost all) symmetric functions
* Degree-d IF,-polynomials:
RZ(f) = 0(d RE(f1))

Analogous question for 2-way is wide open:
[HHU16] Q27 (f) = poly(R. (f1))?




Distributional 1-way Communication
under Uniform Distribution

Alice: x ~ U({0,1}™) Bob: y ~ U({0,1}")

M(x)

\

1 . fx ® )
R¢ (f) — Sgp D (f)

CDi’U(f) = min.|M| so that Bob’s error prob. € is over
the uniform distribution over (x, y)

Enough to consider deterministic messages only
Motivation: streaming/distributed with random input



Communication for Uniform Distribution

d
Thm: If dim (f) = d — 1 then D72 (f*) = <
6

* Optimal up to constant factors in dimension and error

) ) 1—€
— d-dim. linear sketch has error .




Application: Random Streams

x € {0,1}™ generated via a stream of updates
— Each update flips a random coordinate

Goal: maintain f(x) during the stream (error prob. €)
Question: how much space necessary?

Answer: CDE’U and best algorithm is linear sketch
— After first O(n log n) updates input x is uniform

Big open question:
— |s the same true if x is not uniform?

Q(n)
— True for VERY LONG (222 ) streams (via [LNW’14])
— True for streams of length (0 (n?)) (via [HLY’18])



Approximate [F,-Sketching [Y."17]

o f(xq,.,x,):{0,1}* > R
* Normalize: ||f|‘2 =1

* Question:




Approximate [F,-Sketching [Y."17]

Interesting facts:

e All results under the uniform distribution
generalize directly to approximate sketching

* Li-sampling has optimal dependence on
parameters:

2
£
— Optimal dependence: O (‘ ‘1

€
— Open: Is L{-sampling optimal for Boolean functions?



Approximate [F,-Sketching
of Valuation Functions [Y.,Zhou’18]
Additive (Y372, w;x;):
-0 (min (”M;”% )) (optimal via weighted Gap Hamming)
Budget-additive (min(b, Y;-; w;x;)):
-0 in (21
Coverage:

— Optimal 0 ( ) (via L{-Sampling)

Matroid rank (various results depending on rank 7)

a-Lipschitz submodular functions:
— ((n) communication lower bound for « = Q(1/n)
— Uses a large family of matroids from [Balcan, Harvey’10]




Thanks! Questions?

e Other stuff |Y., Zhou 18]:

— Linear Threshold Functions: 6 (%log %)

* Resolves a communication conjecture of [MO’09]

— Simple neural nets: LTF(ORs), LTF(LTFs)
* Blog post: http://grigory.us/blog/the-binary-sketchman




Sketching over Uniform Distribution

d
Thm: If dim (f) = d — 1 then D72 (f*) = <
6

. . 1—
* Optimal up to error as d-dim. linear sketch has error TE

Weaker: If €; > €;,dim, (f) = dim,,(f) =d — 1 then:
D57 (f) = d,
where 6 = (€, — €1) /4.

Corollary: If f(®) < C for C < 1 then there exists d:
1,U
Sbg(%)(f) > d.

* Tight for the Majority function, etc.




Dl Y and Approximate Fourier Dimension

Thm:If €; > €; > 0,dim, (f) = dim,,(f) = d — 1 then:
Dy (f) 2 d,
where 6 = (€, — €1) /4.

y€{0,1}" fx®y)=f(»)
fro
fro
fr,

x € {0, 1}" M(x) =




SD1 Y and Approximate Fourier Dimension

e If|M(x)| = d — 1 average “rectangle” size = 2~ 4+1
* Asubspace A distinguishes x; and x, if:

AS € A xs(xq) # xs(x2)

* Lem 1: Fix a d-dim. subspace A : typical x4 and x5 in a
typical “rectangle” are distinguished by A,

* Lem 2: If a d-dim. subspace A, distinguishes x; and x, +
1) f is €,-concentrated on 4,
2) f is not €;-concentrated on any (d — 1)-dim. subspace

- z~U({ 1 1}n)[fx1(z) i fxz(Z)] = €3 — €1



SDl Y and Approximate Fourier Dimension

Thm:If €; > €; > 0,dim, (f) = dim,,(f) = d — 1 then:
D0 (f) = d,
Where 6 = (€, — €1) /4.

[fxl(z) * fxz(Z)] = €2 — €1

y

Z~U({ 1 ,131)

gX1

g R ="typical

rectangle”

Error for fixed y = min( Pr [f,(y) = 0], Pr[f,(y) = 1])
XER XER
Average error for (x, y)E R = Q(€; — €1)




Example: Majority

Majority function:

Maj,(zq,...,2y) = Xie12; = n/2
Maj,,(S) only depends on |S]
Maj, (S) = 0if |S] is odd

_ — _3 1
(n — 1)-dimensional subspace with most weight:

Ap-1 = span(i1},12}, ..., {n — 1})

iai y _
Yisea, ; Majn(§) =1 - =+ 0(n~3/2)
= - Y _
Sete; =1—0(n"3/?), €, =1——=+0(n"3/?)

:93211/\/%) (Maj,) =n



