

Private Analysis of Graph Stucture

V. Karwa, S. Raskhodnkova, A.Smith. G. Yaroslavtsev (VLDB'11)

Network Data

- Many data sets can be naturally represented as network of pairwise relationships (graph)
 - Friendship in online social network
 - **Romantic relationships**
 - **Financial transactions**

- Goal: Publish info about network structure for use by researchers, gov't agencies, ...
 - **Privacy concerns: Sensitive information**
 - De-anonymizing social networks [BDK'07, NS'09]
 - Link prediction by de-anonymization [NSR'11]
 - This work: new privacy-preserving algorithms

Subgraph Counts

For graphs G and H, $f_H(G)$ = # of occurrences of H in G

- Subgraph counts are widely used in:
 - **Exponential random graph models**
 - Descriptive graph statistics (e.g. clustering coefficient)
- Our work: We present d.p. algorithms for accurately releasing subgraph counts

Results

- **New algorithms:**
 - K-stars (linear time algorithms for computing smooth sensitivity)
 - K-triangles (d.p. approximation to $LS_f(G)$).
- Bounds on noise in terms of $LS_f(G)$:
 - Conditions, when amplitude of noise is close to $\frac{LS_f}{c}$
- Average-case analysis in Gilbert model G(n,p)

$$(np = \omega(\sqrt{nlogn}), \varepsilon = o(logn)):$$

$$\frac{|A_H(G) - f_H(G)|}{f_H(G)} = o(\frac{1}{\varepsilon n^2 p})$$

Computing smooth sensitivity is NP-hard for some subgraph queries (K-triangles, K-cycles)

Measuring Privacy

- **Goal: Rigorous privacy guarantee**
- Challenges
 - Attacker's prior information unknown
 - Attack algorithm / methodology unknown
- ε-Differential privacy [DMNS'06]: For all neighbors G and G' (differing in one record):

$$Pr[A(G) = s] \le e^{\varepsilon} \cdot Pr[A(G') = s]$$

 $\mathcal{A}(x')$

Hides the presence/absence of individual relationships

Techniques

- Add noise, proportional to S/ϵ (where S is sensitivity). How to minimize S?
- This work: Instance-specific noise
 - Local sensitivity (also used in [RHMS'09])

$$LS_f(G) = \max_{G' \in N(G)} |f(G) - f(G')|$$

- Nearly optimal amplitude, but not d.p.
- Previous work: Global sensitivity (mostly)

 $GS_f(G) = \max_{G} LS_f(G)$

Main approaches:

Smooth sensitivity [NRS'07] $LS_f(x)$

D.p. approximation to $LS_f(G)$ (this work).

Experimental Evaluation

Results of experimental evaluation for $\varepsilon = 0.5$:

Dataset	H	Median Relative Error
CaGrQc	Δ	0.081
Nodes = 5242	$2\star$	0.0041
Edges = 2890	3⋆	0.144
CaHepTh	Δ	0.11
Nodes = 9877	$2\star$	0.002
Edges = 51971	3⋆	0.0009
CaAstroPh	Δ	0.017
Nodes = 18772	$2\star$	0.00043
Edges = 396160	3⋆	0.0023
CaHepPh	Δ	0.007
Nodes = 12008	$2\star$	0.00038
Edges = 237010	3⋆	0.001
CaCondMat	Δ	0.077
Nodes = 23133	$2\star$	0.00158
Edges = 186936	3⋆	0.011
Enron	Δ	0.032
Nodes = 36692	2⋆	0.00055
Edges = 267662	3⋆	0.0021