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Introduction

Motivation

Practical:

Logical design synthesis: smaller circuits — better designs.

Theoretical:

Circuits — very simple and natural model of computation. Many
efforts spent — not too much known.
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Upper bounds on circuit complexity

Boolean Circuits

inputs: propositional
variables x1, x2, . . . , xn
and constants 0, 1

gates: binary functions

fan-out of a gate is
unbounded

x1 x2 x3 1

⊕ ∧

∨ ∨

≡
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Upper bounds on circuit complexity

Symmetric functions

Definition

A boolean function is symmetric if its value depends on the sum of the
input values only.

Example: MAJ(x1, . . . , xn) = 1 ⇐⇒ x1 + . . .+ xn ≥ n/2

Modular functions

Let MODn
m,r (x1, . . . , xn) = 1 ⇐⇒

∑n
i=1 xi ≡ r (mod m).

Example: MODn
4,0(x1, . . . , xn = 1) ⇐⇒

∑n
i=1 xi ≡ {0, 4, 8, . . .}

Grigory Yaroslavtsev (SPb AU) April 5, 2010 5 / 32



Upper bounds on circuit complexity

Symmetric functions

Definition

A boolean function is symmetric if its value depends on the sum of the
input values only.

Example: MAJ(x1, . . . , xn) = 1 ⇐⇒ x1 + . . .+ xn ≥ n/2

Modular functions

Let MODn
m,r (x1, . . . , xn) = 1 ⇐⇒

∑n
i=1 xi ≡ r (mod m).

Example: MODn
4,0(x1, . . . , xn = 1) ⇐⇒

∑n
i=1 xi ≡ {0, 4, 8, . . .}

Grigory Yaroslavtsev (SPb AU) April 5, 2010 5 / 32



Upper bounds on circuit complexity

Stockmeyer’s bounds for MODn
4,0

Stockmeyer constructed a circuit for MODn
4,0 of size 2.5n + c , using

blocks with 6 inputs and 10 gates to add 4 new values to the
remainder encoded by 2 bits and transfer the remainder encoded in 2
bits to the next block.

This matches the corresponding lower bound 2.5n + c proved by him.
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Upper bounds on circuit complexity

Applying practice to theory

”For many important functions there is a large gap between
known lower and upper bounds. It might be helpful to know
optimal circuits for such functions at least for small values of
input size. Knowing this could help us to understand the
structure of optimal circuits for general functions.”

Williams, R. (2008)

By finding efficient small circuits we can obtain upper bounds on circiut
complexity.
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Upper bounds on circuit complexity

Main idea

Bruteforce search

The number F (n, t) of circuits of size ≤ t with n input variables does
not exceed (

16(t + n + 2)2
)t
.

Each of t gates is assigned one of 16 possible binary Boolean
functions that acts on two previous nodes, and each previous node
can be either a previous gate (≤ t choices) or a variable or a constant
(≤ n + 2 choices).

To find Stockmeyer’s block (6 inputs, 10 gates) a naive bruteforce
over ∼ 1.4 ∗ 1037 circuits will be needed.
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Upper bounds on circuit complexity

Main idea

Given a function f : {0, 1}n → {0, 1}m (n, m are constants) we transform
the fact ”there exists a circuit of size m computing function f” into a CNF
formula and use SAT-solvers to check its satisfiability.

Enconding

All possible underlying graphs of circuit

All possibilities for functions computed by gates

Which gates are outputs

The particular function computed by circuit
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Upper bounds on circuit complexity

Results

Results

New upper bound for MODn
3,∗: 3n + c in full binary basis B2

(previous 5n + c), using a block with 5 inputs and 9 gates.

New upper bound for MODn
3,∗: 5.5n + c in basis U2 = B2 \ {⊕,≡}

(previous 7n + c), using a block with 4 inputs and 11 gates.

It is possible to prove exact bounds for circuits with ≤ 8 gates.
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Lower bounds on circuit complexity

Random Functions are Complex

Shannon counting argument: count how many different Boolean
functions in n variables can be computed by circuits with t gates and
compare this number with the total number 22

n
of all Boolean

functions.

The number F (n, t) of circuits of size ≤ t with n input variables does
not exceed (

16(t + n + 2)2
)t
.

Each of t gates is assigned one of 16 possible binary Boolean
functions that acts on two previous nodes, and each previous node
can be either a previous gate (≤ t choices) or a variables or a
constant (≤ n + 2 choices).

For t = 2n/(10n), F (n, t) is approximately 22
n/5, which is � 22

n
.

Thus, the circuit complexity of almost all Boolean functions on n
variables is exponential in n. Still, we do not know any explicit
function with super-linear circuit complexity.
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Lower bounds on circuit complexity

Known Lower Bounds

circuit size formula size

full binary basis B2 3n − o(n) n2−o(1)

[Blum] [Nechiporuk]

basis U2 = B2 \ {⊕,≡} 5n − o(n) n3−o(1)

[Iwama et al.] [Hastad]

exponential
monotone basis M2 = {∨,∧} [Razborov; Alon, Boppana;

Andreev; Karchmer, Wigderson]
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Lower bounds on circuit complexity

Explicit Functions

We are interested in explicitly defined Boolean functions of high
circuit complexity.

Not explicitly defined function of high circuit complexity: enumerate
all Boolean functions on n variables and take the first with circuit
complexity at least 2n/(10n).

To avoid tricks like this one, we say that a function f is explicitly
defined if f −1(1) is in NP.

Usually, under a Boolean function f we actually understand an infinite
sequence {fn | n = 1, 2, . . . }.
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Lower bounds on circuit complexity

Known Lower Bounds for Circuits over B2

Known Lower Bounds

2n − c [Schnorr, 74]
2.5n − o(n) [Paul, 77]
2.5n − c [Stockmeyer, 77]
3n − o(n) [Blum, 84]

This Talk

In this talk, we will present a proof of a 7n/3− c lower bound which is as
simple as Schnorr’s proof of 2n − c lower bound.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is
essentially the only known method for proving lower bounds on circuit
complexity.
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Lower bounds on circuit complexity

Gate Elimination Method

The main idea

Take an optimal circuit for the function in question.

Setting some variables to constants obtain a subfunction of the same
type (in order to proceed by induction) and eliminate several gates.

A gate is eliminated if it computes a constant or a variable.

By repeatedly applying this process, conclude that the original circuit
must have had many gates.

Remark

This method is very unlikely to produce nonlinear lower bounds.
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Lower bounds on circuit complexity

The Class Qn
2,3

Definition

A function f : {0, 1}n → {0, 1} belongs to the class Qn
2,3 if

1 for all different i , j ∈ {1, . . . , n}, one obtains at least three different
subfunctions by replacing xi and xj by constants;

2 for all i ∈ {1, . . . , n}, one obtains a subfunction in Qn−1
2,3 (if n ≥ 4) by

replacing xi by any constant.

Modular functions

Let MODn
m,r (x1, . . . , xn) = 1 ⇐⇒

∑n
i=1 xi ≡ r (mod m).

Then MODn
3,r ,MODn

4,r ∈ Qn
2,3, but MODn

2,r 6∈ Qn
2,3.
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Lower bounds on circuit complexity

Schnorr’s 2n Lower Bound

Theorem

If f ∈ Qn
2,3, then C (f ) ≥ 2n − 8.

Proof

Induction on n. If n ≤ 4, then the statement is trivial.

Consider an optimal circuit and its top gate Q which is fed by
different variables xi and xj (they are different, since the circuit is
optimal).

Note that Q = Q(xi , xj) can only take two values, 0 and 1, when xi
and xj are fixed.

Thus, either xi or xj fans out to another gate P.

By assigning this variable, we eliminate at least two gates and get a
subfunction from Qn−1

2,3 .
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Consider an optimal circuit and its top gate Q which is fed by
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Lower bounds on circuit complexity

AND-type Gates vs XOR-type Gates

Binary functions

The set B2 of all binary functions contains 16 functions f (x , y):

1 2 constants: 0, 1

2 4 degenerate functions: x , x̄ , y , ȳ .

3 2 XOR-type functions: x ⊕ y ⊕ a, where a ∈ {0, 1}.
4 8 AND-type functions: (x ⊕ a)(y ⊕ b)⊕ c, where a, b, c ∈ {0, 1}.

Remark

Optimal circuits contain AND- and XOR-type gates only, as constant and
degenerate gates can be easily eliminated.

Grigory Yaroslavtsev (SPb AU) April 5, 2010 18 / 32



Lower bounds on circuit complexity

AND-type Gates vs XOR-type Gates

Binary functions

The set B2 of all binary functions contains 16 functions f (x , y):

1 2 constants: 0, 1

2 4 degenerate functions: x , x̄ , y , ȳ .
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Lower bounds on circuit complexity

AND-type Gates vs XOR-type Gates

AND-type Gates vs XOR-type Gates

AND-type gates are easier to handle than XOR-type gates.

Let Q(xi , xj) = (xi ⊕ a)(xj ⊕ b)⊕ c be an AND-type gate. Then by
assigning xi = a or xj = b we make this gate constant. That is, we
eliminate not only this gate, but also all its direct successors!

While by assigning any constant to xi , we obtain from
Q(xi , xj) = xi ⊕ xj ⊕ c either xj or x̄j .

That is why, in particular, the current record bounds for circuits over
U2 = B2 \ {⊕,≡} are stronger than the bounds over B2.

Usually, the main bottleneck of a proof based on gate elimination is a
circuit whose top contains many XOR-type gates.
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Lower bounds on circuit complexity

Polynomials over GF(2)

Polynomials over GF(2)

Let τ(f ) denote the unique polynomial over GF(2) representing f .

E.g., τ(MOD3
3,0) = x1x2x3 + (1− x1)(1− x2)(1− x3).

Note that τ(f ) is multi-linear.

It can be easily shown that, for any r , deg(τ(MODn
4,r )) ≤ 3, while

deg(τ(MODn
3,r )) ≥ n − 1.

Lemma (Degree lower bound)

Any circuit computing f contains at least deg(τ(f ))− 1 AND-type gates.
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Lower bounds on circuit complexity

Combined Complexity Measure

Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are
given several AND-type gates in advance.

Let us increase the weight of a
XOR-type gate.

Definition

For a circuit C , let A(C ) and X (C ) denote the number of AND- and
XOR-type gates in C , respectively. Let also µ(C ) = 3X (C ) + 2A(C ).
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Lower bounds on circuit complexity

An Improved Lower Bound

Lemma

For any circuit C computing f ∈ Qn
2,3, µ(C ) = 3X (C ) + 2A(C ) ≥ 6n− 24.

Proof

As in the previous proof, we consider a top gate Q(xi , xj) and assume
wlog that xi feeds also another gate P.

There are two cases:
xi xj

⊕P ⊕Q

xi xj

∧P Q

In both cases, we can assign xi a constant such that µ is reduced at
least by 6.
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Lower bounds on circuit complexity

7n/3 Lower Bound

Lemma

Let f ∈ Qn
2,3 and deg(τ(f )) ≥ n − c, then C (f ) ≥ 7n/3− c ′.

Proof

Let C be an optimal circuit computing f .

3X (C )+2A(C )≥ 6n − 24
A(C )≥ n − c − 1

3C (f ) =3X (C )+3A(C )≥ 7n − 25− c
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Feebly one-way families of permutations

One-way permutations w.r.t circuit complexity

S2n is the subset of Bn,n (the set of all boolean functions
f : {0, 1}n → {0, 1}n) containing all 2n! invertible functions.
Any sequence f1, f2, . . . of functions fi ∈ S2i — a family of permutations
denoted by {fn}.

Let’s consider the following measure of feeble one-wayness:

MF (fn) = C (f −1n )/C (fn)

This can be compared with the measure of practical one-wayness:

MP(fn) = log2[C (f −1n )]/ log2[C (fn)]
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Feebly one-way families of permutations

One-way permutations w.r.t circuit complexity

A family of permutations {fn} is said to be feebly-one-way of order k, for
some constant k > 1, if

C (fn) = ω(1) and MF (fn) ∼ k

A family of permutations {fn} is said to be practically-one-way of order k,
for some constant k > 1, if

C (fn) = ω(1) and MP(fn) ∼ k

These definitions imply C (f −1n ) ∼ k · C (fn) and C (f −1n ) = [C (fn)]k±o(1)

respectively.
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Feebly one-way families of permutations

A linear family with feeble one-wayness of order 3
2

Let’s define φn, for n ≥ 3 as a linear function:

φn([x1, . . . , xn]) = [y1, . . . , yn]

where
yi (x) = xi ⊕ xi+1 for i 6= n

yn(x) = x1 ⊕ xdn/2e ⊕ xn

The inverse function φ−1n is given by:

xi (y) = (y1 ⊕ · · · ⊕ yi−1)⊕ (ydn/2e ⊕ · · · ⊕ yn) i ≤ dn/2e

xi (y) = (y1 ⊕ · · · ⊕ ydn/2e−1)⊕ (yi ⊕ · · · ⊕ yn) i > dn/2e
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xi (y) = (y1 ⊕ · · · ⊕ ydn/2e−1)⊕ (yi ⊕ · · · ⊕ yn) i > dn/2e
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A linear family with feeble one-wayness of order 3
2

Theorem

For all n ≥ 5, the functions φn satisfy

C (φn) = n + 1 and C (φ−1n ) = b3

2
(n − 1)c

Proof

By considering independent realizations of the component function we
get C (φn) ≤ n + 1.

By noticing that each xi (y) is a sum of at least dn/2e of the yk ’s we
get C (φn) ≥ b32(n − 1)c
It can be easily verified that the previous two bounds are exact.
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Nonlinear family with feeble one-wayness of order 2

Remark

It is easy to modify the previous family to make it one-way of order 2 (still
being linear). However, it is even simipler to construct a non-linear family.

Construction

The family νn results from composition βn(αn(x)) of linear permutation
αn([x1, . . . , xn]) = (z1, . . . , zn) with a nonlinear permutation
βn([z1, . . . , zn]) = (y1, . . . , yn), where:

zi (x) = xi ⊕ xi+1 for i 6= n; zn(x) = xn

yi (z) = zi for i 6= n; yn(z) = zn ⊕ [(z1 ⊕ · · · ⊕ zn−2) ∧ zn−1]
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Nonlinear family with feeble one-wayness of order 2

Construction

The inverse permutations β−1n ([y1, . . . , yn]) = (z1, . . . , zn) and
α−1n ([z1, . . . , zn]) = (x1, . . . , xn) will be:

zi (y) = yi for i 6= n; zn(y) = yn ⊕ [(y1 ⊕ · · · ⊕ yn−2) ∧ yn−1]

xi (z) = zi ⊕ · · · ⊕ zn for i 6= n; xn(z) = zn
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Nonlinear family with feeble one-wayness of order 2

Construction

The composition of αn and βn yields νn(x) = βn(αn(x))[y1, . . . , yn], and
ν−1n (y) = α−1n (β−1n (y)) = [x1, . . . , xn] where:

yi (x) = xi ⊕ xi+1 for i 6= n; yn(x) = xn ⊕ [(x1 ⊕ xn−1) ∧ (xn−1 ⊕ xn)]

xi (y) = (yi ⊕ · · · ⊕ yn)⊕ [(y1 ⊕ · · · ⊕ yn−2) ∧ yn−1] for i 6= n

xn(y) = yn ⊕ [(y1 ⊕ · · · ⊕ yn−2) ∧ yn−1]

Theorem

For all n ≥ 4, the functions νn satisfy

C (νn) = n + 2 and C (ν−1n ) = 2(n − 1)
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Conclusion

The results described in the first two sections of this talk were
obtained together with Alexander S. Kulikov and Arist Kojevnikov.

Now we are working on improving the results of the last section
(obtained by Alain Hiltgen) together with my advisor Edward A.
Hirsch.

It is not easy to improve the constant 2 in the last section, because
you need to prove a nontrivial lower bound to do this.
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Thank you for your attention!

Grigory Yaroslavtsev (SPb AU) April 5, 2010 32 / 32


	Introduction
	Upper bounds on circuit complexity
	Lower bounds on circuit complexity
	Feebly one-way families of permutations

