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Goal:  Publish aggregate information about a database, 
containing sensitive information. 

Privacy in aggregate data publishing 
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 Ideal:  
 

 

Database Users Analysts 
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information 

 Rigorous privacy guarantee with no assumptions about 
attacker’s prior information/algorithm 

 Efficient algorithms with good utility 
 
 



 Limits incremental information by hiding 
presence/absence of an individual user  

Differential privacy [Dwork, McSherry, Nissim, Smith ’06] 
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 Neighbors: Databases D and D’ that differ in one user’s data 

 Answers on neighboring databases should be similar  



𝝐-differential privacy 

For all pairs of neighbors 𝑫, 𝑫′ and all outputs S: 

 

 

 

 

 

 

Differential privacy in databases 

𝑃𝑟 𝐴 𝑫 = 𝑺 ≤ 𝑒𝜖 Pr 𝐴 𝑫′ = 𝑺  
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A(D) A(D’) 

 𝝐 −privacy budget 
 Probability is over the randomness of A 
 Requires the distributions to be close: 

 
 



Optimizing Linear Queries 

 Linear queries capture many common cases for data release 

– Data is represented as a vector x (histogram) 

– Want to release answers to linear combinations of entries of x 

– Model queries as matrix Q, want to know y=Qx 

– Examples: histograms, contingency tables in statistics 
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Answering Linear Queries 

 Basic approach: 

– Answer each query in Q directly, partition the privacy budget 
uniformly and add independent noise 

 Basic approach is suboptimal 

– Especially when some queries overlap and others are disjoint 

 Several opportunities for optimization: 

– Can assign different privacy budgets to different queries 

– Can ask different queries S, and recombine to answer Q 
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The Strategy/Recovery Approach 

 Pick a strategy matrix S 

– Compute z = Sx + v 

 

– Find R so that Q = RS 

– Return y = Rz = Qx + Rv as the set of answers 

– Accuracy given by var(y) = var(Rv) 

 

 

 

 Strategies used in prior work: 
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Q: Query Matrix F: Fourier Transform Matrix  

I: Identity Matrix  H: Haar Wavelets 

C: Selected Marginals 
 

P: Random projections 

noise vector 

strategy on data 



Step 2: Error Minimization 

 Step 1: Fix strategy S for efficiency reasons 

 Given Q, R, S,  want to find a set of values {i}  

– Noise vector v has noise in entry i with variance 1/i
2 

 

 

 

 Yields an optimization problem of the form: 

Minimize i bi / i
2 (minimize variance) 

Subject to i |Si,j| i      ∀ users j     (guarantees  differential privacy) 

 The optimization is convex, can solve via interior point methods 

– Costly when S is large 

– We seek an efficient closed form for common strategies 8 



Grouping Approach 

 We observe that many strategies S can be broken into groups 
that behave in a symmetrical way 

– Rows in a group are disjoint (have zero inner product) 

– Non-zero values in group i have same magnitude Ci 

 All common strategies meet this grouping condition 

– Identity (I), Fourier (F), Marginals (C), Projections (P), Wavelets (H) 

 Simplifies the optimization: 

– A single constraint over the i’s 

– New constraint: Groups i Ci i  =  

– Closed form solution via Lagrangian 
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Step 3: Optimal Recovery Matrix 

 

 

 Given Q, S, {i}, find R so that Q=RS 

– Minimize the variance Var(Rz) = Var(RSx + Rv) = Var(Rv) 

 Find an optimal solution by adapting Least Squares method 

 This finds x’ as an estimate of x given z = Sx + v 

– Define  = Cov(z) = diag(2/i
2) and U = -1/2 S 

– OLS solution is x’ = (UT U)-1 UT -1/2 z 

 Then R = Q(ST -1 S)-1 ST -1 

 Result: y = Rz = Qx’ is consistent—corresponds to queries on x’ 

– R minimizes the variance 

– Special case: S is orthonormal basis (ST = S-1) then R=QST 
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Experimental Study 

 Used two real data sets: 

– ADULT data – census data on 32K individuals  (7 attributes) 

– NLTCS data– binary data on 21K individuals (16 attribues) 

 Tried a variety of query workloads Q over these 

– Based on low-order k-way marginals (1-3-way) 

 Compared the original and optimized strategies for: 

– Original queries, Q/Q+ 

– Fourier strategy F/F+ [Barak et al. 07] 

– Clustered sets of marginals C/C+ [Ding et al. 11] 

– Identity basis I 
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Experimental Results 

 Optimized error gives constant factor improvement 

 Time cost for the optimization is negligible on this data 
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ADULT, 1- and 2-way marginals NLTCS, 2- and 3-way marginals 



Overall Process 

 Ideal version: given query matrix Q, compute strategy S, 
recovery R and noise budget {i} to minimize Var(y) 

– Not practical: sets up a rank-constrained SDP [Li et al., PODS’10] 

– Follow the 3-step process instead 

1. Fix S  

2. Given query matrix Q, strategy S, compute optimal noise 
budgets {i} to minimize Var(y) 

3. Given query matrix Q, strategy S and noise budgets {i}, 
compute new recovery matrix R to minimize Var(y) 
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Advantages 

 Best on datasets with many individuals (no dependence on 
how many) 

 Best on large datasets (for small datasets, use [Li et al.]) 

 Best realtively small queyr workloads (for large query 
workloads, use multiplicative weights [Hardt, Ligett 
Mcsherry’12]) 

 Fairly fast (matrix multiplications and inversions) 

– Faster when S is e.g. Fourier, since can use FFT 

– Adds negligible computational overhead to the computation of 
queries themselves 
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