Accurate and Efficient Private Release of Data Cubes & Contingency Tables

Grigory Yaroslavtsev

With Graham Cormode,

Cecilia M. Procopiuc

Divesh Srivastava

Privacy in aggregate data publishing

Goal: Publish aggregate information about a database, containing sensitive information.

Ideal:

- Rigorous privacy guarantee with no assumptions about attacker's prior information/algorithm
- Efficient algorithms with good utility

Differential privacy [Dwork, McSherry, Nissim, Smith '06]

 Limits incremental information by hiding presence/absence of an individual user

Neighbors: Databases D and D' that differ in one user's data

Answers on neighboring databases should be similar

Differential privacy in databases

ϵ -differential privacy

For all pairs of neighbors $\boldsymbol{D}, \boldsymbol{D}'$ and all outputs \boldsymbol{S} : $Pr[A(\boldsymbol{D}) = \boldsymbol{S}] \leq e^{\epsilon} \Pr[A(\boldsymbol{D}') = \boldsymbol{S}]$

• ϵ -privacy budget

- Probability is over the randomness of A
- Requires the distributions to be close:

Optimizing Linear Queries

Linear queries capture many common cases for data release

- Data is represented as a vector x (histogram)
- Want to release answers to linear combinations of entries of x

3

- Model queries as matrix Q, want to know y=Qx
- Examples: histograms, contingency tables in statistics

Answering Linear Queries

• Basic approach:

- Answer each query in Q directly, partition the privacy budget uniformly and add independent noise
- Basic approach is suboptimal
 - Especially when some queries overlap and others are disjoint
- Several opportunities for optimization:
 - Can assign different privacy budgets to different queries
 - Can ask different queries S, and recombine to answer Q

The Strategy/Recovery Approach

- Pick a strategy matrix S
 - Compute z = Sx + v noise vector

strategy on data

- Find R so that Q = RS
- Return y = Rz = Qx + Rv as the set of answers
- Accuracy given by var(y) = var(Rv)

- Strategies used in prior work:
 - Q: Query Matrix
 - I: Identity Matrix
 - **C: Selected Marginals**

- F: Fourier Transform Matrix
- H: Haar Wavelets
- P: Random projections

Step 2: Error Minimization

- Step 1: Fix strategy S for efficiency reasons
- Given Q, R, S, ε want to find a set of values $\{\varepsilon_i\}$
 - Noise vector v has noise in entry i with variance $1/\epsilon_i^2$

 Yields an optimization problem of the form: Minimize ∑_i b_i / ε_i² (minimize variance) Subject to ∑_i | S_{i,j} | ε_i ≤ ε ∀ users j (guarantees ε differential privacy)

- The optimization is convex, can solve via interior point methods
 - Costly when S is large
 - We seek an efficient closed form for common strategies

Grouping Approach

- We observe that many strategies S can be broken into groups that behave in a symmetrical way
 - Rows in a group are disjoint (have zero inner product)
 - Non-zero values in group i have same magnitude C_i
- All common strategies meet this grouping condition
 - Identity (I), Fourier (F), Marginals (C), Projections (P), Wavelets (H)
- Simplifies the optimization:
 - A single constraint over the ε_i 's
 - New constraint: $\sum_{\text{Groups i}} C_i \varepsilon_i = \varepsilon$
 - Closed form solution via Lagrangian

$\left(\frac{1}{2\sqrt{2}}\right)$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$
$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2\sqrt{2}}$	$-\frac{1}{2\sqrt{2}}$	$-\frac{1}{2\sqrt{2}}$	$-\frac{1}{2\sqrt{2}}$	$-\frac{1}{2\sqrt{2}}$
$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0
0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0	0	0
0	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0
0	0	0	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0
1 0	0	0	0	0	0	1	$-\frac{1}{\sqrt{2}}$

Step 3: Optimal Recovery Matrix

- Given Q, S, {ε_i}, find R so that Q=RS
 - Minimize the variance Var(Rz) = Var(RSx + Rv) = Var(Rv)
- Find an optimal solution by adapting Least Squares method
- This finds x' as an estimate of x given z = Sx + v
 - Define $\Sigma = \text{Cov}(z) = \text{diag}(2/\epsilon_i^2)$ and $U = \Sigma^{-1/2} S$
 - OLS solution is $x' = (U^T U)^{-1} U^T \Sigma^{-1/2} z$
- Then R = Q(S^T Σ^{-1} S)⁻¹ S^T Σ^{-1}
- Result: y = Rz = Qx' is consistent—corresponds to queries on x'
 - R minimizes the variance
- $_{10}$ Special case: S is orthonormal basis (S^T = S⁻¹) then R=QS^T

Experimental Study

- Used two real data sets:
 - ADULT data census data on 32K individuals (7 attributes)
 - NLTCS data- binary data on 21K individuals (16 attribues)
- Tried a variety of query workloads Q over these
 - Based on low-order k-way marginals (1-3-way)
- Compared the original and optimized strategies for:
 - Original queries, Q/Q⁺
 - Fourier strategy F/F⁺ [Barak et al. 07]
 - Clustered sets of marginals C/C⁺ [Ding et al. 11]
 - Identity basis I

Experimental Results

- Optimized error gives constant factor improvement
- Time cost for the optimization is negligible on this data

Overall Process

- Ideal version: given query matrix Q, compute strategy S, recovery R and noise budget {ε_i} to minimize Var(y)
 - Not practical: sets up a rank-constrained SDP [Li et al., PODS'10]
 - Follow the 3-step process instead
- **1**. Fix S
- 2. Given query matrix Q, strategy S, compute optimal noise budgets $\{\epsilon_i\}$ to minimize Var(y)
- Given query matrix Q, strategy S and noise budgets {ε_i}, compute new recovery matrix R to minimize Var(y)

Advantages

- Best on datasets with many individuals (no dependence on how many)
- Best on large datasets (for small datasets, use [Li et al.])
- Best realtively small queyr workloads (for large query workloads, use multiplicative weights [Hardt, Ligett Mcsherry'12])
- Fairly fast (matrix multiplications and inversions)
 - Faster when S is e.g. Fourier, since can use FFT
 - Adds negligible computational overhead to the computation of queries themselves