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We consider one-way communication:

» 2 deterministic players: Alice has input a and Bob input b
* Joint function f

* Alice sends a message to Bob, Bob tries to output f(a, b)
a

Ex: x,y € {0,1}", want to output x - y
Want small communication from Alice to Bob

f(a,b)

b
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COMMUNICATION MODEL

We consider product distribution u X v over Alice X Bob's inputs

Goal: Compute f(a, b) for all but § (u X v)-fraction of inputs while
minimizing size of Alice’s longest message

Our goal: Lower bound one-way product complexity
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D, xvs(f) = minimum communication over all §-error protocols

One-way product complexity
Dy s(f) = max D, s(f) over product distributions
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We can see the rows of matrix f as a metric space:
 Each row is 0-1 vector
* Use weighted hamming distance, weighted by distribution v

f
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Ex: dist(row(al),row(aZ)) = v(b2) + v(b5)

a4
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ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of f

metric space
view:

f
al al
, protocol ,
a a
>
a3 a3
ad ad
bl b2 b3 b4 b5 bl b2 b3 b4 b5

protocol produces
approximate row a’

on Alice’s input a1



ROWS AS METRIC SPACE (2/2)

ldea for lower bound:

If protocol has low error (orange points close to green)
and rows of f are far apart...

= can use protocol’s output to recover Alice’s input

= protocol reveals a lot of information

= protocol has large communication!

metric space
view:
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LOWER BOUND VIA CODES

First result: Suppose the rows of f form a (6, )-code
(far apart). Then

1
Dsvs(f) = 1ogE

Def: Rows form (6, f)-code if the probability (wrt i) that
rows are within distance ¢ is at most

Obs: Readily recovers lower bound of Dasgupta-Kumar-
Sivakumar ‘12 on Sparse Set Disjointness function
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CONSEQUENCE 1: VC DIMENSION

Obs: Connection (a, f)-codes = packing numbers = VC-dim

Kremer-Nisan-Ron ‘99 characterizes one-way product complexity
via VC dimension of rows, for constant error §

Thm: [KNRgg] Let VC be the VC-dimension of rows of f. Then

VC * (1 = H(5)) <Dys(f) <VC=*0 (%logg)

We get exponential improvement wrt error 6

Thm: VC x (1 — H(S)) <Dys(f) SVC*0 <10g%>
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Now Alice and Bob want to compute a composed function:

g(f(ap by), f(az, by), ..., f(an, bn))

Ex: g = XOR, ¢

Similar to noise sensitivity of g:

CH R ye ~ probability that g's output changes if we flip
o salilalle=iite inputs with probability 6

Thm (oversimplified): Suppose the rov , of f form a (8, B)-
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Thm (oversimplified): If the rows of f form a (6, §)-code then
computing g(f) with error NS5(g) requires communication:

p

1
Dy nss)(g(f)) =n*Q (108 _)

Ex: If g = XOR on n bits, NS1(g) = -

The theorem then gives a stronger direct sum result for XOR
(need to solve each “copy” of f with much higher probability)

Corollary: For any function f

Dy1/a(XOR(f)) =1 %D_1(f)
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Approximate closest pair £,,(n,d, M, €, 0):
Given one pass over a stream v, ... v, of vectors in
[+M]9 decide whether:

. 1P
1. Foralli # j it holds that “v‘ — U]H > (1+¢€)6
p
| Y
2. There existi # j such that “v‘ — vf” <(1-¢€)6
p
Theorem (simplified):

Any streaming algorithms for approximate closest pair
problem fp(n, d,M, e, 0) with error § takes space:

n n
Q (EIOgE (logd + log M))
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CONSEQUENCE 4: SKETCHING

Approximate largest entry in matrix product:

Given one pass over a stream representing entries of a
matrix A € [+ M|™*™ construct an n X d sketch matrix
S such that for any B € [+ M]™*™ from AS and B only
it is possible to compute whether:

1. (AB);; = (1 +€)0forsomei,j € [n]
2. (AB);; < Oforalli,j € [n]

Theorem (simplified):
Number of bits to specify linear sketch AS:

n n
Q (EIOgE (logd + log M))
(matching upper bounds for this and streaming via JL).
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