Amplification of One-Way Information Complexity via Codes and Noise Sensitivity

Presenter: Omri Weinstein (NYU)

Marco Molinaro David Woodruff Grigory Yaroslavtsev
TU Delft
IBM Almaden
U. Penn

COMMUNICATION MODEL

We consider one-way communication:

- 2 deterministic players: Alice has input a and Bob input b
- Joint function f

COMMUNICATION MODEL

We consider one-way communication:

- 2 deterministic players: Alice has input a and Bob input b
- Joint function f
- Alice sends a message to Bob, Bob tries to output $f(a, b)$

COMMUNICATION MODEL

We consider one-way communication:

- 2 deterministic players: Alice has input a and Bob input b
- Joint function f
- Alice sends a message to Bob, Bob tries to output $f(a, b)$

Ex: $x, y \in\{0,1\}^{n}$, want to output $x \stackrel{?}{=} y$

COMMUNICATION MODEL

We consider one-way communication:

- 2 deterministic players: Alice has input a and Bob input b
- Joint function f
- Alice sends a message to Bob, Bob tries to output $f(a, b)$

Ex: $x, y \in\{0,1\}^{n}$, want to output $x \stackrel{?}{=} y$
Want small communication from Alice to Bob

COMMUNICATION MODEL

We consider product distribution $\mu \times v$ over Alice \times Bob's inputs

COMMUNICATION MODEL

We consider product distribution $\mu \times v$ over Alice \times Bob's inputs
Goal: Compute $f(a, b)$ for all but $\delta(\mu \times v)$-fraction of inputs while minimizing size of Alice's longest message

COMMUNICATION MODEL

We consider product distribution $\mu \times v$ over Alice \times Bob's inputs
Goal: Compute $f(a, b)$ for all but $\delta(\mu \times v)$-fraction of inputs while minimizing size of Alice's longest message

COMMUNICATION MODEL

We consider product distribution $\mu \times v$ over Alice \times Bob's inputs
Goal: Compute $f(a, b)$ for all but $\delta(\mu \times v)$-fraction of inputs while minimizing size of Alice's longest message

$D_{\mu \times v, \delta}(f)=$ minimum communication over all δ-error protocols

COMMUNICATION MODEL

We consider product distribution $\mu \times v$ over Alice \times Bob's inputs
Goal: Compute $f(a, b)$ for all but $\delta(\mu \times v)$-fraction of inputs while minimizing size of Alice's longest message

$D_{\mu \times v, \delta}(f)=$ minimum communication over all δ-error protocols
One-way product complexity
$D_{\times, \delta}(f)=\max D_{\mu \times v, \delta}(f)$ over product distributions

COMMUNICATION MODEL

We consider product distribution $\mu \times v$ over Alice \times Bob's inputs
Goal: Compute $f(a, b)$ for all but $\delta(\mu \times v)$-fraction of inputs while minimizing size of Alice's longest message

Our goal: Lower bound one-way product complexity

$$
\begin{array}{lccccc}
\text { a4 } \begin{array}{cc}
1 & 0 \\
& 0 \\
\text { b1 } & \text { b2 }
\end{array} \text { b3 } & \text { b4 } & \text { b5 }
\end{array}
$$

$D_{\mu \times v, \delta}(f)=$ minimum communication over all δ-error protocols
One-way product complexity
$D_{\times, \delta}(f)=\max D_{\mu \times v, \delta}(f)$ over product distributions

ROWS AS METRIC SPACE (1/2)

We can see the rows of matrix f as a metric space:

- Each row is 0-1 vector
- Use weighted hamming distance, weighted by distribution v

ROWS AS METRIC SPACE (1/2)

We can see the rows of matrix f as a metric space:

- Each row is 0-1 vector
- Use weighted hamming distance, weighted by distribution v

ROWS AS METRIC SPACE (1/2)

We can see the rows of matrix f as a metric space:

- Each row is 0-1 vector
- Use weighted hamming distance, weighted by distribution v

metric space view of f :

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of f

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of f

metric space view:

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of f

metric space view:

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of f

metric space view:

ROWS AS METRIC SPACE (2/2)

Idea for lower bound:

If protocol has low error (orange points close to green) and rows of f are far apart...
\Rightarrow can use protocol's output to recover Alice's input
\Rightarrow protocol reveals a lot of information
\Rightarrow protocol has large communication!
metric space view:

protocol produces approximate row a1

LOWER BOUND VIA CODES

First result: Suppose the rows of f form a (δ, β)-code (far apart). Then

$$
D_{\mu \times v, \delta}(f) \geq \log \frac{1}{\beta}
$$

LOWER BOUND VIA CODES

First result: Suppose the rows of f form a (δ, β)-code (far apart). Then

$$
D_{\mu \times v, \delta}(f) \geq \log \frac{1}{\beta}
$$

Def: Rows form (δ, β)-code if the probability (wrt μ) that rows are within distance δ is at most β

LOWER BOUND VIA CODES

First result: Suppose the rows of f form a (δ, β)-code (far apart). Then

$$
D_{\mu \times v, \delta}(f) \geq \log \frac{1}{\beta}
$$

Def: Rows form (δ, β)-code if the probability (wrt μ) that rows are within distance δ is at most β

Obs: Readily recovers lower bound of Dasgupta-KumarSivakumar '12 on Sparse Set Disjointness function

CONSEQUENCE 1: VC DIMENSION

CONSEQUENCE 1: VC DIMENSION

Obs: Connection (α, β)-codes \approx packing numbers $\approx \mathrm{VC}$-dim

CONSEQUENCE 1: VC DIMENSION

Obs: Connection (α, β)-codes \approx packing numbers \approx VC-dim
Kremer-Nisan-Ron '99 characterizes one-way product complexity via VC dimension of rows, for constant error δ

CONSEQUENCE 1: VC DIMENSION

Obs: Connection (α, β)-codes \approx packing numbers $\approx \mathrm{VC}$-dim
Kremer-Nisan-Ron '99 characterizes one-way product complexity via VC dimension of rows, for constant error δ

Thm: [KNRgg] Let VC be the VC-dimension of rows of f. Then

$$
V C *(1-H(\delta)) \leq D_{\times, \delta}(f) \leq V C * O\left(\frac{1}{\delta} \log \frac{1}{\delta}\right)
$$

CONSEQUENCE 1: VC DIMENSION

Obs: Connection (α, β)-codes \approx packing numbers $\approx \mathrm{VC}$-dim
Kremer-Nisan-Ron '99 characterizes one-way product complexity via VC dimension of rows, for constant error δ

Thm: [KNRgg] Let VC be the VC-dimension of rows of f. Then

$$
V C *(1-H(\delta)) \leq D_{\times, \delta}(f) \leq V C * O\left(\frac{1}{\delta} \log \frac{1}{\delta}\right)
$$

We get exponential improvement wrt error δ

CONSEQUENCE 1: VC DIMENSION

Obs: Connection (α, β)-codes \approx packing numbers $\approx \mathrm{VC}$-dim
Kremer-Nisan-Ron '99 characterizes one-way product complexity via VC dimension of rows, for constant error δ

Thm: [KNRgg] Let VC be the VC-dimension of rows of f. Then

$$
V C *(1-H(\delta)) \leq D_{\times, \delta}(f) \leq V C * O\left(\frac{1}{\delta} \log \frac{1}{\delta}\right)
$$

We get exponential improvement wrt error δ

$$
\text { Thm: } V C *(1-H(\delta)) \leq D_{x, \delta}(f) \leq V C * O\left(\log \frac{1}{\delta}\right)
$$

CONSEQUENCE 2: COMPOSITION

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

$$
g\left(f\left(a_{1}, b_{1}\right), f\left(a_{2}, b_{2}\right), \ldots, f\left(a_{n}, b_{n}\right)\right)
$$

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

$$
g\left(f\left(a_{1}, b_{1}\right), f\left(a_{2}, b_{2}\right), \ldots, f\left(a_{n}, b_{n}\right)\right)
$$

$E x: g=X O R, g=A N D, g=O R$

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

$$
g\left(f\left(a_{1}, b_{1}\right), f\left(a_{2}, b_{2}\right), \ldots, f\left(a_{n}, b_{n}\right)\right)
$$

$E x: g=X O R, g=A N D, g=O R$
(α, β)-codes give generic way for lower bounding the communication for composed function $g(f)$ based on f and g

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

$$
g\left(f\left(a_{1}, b_{1}\right), f\left(a_{2}, b_{2}\right), \ldots, f\left(a_{n}, b_{n}\right)\right)
$$

$E x: g=X O R, g=A N D, g=O R$
(α, β)-codes give generic way for lower bounding the communication for composed function $g(f)$ based on f and g

Thm (oversimplified): Suppose the rows of f form a (δ, β) code. Then computing $g(f)$ with error $N S_{\delta}(g)$ needs comm.

$$
D_{\times, N S_{\delta}(g)}(g(f)) \geq n * \Omega\left(\log \frac{1}{\beta}\right)
$$

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

$$
g\left(f\left(a_{1}, b_{1}\right), f\left(a_{2}, b_{2}\right), \ldots, f\left(a_{n}, b_{n}\right)\right)
$$

Ex: $g=$ XOR, Similar to noise sensitivity of g :
(α, β)-codes $\mathrm{g} \approx$ probability that g^{\prime} 's output changes if we flip communicatio inputs with probability δ

Thm (oversimplified): Suppose the rol of f form a (δ, β) code. Then computing $g(f)$ with error $N S_{\delta}(g)$ needs comm.

$$
D_{\times, N S_{\delta}(g)}(g(f)) \geq n * \Omega\left(\log \frac{1}{\beta}\right)
$$

CONSEQUENCE 2: COMPOSITION

Thm (oversimplified): If the rows of f form a (δ, β)-code then computing $g(f)$ with error $N S_{\delta}(g)$ requires communication:

$$
D_{\chi, N S_{\delta}(g)}(g(f)) \geq n * \Omega\left(\log \frac{1}{\beta}\right)
$$

CONSEQUENCE 2: COMPOSITION

Thm (oversimplified): If the rows of f form a (δ, β)-code then computing $g(f)$ with error $N S_{\delta}(g)$ requires communication:

$$
D_{X, N S_{\delta}(g)}(g(f)) \geq n * \Omega\left(\log \frac{1}{\beta}\right)
$$

Ex: If $\mathrm{g}=\mathrm{XOR}$ on n bits, $N S_{\frac{1}{n}}(g)=\frac{1}{4}$

CONSEQUENCE 2: COMPOSITION

Thm (oversimplified): If the rows of f form a (δ, β)-code then computing $g(f)$ with error $N S_{\delta}(g)$ requires communication:

$$
D_{X, N S_{\delta}(g)}(g(f)) \geq n * \Omega\left(\log \frac{1}{\beta}\right)
$$

Ex: If $\mathrm{g}=\mathrm{XOR}$ on n bits, $N S_{\frac{1}{n}}(g)=\frac{1}{4}$
The theorem then gives a stronger direct sum result for XOR (need to solve each "copy" of f with much higher probability)

CONSEQUENCE 2: COMPOSITION

Thm (oversimplified): If the rows of f form a (δ, β)-code then computing $g(f)$ with error $N S_{\delta}(g)$ requires communication:

$$
D_{\chi, N S_{\delta}(g)}(g(f)) \geq n * \Omega\left(\log \frac{1}{\beta}\right)
$$

Ex: If $\mathrm{g}=\mathrm{XOR}$ on n bits, $N S_{\frac{1}{n}}(g)=\frac{1}{4}$
The theorem then gives a stronger direct sum result for XOR (need to solve each "copy" of f with much higher probability)

Corollary: For any function f

$$
D_{x, 1 / 4}(X O R(f)) \geq n * D_{\times, \frac{1}{n}}(f)
$$

CONSEQUENCE 3: STREAMING

CONSEQUENCE 3: STREAMING

Approximate closest pair $\ell_{p}(\boldsymbol{n}, \boldsymbol{d}, \boldsymbol{M}, \boldsymbol{\epsilon}, \boldsymbol{\theta})$:

CONSEQUENCE 3: STREAMING

Approximate closest pair $\ell_{p}(\boldsymbol{n}, \boldsymbol{d}, \boldsymbol{M}, \boldsymbol{\epsilon}, \boldsymbol{\theta})$:
Given one pass over a stream $v_{1} \ldots v_{n}$ of vectors in $[\pm \boldsymbol{M}]^{d}$ decide whether:

1. For all $i \neq j$ it holds that $\left|\left|v^{i}-v^{j}\right|_{p}^{p} \geq(1+\boldsymbol{\epsilon}) \theta\right.$
2. There exist $i \neq j$ such that $\left|\left|v^{i}-v^{j}\right|_{p}^{p} \leq(1-\boldsymbol{\epsilon}) \theta\right.$

CONSEQUENCE 3: STREAMING

Approximate closest pair $\ell_{p}(\boldsymbol{n}, \boldsymbol{d}, \boldsymbol{M}, \boldsymbol{\epsilon}, \boldsymbol{\theta})$:
Given one pass over a stream $v_{1} \ldots v_{n}$ of vectors in $[\pm \boldsymbol{M}]^{d}$ decide whether:

1. For all $i \neq j$ it holds that $\left|\left|v^{i}-v^{j}\right|_{p}^{p} \geq(1+\boldsymbol{\epsilon}) \theta\right.$
2. There exist $i \neq j$ such that $\left|\left|v^{i}-v^{j}\right|_{p}^{p} \leq(1-\boldsymbol{\epsilon}) \theta\right.$

Theorem (simplified):
Any streaming algorithms for approximate closest pair problem $\ell_{\boldsymbol{p}}(\boldsymbol{n}, \boldsymbol{d}, \boldsymbol{M}, \boldsymbol{\epsilon}, \boldsymbol{\theta})$ with error δ takes space:

$$
\Omega\left(\frac{\boldsymbol{n}}{\boldsymbol{\epsilon}^{2}} \log \frac{\boldsymbol{n}}{\delta}(\log \boldsymbol{d}+\log \boldsymbol{M})\right)
$$

CONSEQUENCE 4: SKETCHING

CONSEQUENCE 4: SKETCHING

Approximate largest entry in matrix product:

CONSEQUENCE 4: SKETCHING

Approximate largest entry in matrix product:
Given one pass over a stream representing entries of a matrix $\boldsymbol{A} \in[\pm \boldsymbol{M}]^{\boldsymbol{n} \times \boldsymbol{n}}$ construct an $\boldsymbol{n} \times \boldsymbol{d}$ sketch matrix S such that for any $\boldsymbol{B} \in[\pm \boldsymbol{M}]^{n \times n}$ from $A S$ and B only it is possible to compute whether:

1. $(\boldsymbol{A B})_{i j} \geq(1+\boldsymbol{\epsilon}) \theta$ for some $i, j \in[n]$
2. $(\boldsymbol{A B})_{i j} \leq \theta$ for all $i, j \in[n]$

CONSEQUENCE 4: SKETCHING

Approximate largest entry in matrix product:
Given one pass over a stream representing entries of a matrix $\boldsymbol{A} \in[\pm \boldsymbol{M}]^{\boldsymbol{n} \times \boldsymbol{n}}$ construct an $\boldsymbol{n} \times \boldsymbol{d}$ sketch matrix S such that for any $\boldsymbol{B} \in[\pm \boldsymbol{M}]^{n \times n}$ from $A S$ and B only it is possible to compute whether:

1. $(\boldsymbol{A B})_{i j} \geq(1+\boldsymbol{\epsilon}) \theta$ for some $i, j \in[n]$
2. $(\boldsymbol{A B})_{i j} \leq \theta$ for all $i, j \in[n]$

Theorem (simplified):
Number of bits to specify linear sketch $A S$:

$$
\Omega\left(\frac{\boldsymbol{n}}{\boldsymbol{\epsilon}^{2}} \log \frac{\boldsymbol{n}}{\delta}(\log \boldsymbol{d}+\log \boldsymbol{M})\right)
$$

(matching upper bounds for this and streaming via JL).

THANK YOU!

