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We consider one-way communication: 

• 2 deterministic players: Alice has input 𝑎 and Bob input 𝑏 

• Joint function 𝑓 

Alice sends a message to Bob, Bob tries to output 𝑓(𝑎, 𝑏)  
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We consider product distribution 𝜇 × 𝜈 over Alice × Bob’s inputs 

Goal: Compute 𝑓(𝑎, 𝑏) for all but 𝛿 (𝜇 × 𝜈)-fraction of inputs while 

minimizing size of Alice’s longest message 

 
 

 

 

 

𝐷𝜇×𝜈,𝛿 𝑓 = minimum communication over all 𝛿-error protocols 

One-way product complexity 

    𝐷×,𝛿 𝑓 = max 𝐷𝜇×𝜈,𝛿 𝑓  over product distributions 
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ROWS AS METRIC SPACE (1/2) 

We can see the rows of matrix 𝑓 as a metric space: 

• Each row is 0-1 vector 

• Use weighted hamming distance, weighted by distribution 𝜈 
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Idea for lower bound: 

If protocol has low error (orange points close to green) 
and rows of 𝑓 are far apart…  

⇒ can use protocol’s output to recover Alice’s input 

⇒ protocol reveals a lot of information 

⇒ protocol has large communication! 
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Similar to noise sensitivity of 𝑔: 

≈ probability that 𝑔’s output changes if we flip 
inputs with probability 𝛿 
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Corollary: For any function f 

𝐷×,1/4 𝑋𝑂𝑅(𝑓) ≥ 𝑛 ∗ 𝐷
×,

1
𝑛

(𝑓)  



CONSEQUENCE 3: STREAMING 



CONSEQUENCE 3: STREAMING 

Approximate closest pair ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽): 

Given one pass over a stream 𝑣1 … 𝑣𝒏 of vectors in 

±𝑴 𝒅 decide whether: 

1. For all 𝑖 ≠ 𝑗 it holds that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≥ 1 + 𝝐 𝜃 

2. There exist 𝑖 ≠ 𝑗 such that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≤ 1 − 𝝐 𝜃 

 
Theorem (simplified): 
Any streaming algorithms for approximate closest pair 
problem  ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽) with error 𝛿 takes space: 

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)  



CONSEQUENCE 3: STREAMING 

Approximate closest pair ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽): 

Given one pass over a stream 𝑣1 … 𝑣𝒏 of vectors in 

±𝑴 𝒅 decide whether: 

1. For all 𝑖 ≠ 𝑗 it holds that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≥ 1 + 𝝐 𝜃 

2. There exist 𝑖 ≠ 𝑗 such that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≤ 1 − 𝝐 𝜃 

 
Theorem (simplified): 
Any streaming algorithms for approximate closest pair 
problem  ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽) with error 𝛿 takes space: 

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)  



CONSEQUENCE 3: STREAMING 

Approximate closest pair ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽): 

Given one pass over a stream 𝑣1 … 𝑣𝒏 of vectors in 

±𝑴 𝒅 decide whether: 

1. For all 𝑖 ≠ 𝑗 it holds that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≥ 1 + 𝝐 𝜃 

2. There exist 𝑖 ≠ 𝑗 such that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≤ 1 − 𝝐 𝜃 

 
Theorem (simplified): 
Any streaming algorithms for approximate closest pair 
problem  ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽) with error 𝛿 takes space: 

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)  
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Approximate  largest entry in matrix product: 
Given one pass over a stream representing entries of a 
matrix 𝑨 ∈ ±𝑴 𝒏×𝒏 construct an 𝒏 × 𝒅 sketch matrix 
𝑺 such that for any 𝑩 ∈ ±𝑴 𝒏×𝒏 from 𝑨𝑺 and B only 
it is possible to compute whether: 

 
1. 𝑨𝑩 𝑖𝑗 ≥ 1 + 𝝐 𝜃 for some 𝑖, 𝑗 ∈ 𝑛  

2. 𝑨𝑩 𝑖𝑗 ≤ 𝜃 for all 𝑖, 𝑗 ∈ 𝑛  

 
Theorem (simplified): 
Number of bits to specify linear sketch 𝐴𝑆: 

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)  

(matching upper b0unds for this and streaming via JL). 
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THANK YOU! 


