
Amplification of One-Way Information

Complexity via Codes and Noise Sensitivity

Marco Molinaro David Woodruff Grigory Yaroslavtsev

 TU Delft IBM Almaden U. Penn

Presenter: Omri Weinstein (NYU)

We consider one-way communication:

• 2 deterministic players: Alice has input 𝑎 and Bob input 𝑏

• Joint function 𝑓

Alice sends a message to Bob, Bob tries to output 𝑓(𝑎, 𝑏)

Ex: 𝑥, 𝑦 ∈ 0,1 𝑛, want to output 𝑥 = 𝑦

Want small communication from Alice to Bob

Alice Bob

𝑎 𝑏

?

COMMUNICATION MODEL

We consider one-way communication:

• 2 deterministic players: Alice has input 𝑎 and Bob input 𝑏

• Joint function 𝑓

• Alice sends a message to Bob, Bob tries to output 𝑓(𝑎, 𝑏)

Ex: 𝑥, 𝑦 ∈ 0,1 𝑛, want to output 𝑥 = 𝑦

Want small communication from Alice to Bob

Alice Bob

𝑎 𝑏

?

𝑓(𝑎, 𝑏)

COMMUNICATION MODEL

We consider one-way communication:

• 2 deterministic players: Alice has input 𝑎 and Bob input 𝑏

• Joint function 𝑓

• Alice sends a message to Bob, Bob tries to output 𝑓(𝑎, 𝑏)

Ex: 𝑥, 𝑦 ∈ 0,1 𝑛, want to output 𝑥 = 𝑦

Want small communication from Alice to Bob

Alice Bob

𝑎 𝑏

?

𝑓(𝑎, 𝑏)

COMMUNICATION MODEL

We consider one-way communication:

• 2 deterministic players: Alice has input 𝑎 and Bob input 𝑏

• Joint function 𝑓

• Alice sends a message to Bob, Bob tries to output 𝑓(𝑎, 𝑏)

Ex: 𝑥, 𝑦 ∈ 0,1 𝑛, want to output 𝑥 = 𝑦

Want small communication from Alice to Bob

Alice Bob

𝑎 𝑏

?

𝑓(𝑎, 𝑏)

COMMUNICATION MODEL

We consider product distribution 𝜇 × 𝜈 over Alice × Bob’s inputs

Goal: Compute 𝑓(𝑎, 𝑏) for all but 𝛿 (𝜇 × 𝜈)-fraction of inputs while

minimizing size of Alice’s longest message

𝐷𝜇×𝜈,𝛿 𝑓 = minimum communication over all 𝛿-error protocols

One-way product complexity

 𝐷×,𝛿 𝑓 = max 𝐷𝜇×𝜈,𝛿 𝑓 over product distributions

COMMUNICATION MODEL

We consider product distribution 𝜇 × 𝜈 over Alice × Bob’s inputs

Goal: Compute 𝑓(𝑎, 𝑏) for all but 𝛿 (𝜇 × 𝜈)-fraction of inputs while

minimizing size of Alice’s longest message

𝐷𝜇×𝜈,𝛿 𝑓 = minimum communication over all 𝛿-error protocols

One-way product complexity

 𝐷×,𝛿 𝑓 = max 𝐷𝜇×𝜈,𝛿 𝑓 over product distributions

COMMUNICATION MODEL

We consider product distribution 𝜇 × 𝜈 over Alice × Bob’s inputs

Goal: Compute 𝑓(𝑎, 𝑏) for all but 𝛿 (𝜇 × 𝜈)-fraction of inputs while

minimizing size of Alice’s longest message

𝐷𝜇×𝜈,𝛿 𝑓 = minimum communication over all 𝛿-error protocols

One-way product complexity

 𝐷×,𝛿 𝑓 = max 𝐷𝜇×𝜈,𝛿 𝑓 over product distributions

matrix view:

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

function 𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

COMMUNICATION MODEL

We consider product distribution 𝜇 × 𝜈 over Alice × Bob’s inputs

Goal: Compute 𝑓(𝑎, 𝑏) for all but 𝛿 (𝜇 × 𝜈)-fraction of inputs while

minimizing size of Alice’s longest message

𝐷𝜇×𝜈,𝛿 𝑓 = minimum communication over all 𝛿-error protocols

One-way product complexity

 𝐷×,𝛿 𝑓 = max 𝐷𝜇×𝜈,𝛿 𝑓 over product distributions

matrix view:

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

function 𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

COMMUNICATION MODEL

We consider product distribution 𝜇 × 𝜈 over Alice × Bob’s inputs

Goal: Compute 𝑓(𝑎, 𝑏) for all but 𝛿 (𝜇 × 𝜈)-fraction of inputs while

minimizing size of Alice’s longest message

𝐷𝜇×𝜈,𝛿 𝑓 = minimum communication over all 𝛿-error protocols

One-way product complexity

 𝐷×,𝛿 𝑓 = max 𝐷𝜇×𝜈,𝛿 𝑓 over product distributions

matrix view:

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

function 𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

COMMUNICATION MODEL

We consider product distribution 𝜇 × 𝜈 over Alice × Bob’s inputs

Goal: Compute 𝑓(𝑎, 𝑏) for all but 𝛿 (𝜇 × 𝜈)-fraction of inputs while

minimizing size of Alice’s longest message

𝐷𝜇×𝜈,𝛿 𝑓 = minimum communication over all 𝛿-error protocols

One-way product complexity

 𝐷×,𝛿 𝑓 = max 𝐷𝜇×𝜈,𝛿 𝑓 over product distributions

matrix view:

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

function 𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

Our goal: Lower bound one-way product complexity

COMMUNICATION MODEL

ROWS AS METRIC SPACE (1/2)

We can see the rows of matrix 𝑓 as a metric space:

• Each row is 0-1 vector

• Use weighted hamming distance, weighted by distribution 𝜈

𝑓

a1

a2

a3

a4

b1 b2 b3 b4 b5

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

ROWS AS METRIC SPACE (1/2)

We can see the rows of matrix 𝑓 as a metric space:

• Each row is 0-1 vector

• Use weighted hamming distance, weighted by distribution 𝜈

Ex: 𝑑𝑖𝑠𝑡 𝑟𝑜𝑤 𝑎1 , 𝑟𝑜𝑤 𝑎2 = 𝜈 𝑏2 + 𝜈(𝑏5)

𝑓

a1

a2

a3

a4

b1 b2 b3 b4 b5

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

ROWS AS METRIC SPACE (1/2)

We can see the rows of matrix 𝑓 as a metric space:

• Each row is 0-1 vector

• Use weighted hamming distance, weighted by distribution 𝜈

Ex: 𝑑𝑖𝑠𝑡 𝑟𝑜𝑤 𝑎1 , 𝑟𝑜𝑤 𝑎2 = 𝜈 𝑏2 + 𝜈(𝑏5)

𝑑𝑖𝑠𝑡(,)

𝑓

a1

a2

a3

a4

b1 b2 b3 b4 b5

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

metric space

view of 𝑓:

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of 𝑓

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of 𝑓

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

metric space

view:

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of 𝑓

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

metric space

view:

on Alice’s input a1

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of 𝑓

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

metric space

view:

on Alice’s input a1

protocol produces

approximate row a1

ROWS AS METRIC SPACE (2/2)

Can think protocol provides approximation to the rows of 𝑓

0 1 1 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 1 0

a1

a2

a3

a4

𝑓

b1 b2 b3 b4 b5

protocol
0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

a1

a2

a3

a4

b1 b2 b3 b4 b5

metric space

view:

on Alice’s input a1

protocol produces

approximate row a1

Idea for lower bound:

If protocol has low error (orange points close to green)
and rows of 𝑓 are far apart…

⇒ can use protocol’s output to recover Alice’s input

⇒ protocol reveals a lot of information

⇒ protocol has large communication!

LOWER BOUND VIA CODES

First result: Suppose the rows of 𝑓 form a (𝛿, 𝛽)-code
(far apart). Then

𝐷𝜇×𝜈,𝛿 𝑓 ≥ log
1

𝛽

LOWER BOUND VIA CODES

First result: Suppose the rows of 𝑓 form a (𝛿, 𝛽)-code
(far apart). Then

Def: Rows form (𝛿, 𝛽)-code if the probability (wrt 𝜇) that
rows are within distance 𝛿 is at most 𝛽

𝐷𝜇×𝜈,𝛿 𝑓 ≥ log
1

𝛽

LOWER BOUND VIA CODES

First result: Suppose the rows of 𝑓 form a (𝛿, 𝛽)-code
(far apart). Then

Def: Rows form (𝛿, 𝛽)-code if the probability (wrt 𝜇) that
rows are within distance 𝛿 is at most 𝛽

Obs: Readily recovers lower bound of Dasgupta-Kumar-
Sivakumar ‘12 on Sparse Set Disjointness function

𝐷𝜇×𝜈,𝛿 𝑓 ≥ log
1

𝛽

CONSEQUENCE 1: VC DIMENSION

CONSEQUENCE 1: VC DIMENSION

Obs: Connection (𝛼, 𝛽)-codes ≈ packing numbers ≈ VC-dim

Kremer-Nisan-Ron ‘99 characterizes one-way product complexity

via VC dimension of rows, for constant error 𝛿

CONSEQUENCE 1: VC DIMENSION

Obs: Connection (𝛼, 𝛽)-codes ≈ packing numbers ≈ VC-dim

Kremer-Nisan-Ron ‘99 characterizes one-way product complexity

via VC dimension of rows, for constant error 𝛿

CONSEQUENCE 1: VC DIMENSION

Thm: [KNR99] Let VC be the VC-dimension of rows of 𝑓. Then

Obs: Connection (𝛼, 𝛽)-codes ≈ packing numbers ≈ VC-dim

Kremer-Nisan-Ron ‘99 characterizes one-way product complexity

via VC dimension of rows, for constant error 𝛿

𝑉𝐶 ∗ 1 − 𝐻 𝛿 ≤ 𝐷×,𝛿 𝑓 ≤ 𝑉𝐶 ∗ 𝑂
1

𝛿
log

1

𝛿

CONSEQUENCE 1: VC DIMENSION

Thm: [KNR99] Let VC be the VC-dimension of rows of 𝑓. Then

Obs: Connection (𝛼, 𝛽)-codes ≈ packing numbers ≈ VC-dim

Kremer-Nisan-Ron ‘99 characterizes one-way product complexity

via VC dimension of rows, for constant error 𝛿

𝑉𝐶 ∗ 1 − 𝐻 𝛿 ≤ 𝐷×,𝛿 𝑓 ≤ 𝑉𝐶 ∗ 𝑂
1

𝛿
log

1

𝛿

We get exponential improvement wrt error 𝛿

CONSEQUENCE 1: VC DIMENSION

Thm: 𝑉𝐶 ∗ 1 − 𝐻 𝛿 ≤ 𝐷×,𝛿 𝑓 ≤ 𝑉𝐶 ∗ 𝑂 log
1

𝛿

Thm: [KNR99] Let VC be the VC-dimension of rows of 𝑓. Then

Obs: Connection (𝛼, 𝛽)-codes ≈ packing numbers ≈ VC-dim

Kremer-Nisan-Ron ‘99 characterizes one-way product complexity

via VC dimension of rows, for constant error 𝛿

𝑉𝐶 ∗ 1 − 𝐻 𝛿 ≤ 𝐷×,𝛿 𝑓 ≤ 𝑉𝐶 ∗ 𝑂
1

𝛿
log

1

𝛿

We get exponential improvement wrt error 𝛿

CONSEQUENCE 2: COMPOSITION

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

Ex: g = XOR, g = AND, g = OR

(𝛼, 𝛽)-codes give generic way for lower bounding the

communication for composed function 𝑔(𝑓) based on 𝑓 and 𝑔

𝑔 𝑓 𝑎1, 𝑏1 , 𝑓 𝑎2, 𝑏2 , … , 𝑓 𝑎𝑛, 𝑏𝑛

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

Ex: g = XOR, g = AND, g = OR

(𝛼, 𝛽)-codes give generic way for lower bounding the

communication for composed function 𝑔(𝑓) based on 𝑓 and 𝑔

𝑔 𝑓 𝑎1, 𝑏1 , 𝑓 𝑎2, 𝑏2 , … , 𝑓 𝑎𝑛, 𝑏𝑛

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

Ex: g = XOR, g = AND, g = OR

(𝛼, 𝛽)-codes give generic way for lower bounding the

communication for composed function 𝑔(𝑓) based on 𝑓 and 𝑔

𝑔 𝑓 𝑎1, 𝑏1 , 𝑓 𝑎2, 𝑏2 , … , 𝑓 𝑎𝑛, 𝑏𝑛

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

Ex: g = XOR, g = AND, g = OR

(𝛼, 𝛽)-codes give generic way for lower bounding the

communication for composed function 𝑔(𝑓) based on 𝑓 and 𝑔

𝑔 𝑓 𝑎1, 𝑏1 , 𝑓 𝑎2, 𝑏2 , … , 𝑓 𝑎𝑛, 𝑏𝑛

Thm (oversimplified): Suppose the rows of 𝑓 form a (𝛿, 𝛽)-
code. Then computing 𝑔(𝑓) with error 𝑁𝑆𝛿(𝑔) needs comm.

𝐷×,𝑁𝑆𝛿(𝑔) 𝑔(𝑓) ≥ 𝑛 ∗ Ω log
1

𝛽

CONSEQUENCE 2: COMPOSITION

Now Alice and Bob want to compute a composed function:

Ex: g = XOR, g = AND, g = OR

(𝛼, 𝛽)-codes give generic way for lower bounding the

communication for composed function 𝑔(𝑓) based on 𝑓 and 𝑔

𝑔 𝑓 𝑎1, 𝑏1 , 𝑓 𝑎2, 𝑏2 , … , 𝑓 𝑎𝑛, 𝑏𝑛

Thm (oversimplified): Suppose the rows of 𝑓 form a (𝛿, 𝛽)-
code. Then computing 𝑔(𝑓) with error 𝑁𝑆𝛿(𝑔) needs comm.

𝐷×,𝑁𝑆𝛿(𝑔) 𝑔(𝑓) ≥ 𝑛 ∗ Ω log
1

𝛽

Similar to noise sensitivity of 𝑔:

≈ probability that 𝑔’s output changes if we flip
inputs with probability 𝛿

CONSEQUENCE 2: COMPOSITION

Thm (oversimplified): If the rows of 𝑓 form a (𝛿, 𝛽)-code then
computing 𝑔(𝑓) with error 𝑁𝑆𝛿(𝑔) requires communication:

𝐷×,𝑁𝑆𝛿(𝑔) 𝑔(𝑓) ≥ 𝑛 ∗ Ω log
1

𝛽

CONSEQUENCE 2: COMPOSITION

Ex: If g = XOR on 𝑛 bits, 𝑁𝑆1

𝑛

𝑔 =
1

4

The theorem then gives a stronger direct sum result for XOR

(need to solve each “copy” of 𝑓 with much higher probability)

Thm (oversimplified): If the rows of 𝑓 form a (𝛿, 𝛽)-code then
computing 𝑔(𝑓) with error 𝑁𝑆𝛿(𝑔) requires communication:

𝐷×,𝑁𝑆𝛿(𝑔) 𝑔(𝑓) ≥ 𝑛 ∗ Ω log
1

𝛽

CONSEQUENCE 2: COMPOSITION

Ex: If g = XOR on 𝑛 bits, 𝑁𝑆1

𝑛

𝑔 =
1

4

The theorem then gives a stronger direct sum result for XOR

(need to solve each “copy” of 𝑓 with much higher probability)

Thm (oversimplified): If the rows of 𝑓 form a (𝛿, 𝛽)-code then
computing 𝑔(𝑓) with error 𝑁𝑆𝛿(𝑔) requires communication:

𝐷×,𝑁𝑆𝛿(𝑔) 𝑔(𝑓) ≥ 𝑛 ∗ Ω log
1

𝛽

CONSEQUENCE 2: COMPOSITION

Ex: If g = XOR on 𝑛 bits, 𝑁𝑆1

𝑛

𝑔 =
1

4

The theorem then gives a stronger direct sum result for XOR

(need to solve each “copy” of 𝑓 with much higher probability)

Thm (oversimplified): If the rows of 𝑓 form a (𝛿, 𝛽)-code then
computing 𝑔(𝑓) with error 𝑁𝑆𝛿(𝑔) requires communication:

𝐷×,𝑁𝑆𝛿(𝑔) 𝑔(𝑓) ≥ 𝑛 ∗ Ω log
1

𝛽

Corollary: For any function f

𝐷×,1/4 𝑋𝑂𝑅(𝑓) ≥ 𝑛 ∗ 𝐷
×,

1
𝑛

(𝑓)

CONSEQUENCE 3: STREAMING

CONSEQUENCE 3: STREAMING

Approximate closest pair ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽):

Given one pass over a stream 𝑣1 … 𝑣𝒏 of vectors in

±𝑴 𝒅 decide whether:

1. For all 𝑖 ≠ 𝑗 it holds that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≥ 1 + 𝝐 𝜃

2. There exist 𝑖 ≠ 𝑗 such that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≤ 1 − 𝝐 𝜃

Theorem (simplified):
Any streaming algorithms for approximate closest pair
problem ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽) with error 𝛿 takes space:

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)

CONSEQUENCE 3: STREAMING

Approximate closest pair ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽):

Given one pass over a stream 𝑣1 … 𝑣𝒏 of vectors in

±𝑴 𝒅 decide whether:

1. For all 𝑖 ≠ 𝑗 it holds that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≥ 1 + 𝝐 𝜃

2. There exist 𝑖 ≠ 𝑗 such that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≤ 1 − 𝝐 𝜃

Theorem (simplified):
Any streaming algorithms for approximate closest pair
problem ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽) with error 𝛿 takes space:

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)

CONSEQUENCE 3: STREAMING

Approximate closest pair ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽):

Given one pass over a stream 𝑣1 … 𝑣𝒏 of vectors in

±𝑴 𝒅 decide whether:

1. For all 𝑖 ≠ 𝑗 it holds that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≥ 1 + 𝝐 𝜃

2. There exist 𝑖 ≠ 𝑗 such that 𝑣𝑖 − 𝑣𝑗

𝑝

𝑝
≤ 1 − 𝝐 𝜃

Theorem (simplified):
Any streaming algorithms for approximate closest pair
problem ℓ𝒑(𝒏, 𝒅, 𝑴, 𝝐, 𝜽) with error 𝛿 takes space:

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)

CONSEQUENCE 4: SKETCHING

CONSEQUENCE 4: SKETCHING

Approximate largest entry in matrix product:
Given one pass over a stream representing entries of a
matrix 𝑨 ∈ ±𝑴 𝒏×𝒏 construct an 𝒏 × 𝒅 sketch matrix
𝑺 such that for any 𝑩 ∈ ±𝑴 𝒏×𝒏 from 𝑨𝑺 and B only
it is possible to compute whether:

1. 𝑨𝑩 𝑖𝑗 ≥ 1 + 𝝐 𝜃 for some 𝑖, 𝑗 ∈ 𝑛

2. 𝑨𝑩 𝑖𝑗 ≤ 𝜃 for all 𝑖, 𝑗 ∈ 𝑛

Theorem (simplified):
Number of bits to specify linear sketch 𝐴𝑆:

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)

(matching upper b0unds for this and streaming via JL).

CONSEQUENCE 4: SKETCHING

Approximate largest entry in matrix product:
Given one pass over a stream representing entries of a
matrix 𝑨 ∈ ±𝑴 𝒏×𝒏 construct an 𝒏 × 𝒅 sketch matrix
𝑺 such that for any 𝑩 ∈ ±𝑴 𝒏×𝒏 from 𝑨𝑺 and B only
it is possible to compute whether:

1. 𝑨𝑩 𝑖𝑗 ≥ 1 + 𝝐 𝜃 for some 𝑖, 𝑗 ∈ 𝑛

2. 𝑨𝑩 𝑖𝑗 ≤ 𝜃 for all 𝑖, 𝑗 ∈ 𝑛

Theorem (simplified):
Number of bits to specify linear sketch 𝐴𝑆:

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)

(matching upper b0unds for this and streaming via JL).

CONSEQUENCE 4: SKETCHING

Approximate largest entry in matrix product:
Given one pass over a stream representing entries of a
matrix 𝑨 ∈ ±𝑴 𝒏×𝒏 construct an 𝒏 × 𝒅 sketch matrix
𝑺 such that for any 𝑩 ∈ ±𝑴 𝒏×𝒏 from 𝑨𝑺 and B only
it is possible to compute whether:

1. 𝑨𝑩 𝑖𝑗 ≥ 1 + 𝝐 𝜃 for some 𝑖, 𝑗 ∈ 𝑛

2. 𝑨𝑩 𝑖𝑗 ≤ 𝜃 for all 𝑖, 𝑗 ∈ 𝑛

Theorem (simplified):
Number of bits to specify linear sketch 𝐴𝑆:

Ω
𝒏

𝝐2
log

𝒏

𝛿
 (log 𝒅 + log 𝑴)

(matching upper b0unds for this and streaming via JL).

THANK YOU!

