Computational and Communication Complexity in Massively Parallel Computation

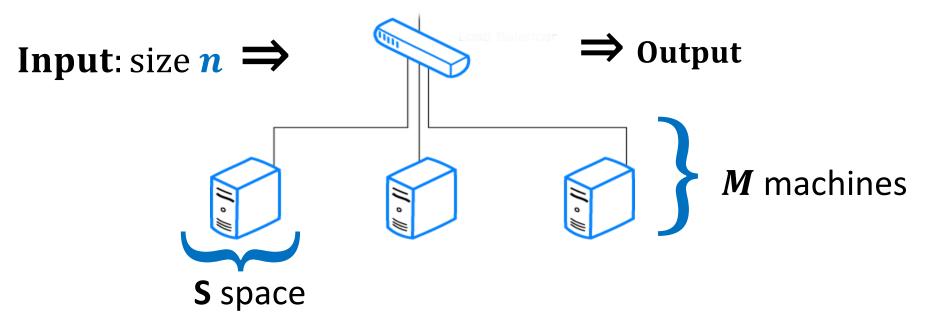
Grigory Yaroslavtsev (Indiana University, Bloomington) <u>http://grigory.us</u>

Cluster Computation (a la BSP)

- Input: size n (e.g. n = billions of edges in a graph)
- *M* Machines, *S* Space (RAM) each
 - Constant overhead in RAM: $M \cdot S = O(n)$

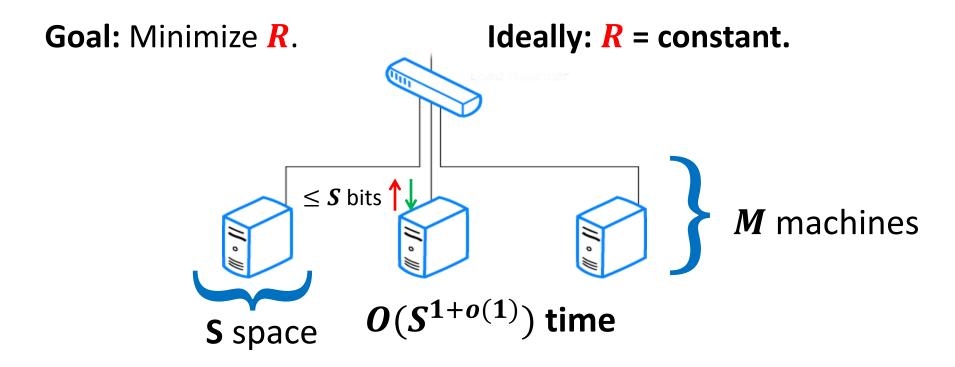
 $-S = n^{1-\epsilon}$, e.g. $\epsilon = 0.1$ or $\epsilon = 0.5$ ($M = S = O(\sqrt{n})$)

Output: solution to a problem (often size O(n))
 Doesn't fit in local RAM (S << n)



Cluster Computation (a la BSP)

- Computation/Communication in **R** rounds:
 - Every machine performs a near-linear time computation => Total user time O(S^{1+o(1)}R)
 - Every machine receives at most S bits of information => Total communication O(nR).



MapReduce-style computations

YAHOO! Google

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
 - Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM
 - Can be done in $O(\log_s n)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

- Bulk-Synchronous Parallel Model (BSP) [Valiant,90]
 Pro: Most general, generalizes all other models
 Con: Many parameters, hard to design algorithms
- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, Beame, Koutris, Suciu'13, Andoni, Onak, Nikolov, Y.'14]

Pros:

- Inspired by **modern** systems (MapReduce, Dryad, Spark, Giraph, ...)
- Few parameters, **simple** to design algorithms
- New algorithmic ideas, robust to the exact model specification
- # Rounds is an information-theoretic measure => can prove unconditional results

Con: sometimes not enough to model more complex behavior

Getting hands dirty

- Cloud computing platforms (all offer free trials):
 - Amazon EC2 (1 CPU/12mo)
 - Microsoft Azure (\$200/1mo)
 - Google Compute Engine (\$200/2mo)
- Distributed Google Code Jam
 - First time in 2015:

https://code.google.com/codejam/distributed_index.html

- Caveats:
 - Very basic aspects of distributed algorithms (few rounds)
 - Small data (~1 GB, with hundreds MB RAM)
 - Fast query access ($\sim 0.01 ms$ per request), "data with queries"

Business perspective

- Pricings:
 - <u>https://cloud.google.com/pricing/</u>
 - https://aws.amazon.com/pricing/
- ~Linear with space and time usage
 - 100 machines: 5K \$/year
 - 10000 machines: 0.5M \$/year
- You pay a lot more for using provided algorithms
 - <u>https://aws.amazon.com/machine-learning/pricing/</u>

100 x		6
100 X		Ø
73,000 total hours per month		
VM class: regular		
Instance type: f1-micro		
Region: United States		
Sustained Use Discount: 30% ?		
Effective Hourly Rate: \$0.0056		
Estimated Component Cose \$4,90	5.60 per 1 y	/ear
1000 x	1	8
730,000 total hours per month		
VM class: regular		
Instance type: f1-micro		
Region: United States		
Sustained Use Discount: 30% ?		
Effective Hourly Rate: \$0.0056		
Estimated Component Core: \$49,0	56.00 per 1	year
10000 x	1	0
7,300,000 total hours per month		
VM class: regular		
Instance type: f1-micro		
Region: United States		
Sustained Use Discount: 30% ?		

Sorting: Terasort

- Sort Benchmark: http://sortbenchmark.org/
- Sorting n keys on $M = O(n^{\epsilon})$ machines
 - Would like to partition keys uniformly into blocks: first n/M, second n/M, etc.
 - Sort the keys locally on each machine
- Build an approximate histogram:
 - Each machine takes a sample of size s
 - All $M * s \leq S = n^{1-\epsilon}$ samples are sorted locally
 - Blocks are computed based on the samples
- By Chernoff: $\mathbf{M} * \mathbf{s} = O\left(\frac{\log n}{\alpha^2}\right)$ samples suffice to compute all block sizes up to $\pm \alpha n$ error with high probability
- Take $\alpha = n^{-\epsilon}$: error O(S)
- $\mathbf{M} * \mathbf{s} = \widetilde{O}(\mathbf{n}^{3\epsilon}) \le \mathbf{O}(\mathbf{n}^{1-\epsilon})$ for $\epsilon \le 1/4$

Connectivity

- Input: n edges of a graph (arbitrarily partitioned between machines)
- Output: is the graph connected? (or # of connected components)
- **Question:** how many rounds does it take?
 - 1. O(1)
- 2. $O(\log^{\alpha} \mathbf{n})$
 - 3. $O(n^{\alpha})$
 - 4. $O(2^{\alpha n})$
 - 5. Impossible

Algorithms for Graphs

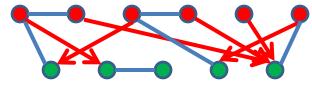
- **Dense graphs** vs. sparse graphs
 - Dense: $S \gg |V|$
 - Linear sketching: one round
 - "Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]
 - Sparse: $S \ll |V|$ (or $S \ll$ solution size)

Sparse graph problems appear hard (**Big open question**: connectivity in $o(\log n)$ rounds?)

Algorithm for Connectivity

- Version of **Boruvka's algorithm**:
 - All vertices assigned to different components
 - Repeat $O(\log n)$ times:
 - Each component chooses a neighboring component
 - All pairs of chosen components get merged
- How to avoid **chaining**?

• If the graph of components is bipartite and only one side gets to choose then no chaining



• Randomly assign components to the sides

Algorithm for Connectivity: Setup

Data: n edges of an undirected graph.

Notation:

- $\pi(v) \equiv$ unique id of v
- $\Gamma(S) \equiv$ set of neighbors of a subset of vertices S.

Labels:

- Algorithm assigns label $\ell(v)$ to each v.
- $L_v \equiv$ set of vertices with label $\ell(v)$ (invariant: subset of the connected component containing v).

Active vertices:

• Some vertices will be called **active** (exactly one per L_v).

Algorithm for Connectivity

- Mark every vertex as **active** and let $\ell(v) = \pi(v)$.
- For phases $i = 1, 2, ..., O(\log n)$ do:
 - Call each **active** vertex a **leader** with probability 1/2. If v is a **leader**, mark all vertices in L_v as **leaders**.
 - For every **active non-leader** vertex w, find the smallest **leader** (by π) vertex w^{*} in $\Gamma(L_w)$.
 - Mark w **passive**, relabel each vertex with label w by w^* .
- **Output**: set of connected components based on ℓ .

Algorithm for Connectivity: Analysis

- If $\ell(u) = \ell(v)$ then u and v are in the same CC.
- **Claim:** Whp unique labels in CC in $O(\log N)$ phases
- # active vertices reduces by a constant factor:
 - Half of the active vertices declared as non-leaders.
 - Fix an active **non-leader** vertex \boldsymbol{v} .
 - If at least two different labels in the CC of v then there is an edge (v', u) such that $\ell(v) = \ell(v')$ and $\ell(v') \neq \ell(u)$.
 - *u* marked as a leader with probability 1/2 ⇒ half of the active non-leader vertices will change their label.
 - Overall, expect 1/4 of labels to disappear.

Algorithm for Connectivity: Implementation Details

- Distributed data structure of size O(|V|) to maintain labels, ids, leader/non-leader status, etc.
 O(1) rounds per stage to update the data structure
- Edges stored locally with all auxiliary info
 - Between stages: use distributed data structure to update local info on edges
- For every **active non-leader** vertex w, find the smallest **leader** (w.r.t π) vertex w^{*} $\in \Gamma(L_w)$
 - Each (non-leader, leader) edge sends an update to the distributed data structure
- Much faster with Distributed Hash Table Service (DHT) [Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii'14]

MPC and Computation Complexity

- Class MRC^i = solvable in $O(\log^i n)$ rounds of MPC
- MRC = $\bigcup_i MRC^i$ where union is over all constant *i*
- [Karloff, Suri, Vassilvitskii SODA'10]
 - If $P \subsetneq NC$ then deterministic $MRC \subsetneq NC$
 - Can simulate t-time CRCW PRAM algorithm in O(t) rounds
- [Jacob, Lieber, Sitchinnava, MFCS'14]
 - Only known unconditional LB: $\Omega(\log n)$ for Guided Interval Fusion
- [Fish, Kun, Lelkes, Reyzin, Turan DISC'15]
 - Can recognize regular languages in O(1) rounds
 - Some (conditional) hierarchy theorems for MPC
- [Roughgarden, Vassilvitskii, Wang SPAA'16]
 - Show $\Omega(\log_S n)$ lower bounds using degree bound
 - Certain type of $\Omega(1)$ -round MPC lower bounds implies $P \subseteq NC^1$

MPC for Specific Problems

- Combinatorial Optimization
 - Matchings
 - Large constant approx. in O(log log² n) rounds ["6 Poles"]
 - Small constant approximation in $O(\log n)$ rounds
 - Submodular Maximization [BENW, STOC'16]
 - $(1 + \epsilon)$ -approx. Euclidean Bichromatic Matching Size in O(1) rounds for constant dimension [ANOY'14, STOC'14]
 - $(1 + \epsilon)$ -approx. Euclidean MST in O(1) rounds for constant dimension [ANOY'14, STOC'14]

MPC for Specific Problems

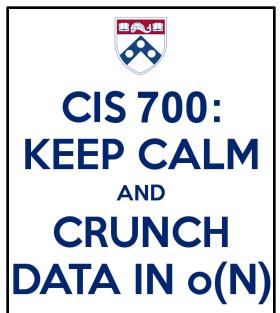
- Clustering
 - K-means: [BMVKV, VLDB'12][BEL, NIPS'13]
 - K-center, K-median: [EIM, KDD'11]
 - Correlation Clustering: [CDK, KDD'14]
 - Single-Linkage Clustering: [Vadapalli, Y '17]
- See my talk at Facebook for details on clustering

MPC for Specific Problems

- Dynamic Programming
 - [Im, Moseley, Sun STOC'17]:
 - Optimal Binary Search Tree
 - Weighted Interval Selection
 - Longest Increasing Subsequence
 - Active area of research right now
- Other problems
 - Triangle Counting

Thanks! Questions?

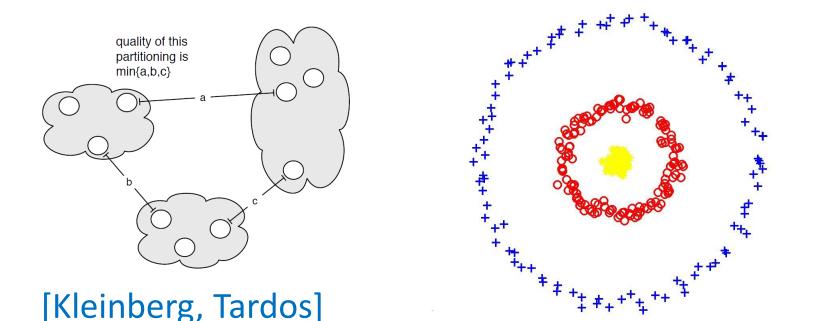
- Slides will be available on http://grigory.us
- More about algorithms for massive data: <u>http://grigory.us/blog/</u>
- More in the classes I teach:





Example: Single Linkage Clustering

- [Zahn'71] **Clustering** via Minimum Spanning Tree:
- k clusters: remove k 1 longest edges from MST
- Maximizes **minimum** intercluster distance

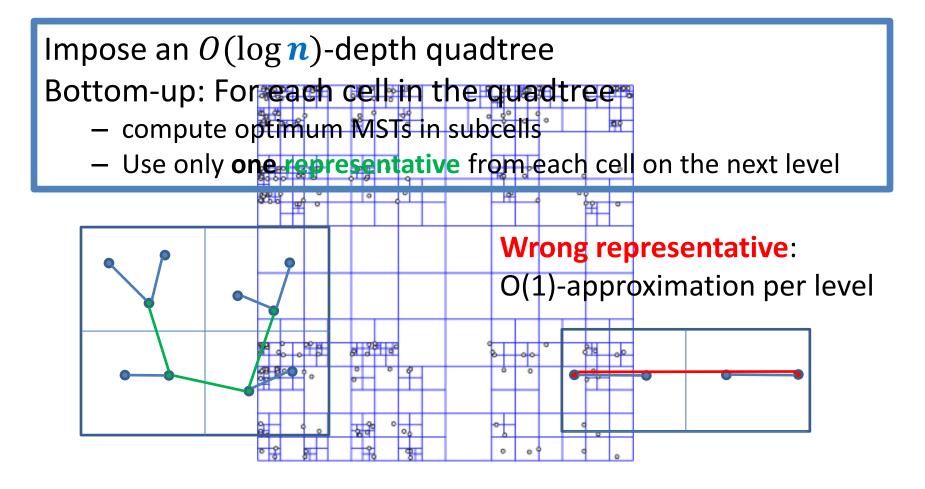


Large geometric graphs

- Graph algorithms: **Dense graphs** vs. sparse graphs
 - Dense: $S \gg |V|$.
 - Sparse: $S \ll |V|$.
- Our setting:
 - Dense graphs, sparsely represented: O(n) space
 - Output doesn't fit on one machine ($S \ll n$)
- Today: $(1 + \epsilon)$ -approximate MST [Andoni, Onak, Nikolov, Y.]
 - d = 2 (easy to generalize)
 - $\mathbf{R} = \log_{\mathbf{S}} \mathbf{n} = O(1) \text{ rounds } (\mathbf{S} = \mathbf{n}^{\Omega(1)})$

$O(\log n)$ -MST in $\mathbf{R} = O(\log n)$ rounds

• Assume points have integer coordinates $[0, ..., \Delta]$, where $\Delta = O(n^2)$.

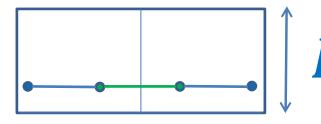


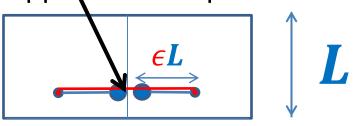
EL-nets

εL-net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance <= *εL* from some vertex in S. (Fact: Can efficiently compute *ε*-net of size O (¹/_{ε²}))

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level
- Idea: Pay only O(*EL*) for an edge cut by cell with side *L*
- Randomly shift the quadtree: Pr[cut edge of length Moons] presentation per level
 O(1)-approximation per level



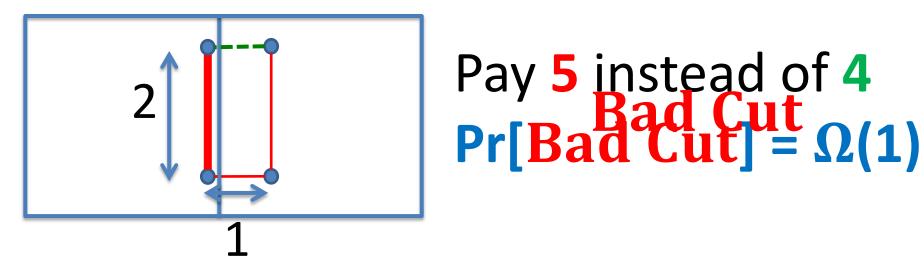


Randomly shifted quadtree

• Top cell shifted by a random vector in $[0, L]^2$

Impose a randomly shifted quadtree (top cell length 2Δ) Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level



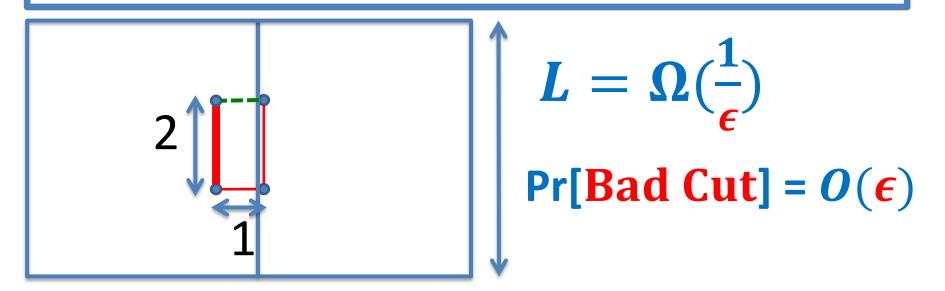
$(1 + \epsilon)$ -MST in **R** = $O(\log n)$ rounds

• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length $\frac{2\Delta}{\epsilon}$)

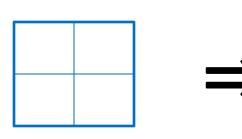
Bottom-up: For each node (cell) in the quadtree

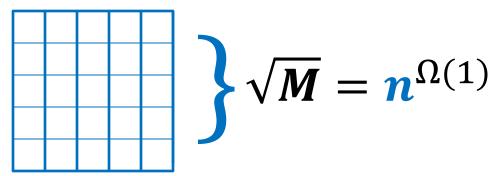
- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level



$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

- $O(\log n)$ rounds => $O(\log_s n)$ = O(1) rounds
 - Flatten the tree: $(\sqrt{M} \times \sqrt{M})$ -grids instead of (2x2) grids at each level.





Impose a randomly shifted ($\sqrt{M} \times \sqrt{M}$)-tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

Theorem: Let l = # levels in a random tree P $\mathbb{E}_{P}[ALG] \leq (1 + O(\epsilon ld))OPT$

Proof (sketch):

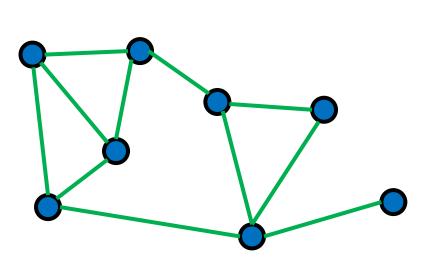
- $\Delta_P(u, v)$ = cell length, which first partitions (u, v)
- New weights: $w_P(u, v) = ||u v||_2 + \epsilon \Delta_P(u, v)$ $||u - v||_2 \leq \mathbb{E}_P[w_P(u, v)] \leq (1 + O(\epsilon d)) ||(u, v)v||_2$
- Our algorithm implements Kruskal for weights w_P

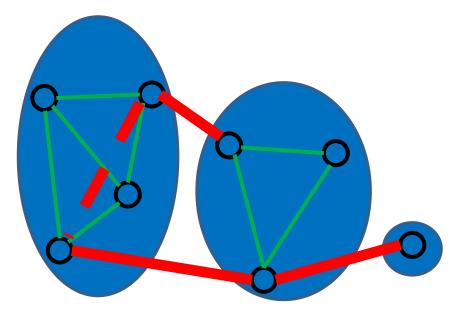
Technical Details

- $(1 + \epsilon)$ -MST:
 - "Load balancing": partition the tree into parts of the same size
 - Almost linear time locally: Approximate Nearest
 Neighbor data structure [Indyk'99]
 - Dependence on dimension **d** (size of ϵ -net is $O\left(\frac{d}{\epsilon}\right)^{a}$)
 - Generalizes to bounded **doubling dimension**

Problem 2: Correlation Clustering

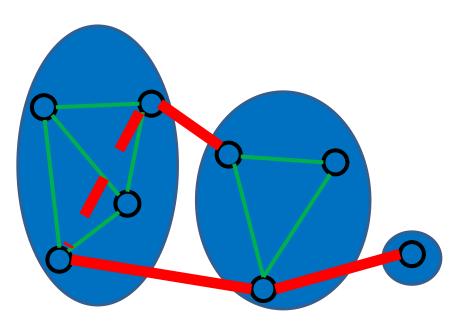
- Inspired by machine learning at WhizBang
- Practice: [Cohen, McCallum '01, Cohen, Richman '02]
- Theory: [Blum, Bansal, Chawla '04]





Correlation Clustering: Example

• Minimize # of incorrectly classified pairs: # Covered non-edges + # Non-covered edges



4 incorrectly classified =
1 covered non-edge +
3 non-covered edges

Approximating Correlation Clustering

- Minimize # of incorrectly classified pairs
 - ≈ 20000 -approximation [Blum, Bansal, Chawla'04]
 - [Demaine, Emmanuel, Fiat, Immorlica'04],[Charikar, Guruswami, Wirth'05], [Ailon, Charikar, Newman'05]
 [Williamson, van Zuylen'07], [Ailon, Liberty'08],...
 - $-\approx$ 2-approximation [Chawla, Makarychev, Schramm, Y. '15]
- Maximize # of correctly classified pairs

 $-(1 - \epsilon)$ -approximation [Blum, Bansal, Chawla'04]

Correlation Clustering

One of the most successful clustering methods:

- Only uses qualitative information about similarities
- # of clusters unspecified (selected to best fit data)
- Applications: document/image deduplication (data from crowds or black-box machine learning)
- NP-hard [Bansal, Blum, Chawla '04], admits simple approximation algorithms with good provable guarantees

Correlation Clustering

More:

- Survey [Wirth]
- KDD'14 tutorial: "Correlation Clustering: From Theory to Practice" [Bonchi, Garcia-Soriano, Liberty] http://francescobonchi.com/CCtuto_kdd14.pdf
- Wikipedia article: <u>http://en.wikipedia.org/wiki/Correlation_cluster</u> <u>ing</u>

Data-Based Randomized Pivoting

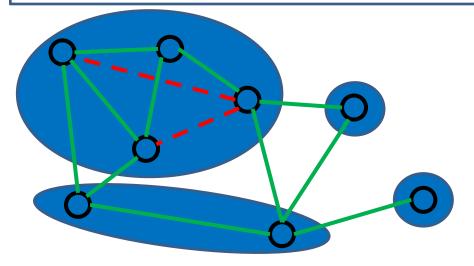
3-approximation (expected) [Ailon, Charikar, Newman]

Algorithm:

- Pick a random pivot vertex \boldsymbol{v}
- Make a cluster v ∪ N(v), where N(v) is the set of neighbors of v
- Remove the cluster from the graph and repeat

Data-Based Randomized Pivoting

- Pick a random pivot vertex p
- Make a cluster *p* ∪ N(*p*), where N(*p*) is the set of neighbors of *p*
- Remove the cluster from the graph and repeat



8 incorrectly classified =
2 covered non-edges +
6 non-covered edges

Parallel Pivot Algorithm

- $(3 + \epsilon)$ -approx. in $O(\log^2 n / \epsilon)$ rounds [Chierichetti, Dalvi, Kumar, KDD'14]
- Algorithm: while the graph is not empty
 - -D = current maximum degree
 - Activate each node independently with prob. ϵ/D
 - Deactivate nodes connected to other active nodes
 - The remaining nodes are **pivots**
 - Create cluster around each pivot as before
 - Remove the clusters

Parallel Pivot Algorithm: Analysis

• Fact: Halves max degree after $\frac{1}{\epsilon} \log n$ rounds

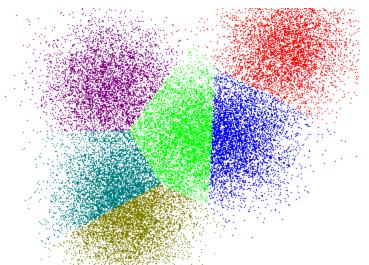
 \Rightarrow terminates in $O\left(\frac{\log^2 n}{\epsilon}\right)$ rounds

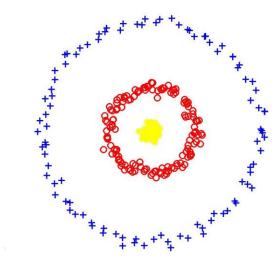
 Fact: Activation process induces close to uniform marginal distribution of the pivots

 \Rightarrow analysis similar to regular pivot gives (3 + ϵ)-approximation

Part 2: Clustering Vectors

- Input: $v_1, \ldots, v_n \in \mathbb{R}^d$
 - Feature vectors in ML, word embedings in NLP, etc.
 - (Implicit) weighted graph of pairwise distances
- Applications:
 - Same as before + Data visualization





Problem 3: K-means

- Input: $v_1, \dots, v_n \in \mathbb{R}^d$
- Find **k** centers *c*₁, ..., *c*_k
- Minimize sum of squared distance to the closest center:

$$\sum_{i=1}^{k} \min_{j=1}^{k} ||v_i - c_j||_2^2$$

•
$$||v_i - c_j||_2^2 = \sum_{t=1}^{d} (v_{it} - c_{jt})^2$$

• NP-hard

K-means++ [Arthur,Vassilvitskii'07]

- $C = \{c_1, \dots, c_t\}$ (collection of centers)
- $d^2(v, C) = \min_{j=1}^k ||v c_j||_2^2$

K-means++ algorithm (gives $O(\log k)$ -approximation):

- Pick c_1 uniformly at random from the data
- Pick centers $c_2 \dots, c_k$ sequentially from the distribution where point v has probability

$$\frac{d^2(v,C)}{\sum_{i=1}^n d^2(v_i,C)}$$

K-means [[Bahmani et al. '12]

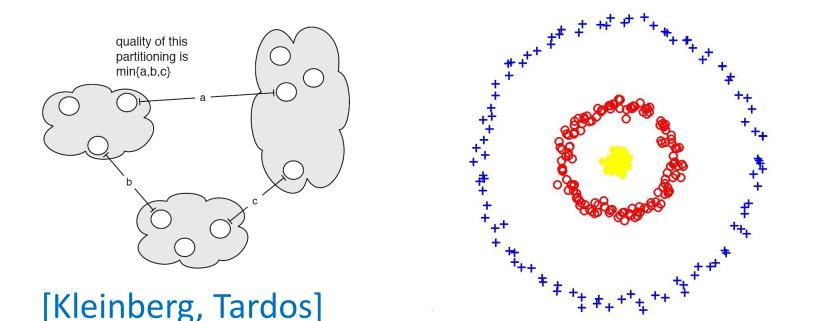
- Pick $C = c_1$ uniformly at random from data
- Initial cost: $\psi = \sum_{i=1}^{n} d^2(v_i, c_1)$
- Do $O(\log \psi)$ times:
 - Add $O(\mathbf{k})$ centers from the distribution where point v has probability

$$\frac{d^2(v,C)}{\sum_{i=1}^n d^2(v_i,C)}$$

- Solve k-means for these O($m k \log \psi$) points locally
- Thm. If final step gives α -approximation $\Rightarrow O(\alpha)$ -approximation overall

Problem 4: Single Linkage Clustering

- [Zahn'71] **Clustering** via Minimum Spanning Tree:
- k clusters: remove k 1 longest edges from MST
- Maximizes **minimum** intercluster distance

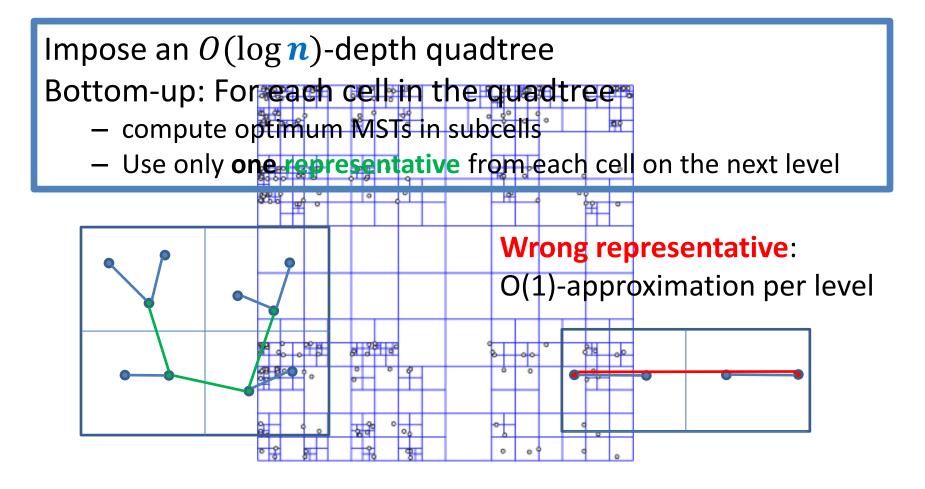


Large geometric graphs

- Graph algorithms: **Dense graphs** vs. sparse graphs
 - Dense: $S \gg |V|$.
 - Sparse: $S \ll |V|$.
- Our setting:
 - Dense graphs, sparsely represented: O(n) space
 - Output doesn't fit on one machine ($S \ll n$)
- Today: $(1 + \epsilon)$ -approximate MST [Andoni, Onak, Nikolov, Y.]
 - d = 2 (easy to generalize)
 - $\mathbf{R} = \log_{\mathbf{S}} \mathbf{n} = O(1) \text{ rounds } (\mathbf{S} = \mathbf{n}^{\Omega(1)})$

$O(\log n)$ -MST in $\mathbf{R} = O(\log n)$ rounds

• Assume points have integer coordinates $[0, ..., \Delta]$, where $\Delta = O(n^2)$.

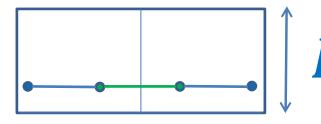


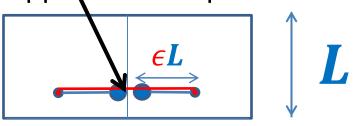
EL-nets

εL-net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance <= *εL* from some vertex in S. (Fact: Can efficiently compute *ε*-net of size O (¹/_{ε²}))

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level
- Idea: Pay only O(*EL*) for an edge cut by cell with side *L*
- Randomly shift the quadtree: Pr[cut edge of length Moons] presentation per level
 O(1)-approximation per level



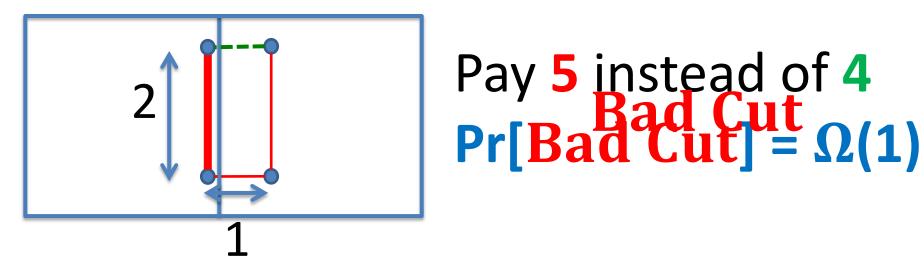


Randomly shifted quadtree

• Top cell shifted by a random vector in $[0, L]^2$

Impose a randomly shifted quadtree (top cell length 2Δ) Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level



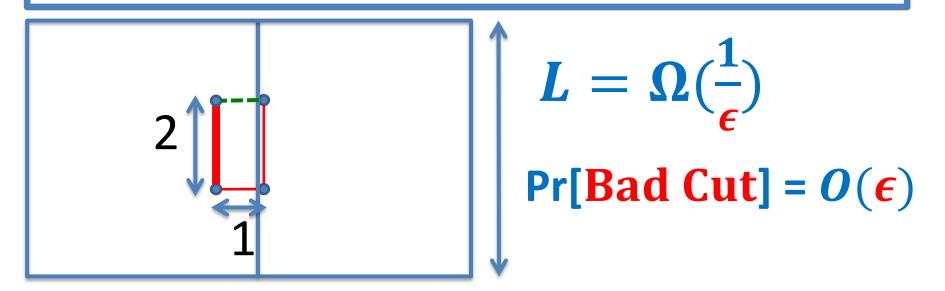
$(1 + \epsilon)$ -MST in **R** = $O(\log n)$ rounds

• Idea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length $\frac{2\Delta}{\epsilon}$)

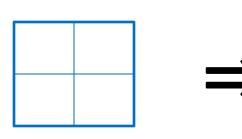
Bottom-up: For each node (cell) in the quadtree

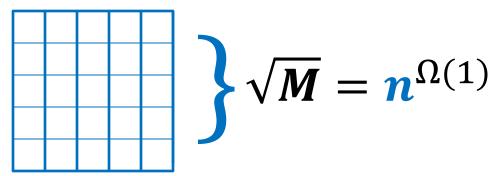
- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level



$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

- $O(\log n)$ rounds => $O(\log_s n)$ = O(1) rounds
 - Flatten the tree: $(\sqrt{M} \times \sqrt{M})$ -grids instead of (2x2) grids at each level.





Impose a randomly shifted ($\sqrt{M} \times \sqrt{M}$)-tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

Theorem: Let l = # levels in a random tree P $\mathbb{E}_{P}[ALG] \leq (1 + O(\epsilon ld))OPT$

Proof (sketch):

- $\Delta_P(u, v) = \text{cell length}$, which first partitions (u, v)
- New weights: $w_P(u, v) = ||u v||_2 + \epsilon \Delta_P(u, v)$ $||u - v||_2 \leq \mathbb{E}_P[w_P(u, v)] \leq (1 + O(\epsilon d)) ||(u, v)v||_2$
- Our algorithm implements Kruskal for weights w_P

Technical Details

- $(1 + \epsilon)$ -MST:
 - "Load balancing": partition the tree into parts of the same size
 - Almost linear time locally: Approximate Nearest
 Neighbor data structure [Indyk'99]
 - Dependence on dimension **d** (size of ϵ -net is $O\left(\frac{d}{\epsilon}\right)^{a}$)
 - Generalizes to bounded **doubling dimension**