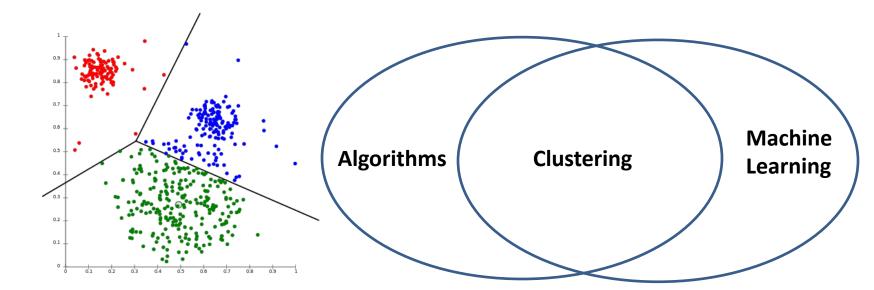
Advances in Hierarchical Clustering of Vector Data

Joint work with Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh (Stanford), AISTATS'19

Grigory Yaroslavtsev Indiana University (Bloomington) http://grigory.us/blog

Clustering

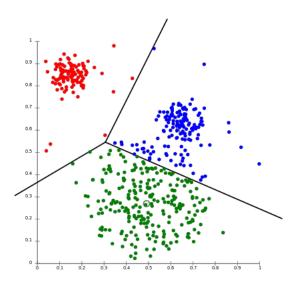
• Key problem in unsupervised learning

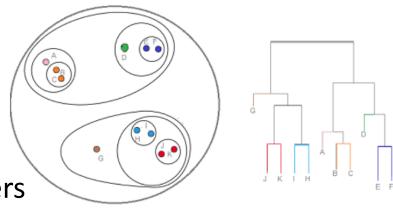


 Workshop at TTI-Chicago "Recent Trends in Clustering" – September 18-20, <u>http://grigory.us/caml/rtcc.html</u>!

Hierarchical Clustering of Clustering Methods

- Flat (single) clustering
 - # of clusters K is fixed
 - K-means, K-median, K-center, etc
 - # of clusters selected by algorithm
 - Correlation clustering
- Hierarchical clustering
 - Tree over data points,
 - Can pick any # of clusters
 - Relationships between clusters

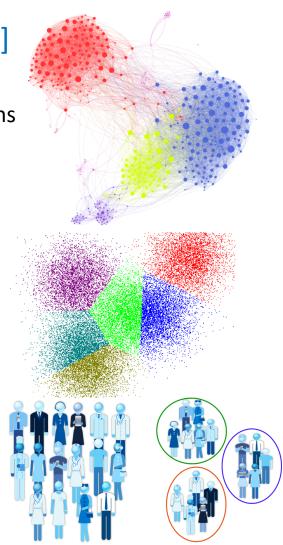




Data we can hierarchically cluster

- Graphs [Avdiukhin, Pupyrev, Y. VLDB'19]
 - Recent work with Facebook
 - Max edge locality, clusters balanced on many params
 - Scales to the Facebook graph
 - Up to 10^{10} vertices, 10^{12} edges
- Vectors $(v_1, \dots, v_n \in \mathbb{R}^d)$

• Arbitrary



Embedding vectors from deep learning

• Word2Vec embeddings • Image embeddings

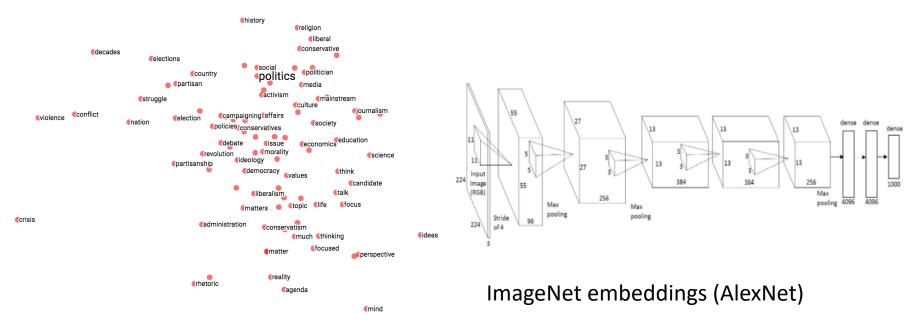
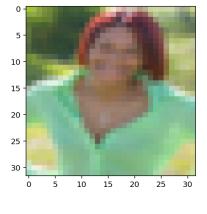
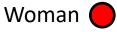
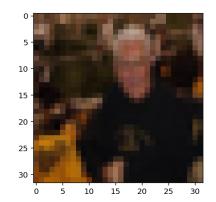


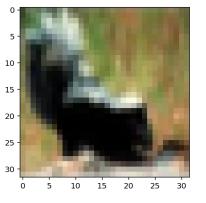
Image: Tensorflow documentation <u>https://www.tensorflow.org/guide/embedding</u>

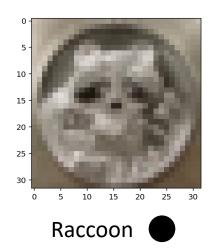
Toy example of HC on CIFAR-100

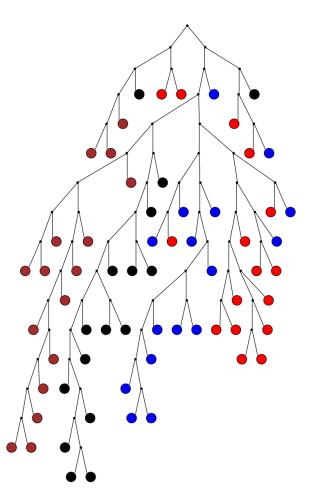










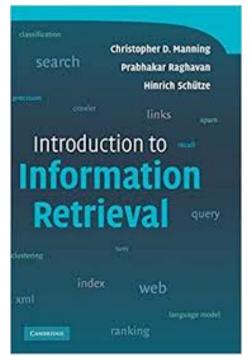


Embedding vectors via PyramidNet https://arxiv.org/abs/1610.02915 Top-1 error on CIFAR-100: 16-20%

Why little theoretical progress on HC?

Lots of heuristics, (almost) no rigorous objectives

- Bottom-up (linkage-based heuristics)
 - Single-linkage clustering
 - Average-linkage clustering
 - Complete-linkage clustering
 - Centroid linkage
 - All sorts of other linkage methods
- Implementations of HC in:
 - Mathematica, R, Matlab
 - SciPy, Scikit-learn, ...



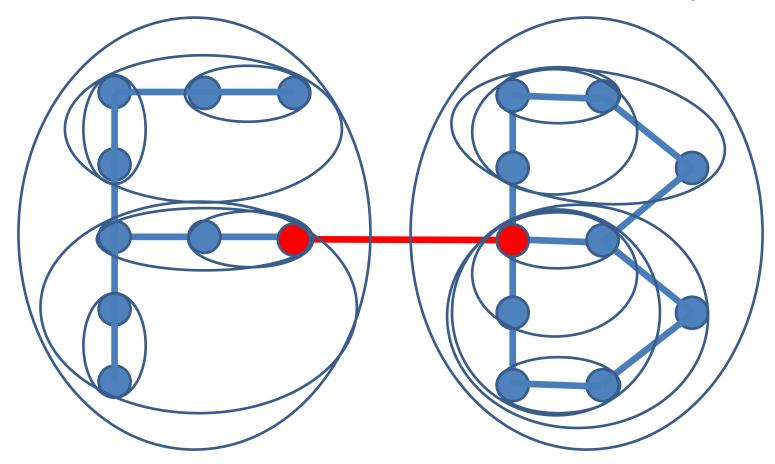
Bottom-up linkage-based heuristics

- Start with singletons
- Iteratively merge two closest clusters



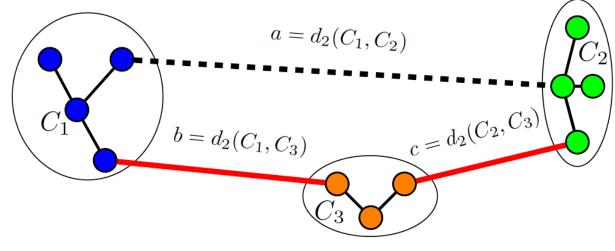
Single-Linkage Clustering

• Distance = distance between two closest points



MST: Single-Linkage Clustering

- [Zahn'71] k clusters: remove k 1 longest MST edges
- **Objective**: maximizes **minimum** cluster distance

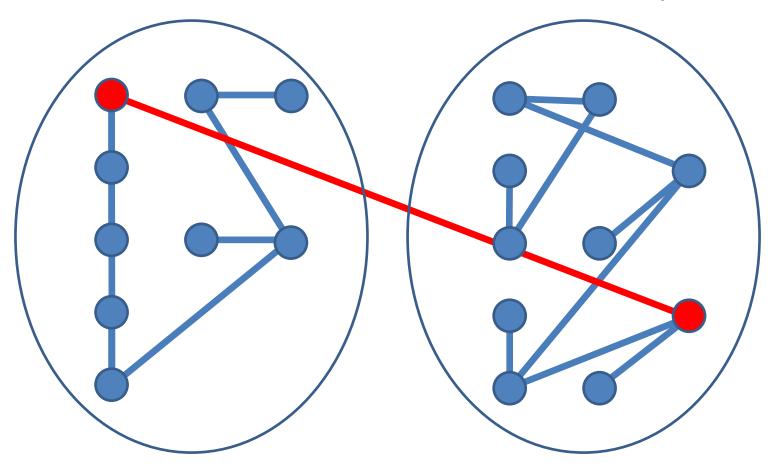


Objective: maximize min(a,b,c)

- Not true if MST is approximate (sum vs. k-th edge)!
 - Scalable algorithms for Single-Linkage Clustering of vectors [Y., Vadapalli ICML'18]

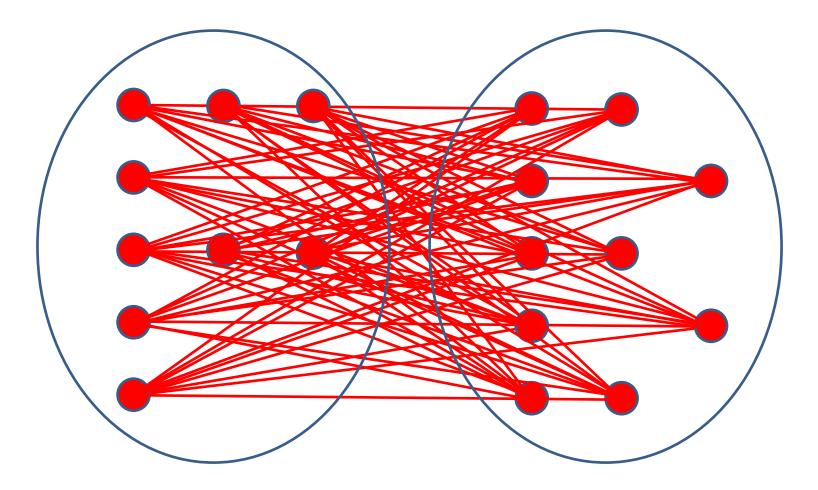
Complete Linkage

• Distance = distance between two furthest points



Average-Linkage Clustering

• Distance = average distance between points



Distance vs. Similarity

- Distance d(u, v)
 - Arbitrary
 - Metric: d(u, v) satisfies triangle inequality
 - Vectors: $||v_i v_j||_2$

$$d(v_i, v_j) = ||v_i - v_j||_2 = \sqrt{\sum_{k=1}^{d} (v_{ik} - v_{jk})^2}$$

Distance vs. Similarity

Similarity $\rho(u, v) \in [0, 1]$

- Arbitrary: symmetric, $\rho(u, u) = 1$
- Metric case: monotone with distance
- Vector case:

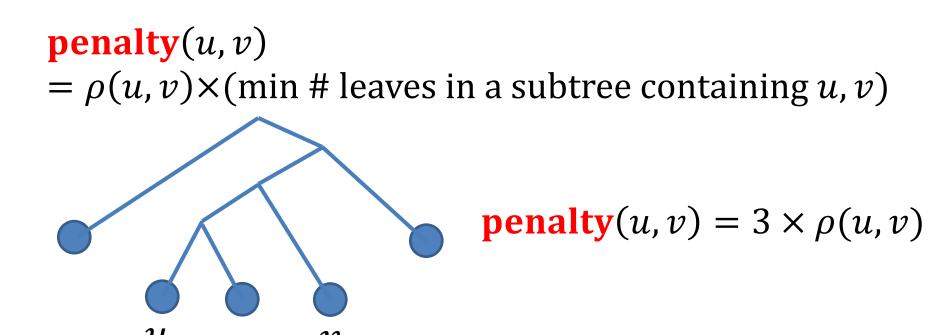
- Threshold:
$$\rho(v_i, v_j) = \begin{cases} 1, \text{ if } d(v_i, v_j) \leq \theta \\ 0, \text{ if } d(v_i, v_j) > \theta \end{cases}$$

– Gaussian kernel:
$$\rho(v_i, v_j) = e^{-\frac{||v_i - v_j||_2^2}{2\sigma^2}}$$

Dasgupta's objective for HC [STOC'16]

Given **n** data points and similarity measure ρ

- Build a tree T with data points as leaves
- For a pair of points (u, v):



Dasgupta's objective for HC [STOC'2016]

Given **n** data points and similarity measure ρ

- Build a tree T with data points as leaves
- For a pair of points (u, v):

penalty $(u, v) = \rho(u, v)$ (min # leaves in a subtree containing u, v)

Minimize:

$$\sum_{u \neq v} \mathbf{penalty}(u, v) = \sum_{u \neq v} \rho(u, v) |LCA(u, v)|$$

- LCA(u,v) = Least Common Ancestor of (u, v) in T - |LCA(u,v)| = # leaves under LCA(u,v)

Dasgupta's objective for HC [STOC'2016]

Given **n** data points and similarity measure ρ

• Build a tree T with data points as leaves:

Minimize: = $\sum_{u \neq v} \rho(u, v) |LCA(u, v)|$

- |LCA(u,v)| = # leaves under LCA(u,v)

- Currently best known approximation $O(\sqrt{\log n})$ [Charikar, Chatziafratis, SODA'17; Roy, Pokutta NIPS'16]
 - LP/SDP-based algorithms, don't scale to large datasets
 - As hard as Sparsest Cut (no constant-factor approx. under UGC)

Moseley-Wang objective for HC [NIPS'17]

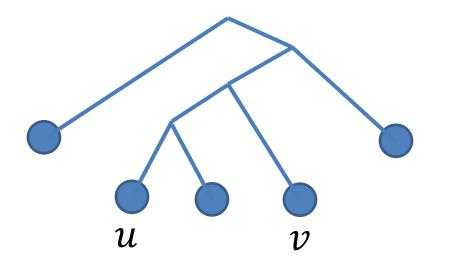
Given **n** data points and similarity measure ho

• Build a tree T with data points as leaves:

Maximize: $\sum_{u \neq v} \operatorname{score}(u, v) = \sum_{u \neq v} \rho(u, v)(n - |LCA(u, v)|)$

$$-\operatorname{score}(u,v) = n - |LCA(u,v)|$$

- |LCA(u,v)| = # leaves under LCA(u,v)



score $(u, v) = 2 \times \rho(u, v)$

Moseley-Wang objective for HC [NIPS'17]

Given **n** data points and similarity measure ρ

• Build a tree T with data points as leaves:

Maximize: $\sum_{u \neq v} \mathbf{score}(u, v) = \sum_{u \neq v} \rho(u, v)(\mathbf{n} - |LCA(u, v)|)$

$$-\operatorname{score}(u,v) = n - |LCA(u,v)|$$

- |LCA(u,v)| = # leaves under LCA(u,v)
- Average-linkage gives 1/3-approximation [Moseley, Wang, NIPS'17]
 - Random recursive partitioning also gives 1/3 (in expectation)
- Best known approximation is $1/3 + \delta$ [Charikar, Chatziafratis, Niazadeh SODA'19]
 - Uses SDP, doesn't scale to large data
 - Average-linkage can't beat 1/3

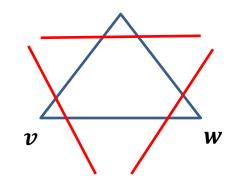
Random recursive partitioning [MW'17]

Algorithm: Split points randomly and recurse

Analysis: Decompose the objective over triples

$$\sum_{\boldsymbol{u}\neq\boldsymbol{v}}\rho(\boldsymbol{u},\boldsymbol{v})(\boldsymbol{n}-|LCA(\boldsymbol{u},\boldsymbol{v})|) = \sum_{\boldsymbol{u}\neq\boldsymbol{v}\neq\boldsymbol{w}}\rho(\boldsymbol{u},\boldsymbol{v})I[\boldsymbol{w} \text{ is not under } LCA(\boldsymbol{u},\boldsymbol{v})]$$

$$\sum_{u \neq v \neq w} \rho(u, v) I[w \text{ is not under } LCA(u, v)] = \sum_{u < v < w} \rho(u, v) I[w \text{ is not under } LCA(u, v)] + \rho(u, w) I[v \text{ is not under } LCA(u, w)] \\ \rho(w, v) I[u \text{ is not under } LCA(w, v)]$$



 $OPT \leq \sum_{u < v < w} \max(\rho(u, v), \rho(u, w), \rho(v, w)) = Max-Upper$

Random recursive partitioning [MW'17]

Algorithm: Split points randomly and recurse **Analysis:** Decompose the objective over triples

$$\sum_{\boldsymbol{u}\neq\boldsymbol{v}}\rho(\boldsymbol{u},\boldsymbol{v})(\boldsymbol{n}-|LCA(\boldsymbol{u},\boldsymbol{v})|)=\sum_{\boldsymbol{u}\neq\boldsymbol{v}\neq\boldsymbol{w}}\rho(\boldsymbol{u},\boldsymbol{v})I[\boldsymbol{w} \text{ is not under }LCA(\boldsymbol{u},\boldsymbol{v})]$$

$$OPT \leq \sum_{u < v < w} \max(\rho(u, v), \rho(u, w), \rho(v, w)) = \text{Max-Upper}$$

$$\mathbb{E}[\text{ALG}] = \mathbb{E}\left[\sum_{u \neq v \neq w} \rho(u, v) I[w \text{ is not under } LCA(u, v)]\right]$$

$$= \sum_{u \neq v \neq w} \rho(u, v) Pr[w \text{ is not under } LCA(u, v)]]$$

$$= \frac{1}{3} \sum_{u \neq v \neq w} \rho(u, v) = \frac{1}{3} \sum_{u < v < w} \rho(u, v) + \rho(u, w) + \rho(v, w)$$

$$\geq \frac{1}{3} \sum_{u < v < w} \max(\rho(u, v), \rho(u, w), \rho(v, w)) \geq \frac{1}{3} OPT$$

Can we do better for vector data? [Charikar,Chatziafratis,Niazaheh,Y. AISTATS'19]

$$d = 1 \left(\rho(x_i, x_j) = f(|x_i - x_j|) \right) - \underbrace{x_1}_{x_1} - \underbrace{x_2}_{x_2} - \underbrace{x_3}_{x_4} - \underbrace{x_5}_{x_5}$$

Algorithm: Random-Cut $(x_1 \le x_2 \dots \le x_n)$

- Pick r uniformly at random in $[x_1, x_n]$
- Recursively cluster points in $[x_1, r]$ and $[r, x_n]$

Analysis: Gives ½-approximation

$$DPT \leq \sum_{x_i < x_j < x_k} \max\left(\rho(x_i, x_j), \rho(x_i, x_k), \rho(x_j, x_k)\right)$$
$$\leq \sum_{x_i < x_j < x_k} \max\left(\rho(x_i, x_j), \rho(x_j, x_k)\right)$$
$$\mathbb{E}[ALG] \geq \frac{1}{2} \sum_{x_i < x_j < x_k} \max\left(\rho(x_i, x_j), \rho(x_j, x_k)\right)$$

Can we do better for vector data? [Charikar,Chatziafratis,Niazaheh,Y. AISTATS'19]

$$\boldsymbol{d} = 1\left(\rho(\boldsymbol{x}_i, \boldsymbol{x}_j) = f(|\boldsymbol{x}_i - \boldsymbol{x}_j|)\right)$$

Average-linkage also gives $\frac{1}{2}$

Conjectures:

- Average-linkage gives ³/₄?
- Dynamic programming gives the optimum solution?

Can we do better for vector data?

$v_1, \ldots, v_n \in \mathbb{R}^d$

- In general, not easier than the general case
- General hard instances are embeddable into vectors
 - Requires really high dimension $d = \Omega(n)$
 - Relies on non-smoothness of the similarity measure
- Average-linkage can't beat 1/3 even for vectors

Projected Random Cut Algorithm

 $v_1, \ldots, v_n \in \mathbb{R}^d$

Algorithm:

- Pick random Gaussian $g \sim N_d(0,1)$
- Compute projections $x_i = \langle v_i, \boldsymbol{g} \rangle$
- Run Random Cut on (x_1, \dots, x_n)

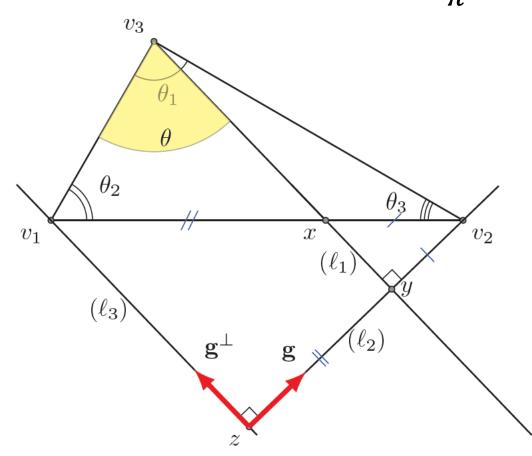
Projected Random Cut Algorithm

• Gaussian kernel:
$$\rho(v_i, v_j) = \exp\left(-\frac{||v_i - v_j||_2^2}{2\sigma^2}\right)$$

- **Theorem:** Projected Random Cut gives $\frac{1+\delta}{3}$ approximation under the **Gaussian kernel** similarity, where $\delta = \min_{i,j} \rho(v_i, v_j)$
- + flavors: similar statements for any smooth (i.e. multiplicatively Lipschitz) similarity measure
- **Key lemma:** probability of not scoring an edge of a triangle is proportional to the opposite angle

Key lemma

• $\Pr[v_3 \text{ is under } LCA(v_1, v_2)] = \frac{\theta_1}{\pi}$



Projected Random Cut gives $\frac{1+\delta}{3}$

$$OPT \leq \sum_{v_i < v_j < v_k} \max\left(\rho(v_i, v_j), \rho(v_j, v_k), \rho(v_i, v_k)\right)$$

$$\mathbb{E}[ALG] = \sum_{v_i < v_j < v_k} \left(1 - \frac{\theta_{v_i v_j}}{\pi}\right) \rho(v_i, v_j) + \left(1 - \frac{\theta_{v_j v_k}}{\pi}\right) \rho(v_j, v_k) + \left(1 - \frac{\theta_{v_i v_k}}{\pi}\right) \rho(v_i, v_k)$$

If $\rho(\boldsymbol{v_{i}}, \boldsymbol{v_{j}})$ is largest then we score it with prob. $\geq \frac{1}{3}$

Experimental results for PRC

σ	PRC	Spectral	AL	MAX-upper	PRC MAX-upper
1.5	48	61	28	64	0.75
2	64	83	47	87	0.74
2.5	83	100	66	105	0.79
3	100	112	82	117	0.85
3.5	111	121	95	126	0.87
4	117	128	105	132	0.88
4.5	123	133	114	137	0.91
5	129	137	120	140	0.92

Table 1: Values of the objective (times 10^{-3}) on the Zoo dataset (averaged over 10 runs).

Scaling it up

- Ran PRC on largest vector datasets from UCI ML repository (SIFT 10M, HIGGS)
 - Approx. 10^7 points in up to 128 dimensions
 - $-O(nd + n \log n)$ running time
 - Can run on much larger data too
- Can scale Single-Linkage clustering too, but
 - Uses PCA to reduce dimension
 - Requires a large Apache Spark cluster

Thank you!

• Questions?

- Some other topics I work(ed) on
 - Other clustering methods (e.g. correlation clustering)
 - Massively parallel, streaming, sublinear algorithms
 - Data compression methods for data analysis
 - Submodular optimization