
Grigory Yaroslavtsev
Indiana University (Bloomington)

http://grigory.us/blog

Advances in Hierarchical Clustering
of Vector Data

Joint work with Moses Charikar, Vaggos
Chatziafratis, Rad Niazadeh (Stanford), AISTATS’19

http://grigory.us/

Clustering

• Key problem in unsupervised learning

• Workshop at TTI-Chicago “Recent Trends in Clustering”
– September 18-20, http://grigory.us/caml/rtcc.html!

Algorithms
Machine
LearningClustering

http://grigory.us/caml/rtcc.html

• Flat (single) clustering
– # of clusters K is fixed
• K-means, K-median, K-center, etc

– # of clusters selected by algorithm
• Correlation clustering
• …

• Hierarchical clustering
– Tree over data points,
• Can pick any # of clusters
• Relationships between clusters

Hierarchical Clustering of Clustering Methods

Data we can hierarchically cluster

• Graphs [Avdiukhin, Pupyrev, Y. VLDB’19]
– Recent work with Facebook
– Max edge locality, clusters balanced on many params
– Scales to the Facebook graph
– Up to 10#$ vertices, 10#% edges

• Vectors (𝑣#, … , 𝑣𝒏 ∈ ℝ𝒅)

• Arbitrary

Embedding vectors from deep learning

• Word2Vec embeddings

Image: Tensorflow documentation
https://www.tensorflow.org/guide/embedding

• Image embeddings

ImageNet embeddings (AlexNet)

https://www.tensorflow.org/guide/embedding

Toy example of HC on CIFAR-100

Woman Man

Skunk Raccoon

Embedding vectors via PyramidNet
https://arxiv.org/abs/1610.02915
Top-1 error on CIFAR-100: 16-20%

https://arxiv.org/abs/1610.02915

Why little theoretical progress on HC?

Lots of heuristics, (almost) no rigorous objectives
• Bottom-up (linkage-based heuristics)
– Single-linkage clustering
– Average-linkage clustering
– Complete-linkage clustering
– Centroid linkage
– All sorts of other linkage methods

• Implementations of HC in:
– Mathematica, R, Matlab
– SciPy, Scikit-learn, …

Bottom-up linkage-based heuristics
• Start with singletons
• Iteratively merge two closest clusters

Single-Linkage Clustering

• Distance = distance between two closest points

MST: Single-Linkage Clustering
• [Zahn’71] 𝒌 clusters: remove 𝒌 − 𝟏 longest MST edges
• Objective: maximizes minimum cluster distance

• Not true if MST is approximate (sum vs. 𝒌-th edge)!
– Scalable algorithms for Single-Linkage Clustering of

vectors [Y., Vadapalli ICML’18]

Objective: maximize min(a,b,c)

Complete Linkage

• Distance = distance between two furthest points

Average-Linkage Clustering
• Distance = average distance between points

Distance vs. Similarity

• Distance 𝑑(𝑢, 𝑣)
– Arbitrary
– Metric: 𝑑(𝑢, 𝑣) satisfies triangle inequality
– Vectors: ||𝑣; − 𝑣<||%

𝑑 𝑣;, 𝑣< = ||𝑣; − 𝑣<||% = >
?@#

𝒅

(𝑣;?−𝑣<?)%

Distance vs. Similarity

Similarity 𝜌 𝑢, 𝑣 ∈ [𝟎, 𝟏]
• Arbitrary: symmetric, 𝜌 𝑢, 𝑢 = 1
• Metric case: monotone with distance
• Vector case:
– Threshold: 𝜌 𝑣;, 𝑣< =

– Gaussian kernel: 𝜌 𝑣;, 𝑣< = 𝑒F
||GHIGJ||K

K

KLK

1, if 𝑑 𝑣;, 𝑣< ≤ 𝜽
0,	if	𝑑 𝑣;, 𝑣< > 𝜽{

Dasgupta’s objective for HC [STOC’16]
Given n data points and similarity measure 𝜌
• Build a tree T with data points as leaves
• For a pair of points (𝑢, 𝑣):

𝐩𝐞𝐧𝐚𝐥𝐭𝐲 𝑢, 𝑣
= 𝜌 𝑢, 𝑣 ×(min # leaves in a subtree containing 𝑢, 𝑣)

𝑢 𝑣

𝐩𝐞𝐧𝐚𝐥𝐭𝐲 𝑢, 𝑣 = 3 × 𝜌(𝑢, 𝑣)

Dasgupta’s objective for HC [STOC’2016]
Given n data points and similarity measure 𝜌
• Build a tree T with data points as leaves
• For a pair of points (𝑢, 𝑣):

𝐩𝐞𝐧𝐚𝐥𝐭𝐲 𝑢, 𝑣 = 𝜌 𝑢, 𝑣 (min # leaves in a subtree containing 𝑢, 𝑣)

Minimize:

>
fgh

𝐩𝐞𝐧𝐚𝐥𝐭𝐲(𝑢, 𝑣) = >
fgh

𝜌 𝑢, 𝑣 |𝐿𝐶𝐴(𝑢, 𝑣)|

– LCA(u,v) = Least Common Ancestor of (𝑢, 𝑣) in T
– |LCA(u,v)| = # leaves under LCA(u,v)

Dasgupta’s objective for HC [STOC’2016]

Given n data points and similarity measure 𝜌
• Build a tree T with data points as leaves:

Minimize: = ∑fgh 𝜌 𝑢, 𝑣 |𝐿𝐶𝐴(𝑢, 𝑣)|

– |LCA(u,v)| = # leaves under LCA(u,v)

• Currently best known approximation 𝑂(log 𝑛)
[Charikar, Chatziafratis, SODA’17; Roy, Pokutta NIPS’16]
– LP/SDP-based algorithms, don’t scale to large datasets
– As hard as Sparsest Cut (no constant-factor approx. under UGC)

Moseley-Wang objective for HC [NIPS’17]

Given n data points and similarity measure 𝜌
• Build a tree T with data points as leaves:

Maximize: ∑fgh 𝐬𝐜𝐨𝐫𝐞 𝑢, 𝑣 =∑fgh 𝜌 𝑢, 𝑣 (𝒏 − 𝐿𝐶𝐴 𝑢, 𝑣)

– 𝐬𝐜𝐨𝐫𝐞 𝑢, 𝑣 = 𝒏 − 𝐿𝐶𝐴 𝑢, 𝑣
– |LCA(u,v)| = # leaves under LCA(u,v)

𝑢 𝑣

𝐬𝐜𝐨𝐫𝐞 𝑢, 𝑣 = 2 × 𝜌(𝑢, 𝑣)

Moseley-Wang objective for HC [NIPS’17]

Given n data points and similarity measure 𝜌
• Build a tree T with data points as leaves:

Maximize: ∑fgh 𝐬𝐜𝐨𝐫𝐞 𝑢, 𝑣 =∑fgh 𝜌 𝑢, 𝑣 (𝒏 − 𝐿𝐶𝐴 𝑢, 𝑣)

– 𝐬𝐜𝐨𝐫𝐞 𝑢, 𝑣 = 𝒏 − 𝐿𝐶𝐴 𝑢, 𝑣
– |LCA(u,v)| = # leaves under LCA(u,v)

• Average-linkage gives 1/3-approximation [Moseley, Wang, NIPS’17]

– Random recursive partitioning also gives 1/3 (in expectation)
• Best known approximation is 1/3 + 𝜹 [Charikar, Chatziafratis, Niazadeh

SODA’19]

– Uses SDP, doesn’t scale to large data
– Average-linkage can’t beat 1/3

Random recursive partitioning [MW’17]

Algorithm: Split points randomly and recurse

Analysis: Decompose the objective over triples

𝒖

𝒗 𝒘

∑𝒖g𝒗g𝒘 𝜌 𝒖, 𝒗 𝐼 𝒘 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝒖, 𝒗 =

>
𝒖~𝒗~𝒘

𝜌 𝒖, 𝒗 𝐼 𝒘 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝒖, 𝒗 +

𝜌 𝒖,𝒘 𝐼 𝒗 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝒖,𝒘
𝜌 𝒘, 𝒗 𝐼 𝒖 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝒘, 𝒗

>
𝒖g𝒗

𝜌 𝒖, 𝒗 𝒏 − 𝐿𝐶𝐴 𝒖, 𝒗 = >
𝒖g𝒗g𝒘

𝜌 𝒖, 𝒗 𝐼 𝒘 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝒖, 𝒗

𝑂𝑃𝑇 ≤ ∑𝒖~𝒗~𝒘max 𝜌 𝒖, 𝒗 , 𝜌 𝒖,𝒘 , 𝜌 𝒗,𝒘 =Max-Upper

Random recursive partitioning [MW’17]

Algorithm: Split points randomly and recurse
Analysis: Decompose the objective over triples

>
𝒖g𝒗

𝜌 𝒖, 𝒗 𝒏 − 𝐿𝐶𝐴 𝒖, 𝒗 = >
𝒖g𝒗g𝒘

𝜌 𝒖, 𝒗 𝐼 𝒘 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝒖, 𝒗

𝑂𝑃𝑇 ≤ ∑𝒖~𝒗~𝒘max 𝜌 𝒖, 𝒗 , 𝜌 𝒖,𝒘 , 𝜌 𝒗,𝒘 = Max-Upper

𝔼[ALG] = 𝔼 >
𝒖g𝒗g𝒘

𝜌 𝒖, 𝒗 𝐼 𝒘 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝒖, 𝒗

= ∑𝒖g𝒗g𝒘 𝜌 𝒖, 𝒗 𝑃𝑟 𝒘 𝑖𝑠 𝑛𝑜𝑡 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝒖, 𝒗]

=
1
3 >
𝒖g𝒗g𝒘

𝜌 𝒖, 𝒗 =
1
3 >
𝒖~𝒗~𝒘

𝜌 𝒖, 𝒗 + 𝜌 𝒖,𝒘 + 𝜌 𝒗,𝒘

≥
1
3 >
𝒖~𝒗~𝒘

max 𝜌 𝒖, 𝒗 , 𝜌 𝒖,𝒘 , 𝜌 𝒗,𝒘 ≥
1
3𝑂𝑃𝑇

𝒖

𝒗 𝒘

Can we do better for vector data?
[Charikar,Chatziafratis,Niazaheh,Y. AISTATS’19]

𝒅 = 1 (𝜌 𝒙𝒊, 𝒙𝒋 = 𝑓(|𝒙𝒊 − 𝒙𝒋|))

Algorithm: Random-Cut (𝒙𝟏 ≤ 𝒙𝟐 … ≤ 𝒙𝒏)
• Pick 𝒓 uniformly at random in 𝒙𝟏, 𝒙𝒏
• Recursively cluster points in [𝒙𝟏, 𝒓] and [𝒓, 𝒙𝒏]

Analysis: Gives ½-approximation

𝑂𝑃𝑇 ≤ ∑𝒙𝒊~𝒙𝒋~𝒙𝒌 max 𝜌 𝒙𝒊, 𝒙𝒋 , 𝜌 𝒙𝒊, 𝒙𝒌 , 𝜌 𝒙𝒋, 𝒙𝒌

≤ >
𝒙𝒊~𝒙𝒋~𝒙𝒌

max 𝜌 𝒙𝒊, 𝒙𝒋 , 𝜌 𝒙𝒋, 𝒙𝒌

𝔼[𝐴𝐿𝐺] ≥
1
2 >
𝒙𝒊~𝒙𝒋~𝒙𝒌

max 𝜌 𝒙𝒊, 𝒙𝒋 , 𝜌 𝒙𝒋, 𝒙𝒌

𝑥# 𝑥% 𝑥� 𝑥� 𝑥�

Can we do better for vector data?
[Charikar,Chatziafratis,Niazaheh,Y. AISTATS’19]

𝒅 = 1 (𝜌 𝒙𝒊, 𝒙𝒋 = 𝑓(|𝒙𝒊 − 𝒙𝒋|))

Average-linkage also gives ½

Conjectures:
• Average-linkage gives ¾?
• Dynamic programming gives the optimum

solution?

Can we do better for vector data?

𝑣#, … , 𝑣𝒏 ∈ ℝ𝒅

• In general, not easier than the general case
• General hard instances are embeddable into vectors
– Requires really high dimension 𝒅 = Ω(𝒏)
– Relies on non-smoothness of the similarity measure

• Average-linkage can’t beat 1/3 even for vectors

Projected Random Cut Algorithm

𝑣#, … , 𝑣𝒏 ∈ ℝ𝒅

Algorithm:
• Pick random Gaussian 𝒈 ∼ 𝑵𝒅 0,1
• Compute projections 𝑥; = ⟨𝑣;, 𝒈⟩
• Run Random Cut on (𝑥#, … , 𝑥�)

Projected Random Cut Algorithm

• Gaussian kernel: 𝜌 𝑣;, 𝑣< = exp −
||hHFhJ||KK

% �K

• Theorem: Projected Random Cut gives #��
�

approximation under the Gaussian kernel
similarity, where 𝛿 = min

;,<
𝜌 𝑣;, 𝑣<

• + flavors: similar statements for any smooth (i.e.
multiplicatively Lipschitz) similarity measure

• Key lemma: probability of not scoring an edge of a
triangle is proportional to the opposite angle

Key lemma

• Pr 𝑣� 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝐿𝐶𝐴 𝑣#, 𝑣% = ��

Projected Random Cut gives #��
�

𝑂𝑃𝑇 ≤ >
𝒗𝒊~𝒗𝒋~𝒗𝒌

max 𝜌 𝒗𝒊, 𝒗𝒋 , 𝜌 𝒗𝒋, 𝒗𝒌 , 𝜌 𝒗𝒊, 𝒗𝒌

𝔼 𝐴𝐿𝐺 =

∑𝒗𝒊~𝒗𝒋~𝒗𝒌 1 −
�GHGJ

𝜌 𝒗𝒊, 𝒗𝒋 + 1 −
�GJG¡

𝜌 𝒗𝒋, 𝒗𝒌 + 1 −
�GHG¡

𝜌 𝒗𝒊, 𝒗𝒌

If 𝜌(𝒗𝒊,𝒗𝒋) is largest then we score it with prob. ≥ #
�

Experimental results for PRC

Scaling it up

• Ran PRC on largest vector datasets from UCI ML
repository (SIFT 10M, HIGGS)
– Approx. 10¢ points in up to 128 dimensions
– 𝑂(𝒏𝒅 + 𝒏 log𝒏) running time
– Can run on much larger data too

• Can scale Single-Linkage clustering too, but
– Uses PCA to reduce dimension
– Requires a large Apache Spark cluster

Thank you!

• Questions?

• Some other topics I work(ed) on
– Other clustering methods (e.g. correlation

clustering)
– Massively parallel, streaming, sublinear algorithms
– Data compression methods for data analysis
– Submodular optimization

