Linear sketching for Functions over Boolean Hypercube

Grigory Yaroslavtsev
(Indiana University, Bloomington)

http://grigory.us

with Sampath Kannan (U. Pennsylvania),
Elchanan Mossel (MIT) and Swagato Sanyal (NUS)
\(\mathbb{F}_2 \)-Sketching

- Input \(x \in \{0,1\}^n \)
- Parity = Linear function over \(\mathbb{GF}_2 : \bigoplus_{i \in S} x_i \)
- Deterministic linear sketch: set of \(k \) parities:
 \[
 \ell(x) = \bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \ldots; \bigoplus_{i_k \in S_k} x_{i_k}
 \]
 E.g. \(x_4 \oplus x_2 \oplus x_{42}; x_{239} \oplus x_{30}; x_{566}; \ldots \)
- Randomized linear sketch: distribution over \(k \) parities (random \(S_1, S_2, \ldots, S_k \)):
 \[
 \ell(x) = \bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \ldots; \bigoplus_{i_k \in S_k} x_{i_k}
 \]
Linear sketching over \mathbb{F}_2

- Given $f(x): \{0,1\}^n \rightarrow \{0,1\}$
- **Question:** Can one recover $f(x)$ from a small ($k \ll n$) linear sketch over \mathbb{F}_2?

- Allow randomized computation (99% success)
 - Probability over choice of random sets
 - Sets are known at recovery time
 - Recovery is deterministic (w.l.o.g)
Motivation: Distributed Computing

- Distributed computation among M machines:
 - $x = (x_1, x_2, ..., x_M)$ (more generally $x = \bigoplus_{i=1}^{M} x_i$)
 - M machines can compute sketches locally: $\ell(x_1), ..., \ell(x_M)$
 - Send them to the coordinator who computes: $\ell_i(x) = \ell_i(x_1) \oplus \cdots \oplus \ell_i(x_M)$ (coordinate-wise XORs)
 - Coordinator computes $f(x)$ with kM communication

\[
\begin{array}{ccccccccccccc}
 x & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
 x_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 x_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
Motivation: Streaming

- \mathbf{x} generated through a sequence of updates
- Updates i_1, \ldots, i_m: update i_t flips bit at position i_t

<table>
<thead>
<tr>
<th>x_0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbf{x}</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$\ell(\mathbf{x})$ allows to recover $f(\mathbf{x})$ with k bits of space
Frequently Asked Questions

• **Q:** Why \mathbb{F}_2 updates instead of ± 1?
 – AFAIK it doesn’t help if you know the sign

• **Q:** Some applications?
 – Essentially all dynamic graph streaming algorithms can be based on L_0-sampling
 – L_0-sampling can be done optimally using \mathbb{F}_2-sketching [Kapralov et al. FOCS’17]

• **Q:** Why not allow approximation?
 – Stay tuned
Deterministic vs. Randomized

• **Fact:** \(f \) has a deterministic sketch if and only if

 \[f = g(\bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \ldots; \bigoplus_{i_k \in S_k} x_{i_k}) \]

 – Equivalent to “\(f \) has Fourier dimension \(k \)”

• **Randomization can help:**

 – **OR:** \(f(x) = x_1 \lor \cdots \lor x_n \)
 – Has “Fourier dimension” = \(n \)
 – Pick \(t = \log 1/\delta \) random sets \(S_1, \ldots, S_t \)
 – If there is \(j \) such that \(\bigoplus_{i \in S_j} x_i = 1 \) output 1,
 otherwise output 0
 – Error probability \(\delta \)
Fourier Analysis

- \(f(x_1, \ldots, x_n): \{0,1\}^n \rightarrow \{0,1\} \)
- Notation switch:
 - 0 \rightarrow 1
 - 1 \rightarrow -1
- \(f': \{-1,1\}^n \rightarrow \{-1,1\} \)
- Functions as vectors form a vector space:
 \(f: \{-1,1\}^n \rightarrow \{-1,1\} \iff f \in \{-1,1\}^{2^n} \)
- Inner product on functions = “correlation”:
\[
\langle f, g \rangle = 2^{-n} \sum_{x \in \{-1,1\}^n} f(x)g(x) = \mathbb{E}_{x \sim \{-1,1\}^n}[f(x)g(x)]
\]
\[
||f||_2 = \sqrt{\langle f, f \rangle} = \sqrt{\mathbb{E}_{x \sim \{-1,1\}^n}[f^2(x)]} = 1 \text{ (for Boolean only)}
\]
“Main Characters” are Parities

• For $S \subseteq [n]$ let character $\chi_S(x) = \prod_{i \in S} x_i$

• **Fact:** Every function $f : \{-1,1\}^n \rightarrow \{-1,1\}$ is uniquely represented as a multilinear polynomial

$$f(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x)$$

• $\hat{f}(S)$ a.k.a. Fourier coefficient of f on S

• $\hat{f}(S) \equiv \langle f, \chi_S \rangle = \mathbb{E}_{x \sim \{-1,1\}^n} [f(x) \chi_S(x)]$

• $\sum_S \hat{f}(S)^2 = 1$ (Parseval)
Fourier Dimension

• Fourier sets $S \equiv$ vectors in \mathbb{F}_2^n
• “f has Fourier dimension k“ = a k-dimensional subspace in Fourier domain has all weight

$$\sum_{S \subseteq A_k} \hat{f}(S)^2 = 1$$

$$f(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S)\chi_S(x) = \sum_{S \subseteq A_k} \hat{f}(S)\chi_S(x)$$

• Pick a basis S_1, \ldots, S_k in A_k:
 – Sketch: $\chi_{S_1}(x), \ldots, \chi_{S_k}(x)$
 – For every $S \in A_k$ there exists $Z \subseteq [k]$: $S = \bigoplus_{i \in Z} S_i$

$$\chi_S(x) = \bigoplus_{i \in Z} \chi_{S_i}(x)$$
Deterministic Sketching and Noise

Suppose “noise” has a bounded norm

\[f = k\text{-dimensional } \oplus \text{ “noise”} \]

- Sparse Fourier noise (via [Sanyal’15])
 - \(\hat{f} = k\text{-dim. } + \text{ “Fourier } L_0\text{-noise”} \)
 - \(\| \widehat{\text{noise}} \|_0 = \# \text{ non-zero Fourier coefficients of noise} \)
 (aka “Fourier sparsity”)
 - Linear sketch size: \(k + O(\| \widehat{\text{noise}} \|_0^{1/2}) \)

- **Our work**: can’t be improved even with randomness and even for uniform \(x \), e.g. for “addressing function”.

- Suppose “noise” has a bounded norm

\[f = k\text{-dimensional } \oplus \text{ “noise”} \]

- Sparse Fourier noise (via [Sanyal’15])
 - \(\hat{f} = k\text{-dim. } + \text{ “Fourier } L_0\text{-noise”} \)
 - \(\| \widehat{\text{noise}} \|_0 = \# \text{ non-zero Fourier coefficients of noise} \)
 (aka “Fourier sparsity”)
 - Linear sketch size: \(k + O(\| \widehat{\text{noise}} \|_0^{1/2}) \)

- **Our work**: can’t be improved even with randomness and even for uniform \(x \), e.g. for “addressing function”.

How Randomization Handles Noise

- L_0-noise in original domain (via hashing a la OR)
 - $f = k$-dim. + “L_0-noise”
 - Linear sketch size: $k + O(\log ||noise||_0)$
 - Optimal (but only existentially, i.e. $\exists f$:

- L_1-noise in the Fourier domain (via [Grolmusz’97])
 - $\hat{f} = k$-dim. + “Fourier L_1-noise”
 - Linear sketch size: $k + O(\sqrt{||\hat{noise}\|^2_1})$
 - Example = k-dim. + small decision tree / DNF / etc.
Randomized Sketching: Hardness

- **k-dimensional affine extractors** require k:
 - f is an affine-extractor for dim. k if any restriction on a k-dim. affine subspace has values 0/1 w/prob. ≥ 0.1 each
 - Example (inner product): $f(x) = \bigoplus_{i=1}^{n/2} x_{2i-1} x_{2i}$

- Not γ-concentrated on k-dim. Fourier subspaces
 - For $\forall k$-dim. Fourier subspace A:
 \[\sum_{S \notin A} \hat{f}(S)^2 \geq 1 - \gamma \]
 - Any k-dim. linear sketch makes error $\frac{1-\sqrt{\gamma}}{2}$
 - Converse doesn’t hold, i.e. concentration is not enough
Randomized Sketching: Hardness

• Not \(\gamma \)-concentrated on \(o(n) \)-dim. Fourier subspaces:

 – Almost all **symmetric functions**, i.e. \(f(x) = h(\sum_i x_i) \)

 • If not Fourier-close to constant or \(\bigoplus_{i=1}^n x_i \)

 • E.g. Majority (not an extractor even for \(O(\sqrt{n}) \))

 – **Tribes** (balanced DNF)

 – **Recursive majority**: \(\text{Maj}^{\circ_k} = \text{Maj}_3 \circ \text{Maj}_3 \circ \ldots \circ \text{Maj}_3 \)
Approximate Fourier Dimension

• Not γ-concentrated on k-dim. Fourier subspaces
 – \forall k-dim. Fourier subspace A: $\sum_{S \in A} \hat{f}(S)^2 \geq 1 - \gamma$
 – Any k-dim. linear sketch makes error $\frac{1}{2}(1 - \sqrt{\gamma})$

• Definition (Approximate Fourier Dimension)
 – $\dim_{\gamma}(f) = \text{smallest } d \text{ such that } f \text{ is } \gamma$-concentrated
 on some Fourier subspace of dimension d

\[
\sum_{S \in A} \hat{f}(S)^2 \geq \gamma
\]
Sketching over Uniform Distribution + Approximate Fourier Dimension

• Sketching error over **uniform distribution** of \(x \).
• \(\dim_{\epsilon}(f) \)-dimensional sketch gives error \(1 - \epsilon \):

 – Fix \(\dim_{\epsilon}(f) \)-dimensional \(A: \sum_{S \in A} \mathbf{f}(S)^2 \geq \epsilon \)

 – Output: \(\mathbf{g}(x) = \text{sign} \left(\sum_{S \in A} \mathbf{f}(S) \chi_{S}(x) \right) \):

 \[
 \Pr_{x \sim U([-1,1]^n)} \left[\mathbf{g}(x) = \mathbf{f}(x) \right] \geq \epsilon \Rightarrow \text{error} \ 1 - \epsilon
 \]

• We show a basic refinement \(\Rightarrow \) error \(\frac{1-\epsilon}{2} \):

 – Pick \(\theta \) from a carefully chosen distribution

 – Output: \(\mathbf{g}_{\theta}(x) = \text{sign} \left(\sum_{S \in A} \mathbf{f}(S) \chi_{S}(x) - \theta \right) \)
1-way Communication Complexity of XOR-functions

Examples:
- $f(z) = OR_{i=1}^n(z_i) \Rightarrow f^+: \text{(not) Equality}$
- $f(z) = (\|z\|_0 > d) \Rightarrow f^+: \text{Hamming Dist} > d$
- $R_\varepsilon^1(f^+) = \min. |M|$ so that Bob’s error prob. ε
Communication Complexity of XOR-functions

• Well-studied (often for 2-way communication):
 – [Montanaro, Osborne], ArXiv’09
 – [Shi, Zhang], QIC’09,
 – [Tsang, Wong, Xie, Zhang], FOCS’13
 – [O’Donnell, Wright, Zhao, Sun, Tan], CCC’14
 – [Hatami, Hosseini, Lovett], FOCS’16

• Connections to log-rank conjecture [Lovett’14]:
 – Even special case for XOR-functions still open
Deterministic 1-way Communication Complexity of XOR-functions

Alice: $x \in \{0,1\}^n$

Bob: $y \in \{0,1\}^n$

- $D^1(f) = \min |M|$ so that Bob is always correct
- [Montanaro-Osborne’09]: $D^1(f) = D^{lin}(f)$
- $D^{lin}(f^+) = \text{deterministic lin. sketch complexity of } f^+$
- $D^1(f) = D^{lin}(f^+) = \text{Fourier dimension of } f$
1-way Communication Complexity of XOR-functions

Shared randomness

Alice: $x \in \{0,1\}^n$

Bob: $y \in \{0,1\}^n$

$M(x)$

$f(x \oplus y)$

- $R^1_\varepsilon(f) = \min |M|$ so that Bob’s error prob. ε
- $R^\text{lin}_\varepsilon(f^+) = \text{rand. lin. sketch complexity (error } \varepsilon \text{)}$
- $R^1_\varepsilon(f^+) \leq R^\text{lin}_\varepsilon(f)$
- Conjecture: $R^1_\varepsilon(f^+) \approx R^\text{lin}_\varepsilon(f)$?
\[R_\epsilon^1 (f^+) \approx R_\epsilon^{lin} (f) \]?

As we show holds for:

- Majority, Tribes, recursive majority, addressing function
- Linear threshold functions
- (Almost all) symmetric functions
- Degree-d \mathbb{F}_2-polynomials:

\[R_{5\epsilon}^{lin} (f) = O(d R_\epsilon^1 (f^+)) \]

Analogous question for 2-way is wide open:

[HHL’16] \[Q_\epsilon^{\oplus -dt} (f) = poly(R_\epsilon (f^+)) \]?
Distributional 1-way Communication under Uniform Distribution

Alice: \(x \sim U(\{0,1\}^n) \)

Bob: \(y \sim U(\{0,1\}^n) \)

- \(R^1_\epsilon(f) = \sup_D \mathfrak{D}^{1,D}_\epsilon(f) \)
- \(\mathfrak{D}^{1,U}_\epsilon(f) = \min |M| \) so that Bob’s error prob. \(\epsilon \) is over the uniform distribution over \((x, y) \)
- Enough to consider deterministic messages only
- Motivation: streaming/distributed with random input
Sketching over Uniform Distribution

Thm: If $\dim\epsilon(f) = d - 1$ then $\mathcal{D}^{1,U}_{1-\epsilon}(f^+) \geq \frac{d}{6}$.

- Optimal up to error as d-dim. linear sketch has error $\frac{1-\epsilon}{2}$

Weaker: If $\epsilon_2 > \epsilon_1$, $\dim\epsilon_1(f) = \dim\epsilon_2(f) = d - 1$ then:
 $$\mathcal{D}^{1,U}_\delta(f) \geq d,$$
 where $\delta = (\epsilon_2 - \epsilon_1)/4$.

Corollary: If $\tilde{f}(\emptyset) < C$ for $C < 1$ then there exists d:
 $$\mathcal{D}^{1,U}_{\Theta(\frac{1}{n})}(f) \geq d.$$

- Tight for the Majority function, etc.
Thm: If $\epsilon_2 > \epsilon_1 > 0$, $\dim_{\epsilon_1}(f) = \dim_{\epsilon_2}(f) = d - 1$ then:

$$\mathfrak{D}^{1,U}_{\epsilon}(f) \geq d,$$

where $\delta = (\epsilon_2 - \epsilon_1)/4$.

$$x \in \{0,1\}^n, \quad y \in \{0,1\}^n, \quad f(x \oplus y) = f_x(y)$$

$$M(x) = \begin{bmatrix} 00 & 01 & 10 & 11 \end{bmatrix}$$
\[\mathcal{D}^{1,U}_\varepsilon \] and Approximate Fourier Dimension

- If \(|M(x)| = d - 1\) average “rectangle” size = \(2^{n-d+1}\)
- A subspace \(A\) **distinguishes** \(x_1\) and \(x_2\) if:
 \[\exists S \in A : \chi_S(x_1) \neq \chi_S(x_2) \]
- **Lem 1:** Fix a \(d\)-dim. subspace \(A_d\): typical \(x_1\) and \(x_2\) in a typical “rectangle” are distinguished by \(A_d\)
- **Lem 2:** If a \(d\)-dim. subspace \(A_d\) distinguishes \(x_1\) and \(x_2\) +
 1) \(f\) is \(\varepsilon_2\)-concentrated on \(A_d\)
 2) \(f\) is not \(\varepsilon_1\)-concentrated on any \((d - 1)\)-dim. subspace

\[\Rightarrow \Pr_{z \sim U(\{-1,1\}^n)} [f_{x_1}(z) \neq f_{x_2}(z)] \geq \varepsilon_2 - \varepsilon_1 \]
$\mathcal{D}_{\epsilon}^{1,U}$ and Approximate Fourier Dimension

Thm: If $\epsilon_2 > \epsilon_1 > 0$, $\dim_{\epsilon_1}(f) = \dim_{\epsilon_2}(f) = d - 1$ then:

$$\mathcal{D}_{\delta}^{1,U}(f) \geq d,$$

Where $\delta = (\epsilon_2 - \epsilon_1)/4$.

$$\Pr_{z \sim U(\{-1,1\}^n)}[f_{x_1}(z) \neq f_{x_2}(z)] \geq \epsilon_2 - \epsilon_1$$

<table>
<thead>
<tr>
<th>g_{x_1}</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{x_2}</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Error for fixed $y = \min(\Pr_{x \in R}[f_{x}(y) = 0], \Pr_{x \in R}[f_{x}(y) = 1])$

Average error for $(x, y) \in R = \Omega(\epsilon_2 - \epsilon_1)$

$R =$ “typical rectangle”
Application: Random Streams

- $x \in \{0,1\}^n$ generated via a stream of updates
 - Each update flips a random coordinate
- **Goal**: maintain $f(x)$ during the stream (error prob. ϵ)
- **Question**: how much space necessary?
- **Answer**: $\mathcal{D}_{\epsilon}^{1,U}$ and best algorithm is linear sketch
 - After first $O(n \log n)$ updates input x is uniform

**Big open question:*
- Is the same true if x is not uniform?
 - True for **VERY LONG** $2^{2^{\Omega(n)}}$ streams (via [LNW'14])
- How about short ones?
- Answer would follow from our conjecture if true
Approximate \mathbb{F}_2-Sketching [Y.’17]

- $f(x_1, \ldots, x_n): \{0,1\}^n \to \mathbb{R}$
- Normalize: $\|f\|_2 = 1$
- Question:

Can one compute $f': \mathbb{E}[(f(x) - f'(x))^2 \leq \epsilon]$ from a small ($k \ll n$) linear sketch over \mathbb{F}_2?
Approximate \mathbb{F}_2-Sketching [Y.’17]

Interesting facts:

• All results under the **uniform distribution** generalize directly to approximate sketching

• L_1-sampling has optimal dependence on parameters:

 \[
 \frac{\|\hat{f}\|_1^2}{\epsilon}
 \]

 – **Optimal dependence**: $O\left(\frac{\|\hat{f}\|_1^2}{\epsilon}\right)$

 – **Open problem**: Is L_1-sampling optimal for Boolean functions?
\(F_2\)-Sketching of Valuation Functions \([Y. '17]\)

- Additive \(\left(\sum_{i=1}^{n} w_i x_i \right)\):
 - \(\Theta \left(\min \left(\frac{\|w\|_1^2}{\epsilon}, n \right) \right)\) (optimal via weighted Gap Hamming)
- Budget-additive \(\left(\min \left(b, \sum_{i=1}^{n} w_i x_i \right) \right)\):
 - \(\Theta \left(\min \left(\frac{\|w\|_1^2}{\epsilon}, n \right) \right)\)
- Coverage:
 - Optimal \(\Theta \left(\frac{1}{\epsilon} \right)\) (via \(L_1\)-Sampling)
- Matroid rank
- \(\alpha\)-Lipschitz submodular functions:
 - \(\Omega(n)\) communication lower bound for \(\alpha = \Omega(1/n)\)
 - Uses a large family of matroids from [Balcan, Harvey’10]
Thanks! Questions?

• Other stuff [Karpov, Y.]:
 – Linear Threshold Functions: \(\Theta \left(\frac{\theta}{m} \log \frac{\theta}{m} \right) \)
 • Resolves a communication conjecture of [MO’09]
 – Simple neural nets: LTF(ORs), LTF(LTFs)

• Blog post: http://grigory.us/blog/the-binary-sketchman
Example: Majority

- Majority function:
 \[\text{Maj}_n(z_1, ..., z_n) \equiv \sum_{i=1}^{n} z_i \geq n/2 \]
- \(\text{Maj}_n(S) \) only depends on \(|S|\)
- \(\text{Maj}_n(S) = 0 \) if \(|S|\) is odd
- \(W^k(\text{Maj}_n) = \sum_{|S|=k} \text{Maj}_n(S) = \alpha k^{-3/2} \left(1 \pm O \left(\frac{1}{k} \right) \right) \)
- \((n - 1)\)-dimensional subspace with most weight:
 \[A_{n-1} = \text{span} \{ \{1\}, \{2\}, ..., \{n-1\} \} \]
- \(\sum_{S \in A_{n-1}} \text{Maj}_n(S) = 1 - \frac{\gamma}{\sqrt{n}} \pm O(n^{-3/2}) \)
- Set \(\epsilon_2 = 1 - O(n^{-3/2}), \epsilon_1 = 1 - \frac{\gamma}{\sqrt{n}} + O(n^{-3/2}) \)
 \[\mathcal{D}^{1,U}_{O(1/\sqrt{n})} (\text{Maj}_n) \geq n \]