# Clustering on Clusters: Massively Parallel Algorithms for Clustering Graphs and Vectors



**VS** 



**Grigory Yaroslavtsev** 

http://grigory.us



# Clustering on Clusters: Overview

- Algorithm design for massively parallel computing
  - Blog: <a href="http://grigory.us/blog/mapreduce-model/">http://grigory.us/blog/mapreduce-model/</a>
- MPC algorithms for graphs
  - Connectivity
  - Correlation clustering
- MPC algorithms for vectors
  - K-means
  - Single-linkage clustering
- Open problems and directions



# Clustering on Clusters: Overview

|          | Graphs                    | Vectors                      |
|----------|---------------------------|------------------------------|
| Basic    | Connectivity              | K-means                      |
| Advanced | Correlation<br>Clustering | Single-Linkage<br>Clustering |

# Cluster Computation (a la BSP)

- Input: size n (e.g. n = billions of edges in a graph)
- M Machines, S Space (RAM) each
  - Constant overhead in RAM:  $\mathbf{M} \cdot \mathbf{S} = O(\mathbf{n})$
  - $-S = n^{1-\epsilon}$ , e.g.  $\epsilon = 0.1$  or  $\epsilon = 0.5$  ( $M = S = O(\sqrt{n})$ )
- Output: solution to a problem (often size O(n))
  - Doesn't fit in local RAM ( $S \ll n$ )



# Cluster Computation (a la BSP)

- Computation/Communication in R rounds:
  - Every machine performs a **near-linear time** computation => Total user time  $O(S^{1+o(1)}R)$
  - Every machine sends/receives at most S bits of information => Total communication O(nR).



# MapReduce-style computations

# YAHOO! Google





### What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
  - Computing XOR requires  $\widetilde{\Omega}(\log n)$  rounds in CRCW PRAM
  - Can be done in  $O(\log_s n)$  rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

# Models of parallel computation

Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13]
   Pros:
  - Inspired by modern systems (Hadoop, MapReduce, Dryad, Spark, Giraph, ...)
  - Few parameters, simple to design algorithms
  - New algorithmic ideas, robust to the exact model specification
  - # Rounds is an information-theoretic measure => can prove unconditional results

Con: sometimes not enough to model more complex behavior



# **Business perspective**

- Pricings:
  - https://cloud.google.com/pricing/
  - <a href="https://aws.amazon.com/pricing/">https://aws.amazon.com/pricing/</a>
- ~Linear with space and time usage
  - 100 machines: 5K \$/year
  - 10000 machines: 0.5M \$/year
- You pay a lot more for using provided algorithms
  - <a href="https://aws.amazon.com/machine-learning/pricing/">https://aws.amazon.com/machine-learning/pricing/</a>



# Part 1: Clustering Graphs

### Applications:

- Community detection
- Fake account detection
- Deduplication
- Storage localization

**—** ...



# **Problem 1: Connectivity**

- Input: n edges of a graph (arbitrarily partitioned between machines)
- Output: is the graph connected? (or # of connected components)
- Question: how many rounds does it take?

  - 1. O(1)2.  $O(\log^{\alpha} n)$
- 3.  $O(\mathbf{n}^{\alpha})$ 
  - 4.  $O(2^{\alpha n})$
  - 5. Impossible

# Algorithm for Connectivity

- Version of Boruvka's algorithm:
  - All vertices assigned to different components
  - Repeat  $O(\log n)$  times:
    - Each component chooses a neighboring component
    - All pairs of chosen components get merged
- How to avoid chaining?



 If the graph of components is bipartite and only one side gets to choose then no chaining



Randomly assign components to the sides

# Algorithm for Connectivity: Setup

Data: n edges of an undirected graph.

### **Notation:**

- $\pi(v) \equiv \text{unique id of } v$
- $\Gamma(S) \equiv \text{set of neighbors of a subset of vertices S}$ .

### Labels:

- Algorithm assigns a label  $\ell(v)$  to each v.
- $L_v \equiv$  the set of vertices with the label  $\ell(v)$  (invariant: subset of the connected component containing v).

### **Active** vertices:

• Some vertices will be called **active** (exactly one per  $L_v$ ).

# Algorithm for Connectivity

- Mark every vertex as **active** and let  $\ell(v) = \pi(v)$ .
- For phases  $i = 1, 2, ..., O(\log n)$  do:
  - Call each **active** vertex a **leader** with probability 1/2. If v is a **leader**, mark all vertices in  $L_v$  as **leaders**.
  - For every **active non-leader** vertex w, find the smallest **leader** (by  $\pi$ ) vertex w\* in  $\Gamma(L_w)$ .
  - Mark w passive, relabel each vertex with label w by w\*.
- Output: set of connected components based on  $\ell$ .

# Algorithm for Connectivity: Analysis

- If  $\ell(u) = \ell(v)$  then u and v are in the same CC.
- Claim: Unique labels with high probability after  $O(\log N)$  phases.
- For every CC # active vertices reduces by a constant factor in every phase.
  - Half of the active vertices declared as non-leaders.
  - Fix an active non-leader vertex  $\boldsymbol{v}$ .
  - If at least two different labels in the CC of v then there is an edge (v', u) such that  $\ell(v) = \ell(v')$  and  $\ell(v') \neq \ell(u)$ .
  - u marked as a leader with probability 1/2 ⇒ half of the active non-leader vertices will change their label.
  - Overall, expect 1/4 of labels to disappear.
  - After  $O(\log N)$  phases # of active labels in every connected component will drop to one with high probability

# Algorithm for Connectivity: Implementation Details

- Distributed data structure of size O(|V|) to maintain labels, ids, leader/non-leader status, etc.
  - O(1) rounds per stage to update the data structure
- Edges stored locally with all auxiliary info
  - Between stages: use distributed data structure to update local info on edges
- For every **active non-leader** vertex w, find the smallest **leader** (w.r.t  $\pi$ ) vertex w\*  $\in \Gamma(L_w)$ 
  - Each (non-leader, leader) edge sends an update to the distributed data structure
- Much faster with Distributed Hash Table Service (DHT)
   [Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii'14]

# Algorithms for Graphs

- Dense graphs vs. sparse graphs
  - Dense:  $S \gg |V|$ 
    - Linear sketching: one round, see [McGregor'14]
    - "Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]...
  - Sparse:  $S \ll |V|$  (or  $S \ll$  solution size) Sparse graph problems appear hard (**Big open question**: connectivity in  $o(\log n)$  rounds?)



VS.



# **Problem 2: Correlation Clustering**

Inspired by machine learning at WhizBang

- Practice: [Cohen, McCallum '01, Cohen, Richman '02]
- Theory: [Blum, Bansal, Chawla '04]



# Correlation Clustering: Example

Minimize # of incorrectly classified pairs:

# Covered non-edges + # Non-covered edges



- 4 incorrectly classified =
- 1 covered non-edge +
- 3 non-covered edges

# **Approximating Correlation Clustering**

- Minimize # of incorrectly classified pairs
  - $-\approx 20000$ -approximation [Blum, Bansal, Chawla'04]
  - [Demaine, Emmanuel, Fiat, Immorlica'04], [Charikar, Guruswami, Wirth'05], [Ailon, Charikar, Newman'05]
     [Williamson, van Zuylen'07], [Ailon, Liberty'08],...
  - ≈ 2-approximation [Chawla, Makarychev, Schramm,Y. '15]
- Maximize # of correctly classified pairs
  - $-(1-\epsilon)$ -approximation [Blum, Bansal, Chawla'04]

# **Correlation Clustering**

One of the most successful clustering methods:

- Only uses qualitative information about similarities
- # of clusters unspecified (selected to best fit data)
- Applications: document/image deduplication (data from crowds or black-box machine learning)
- NP-hard [Bansal, Blum, Chawla '04], admits simple approximation algorithms with good provable guarantees

# **Correlation Clustering**

### More:

- Survey [Wirth]
- KDD'14 tutorial: "Correlation Clustering: From Theory to Practice" [Bonchi, Garcia-Soriano, Liberty] <a href="http://francescobonchi.com/CCtuto">http://francescobonchi.com/CCtuto</a> kdd14.pdf
- Wikipedia article: <u>http://en.wikipedia.org/wiki/Correlation\_clustering</u>

# Data-Based Randomized Pivoting

3-approximation (expected) [Ailon, Charikar, Newman]

### Algorithm:

- Pick a random pivot vertex  $oldsymbol{v}$
- Make a cluster  $v \cup N(v)$ , where N(v) is the set of neighbors of v
- Remove the cluster from the graph and repeat

# Data-Based Randomized Pivoting

- Pick a random pivot vertex p
- Make a cluster  $p \cup N(p)$ , where N(p) is the set of neighbors of p
- Remove the cluster from the graph and repeat



- 8 incorrectly classified =
- 2 covered non-edges +
- 6 non-covered edges

# Parallel Pivot Algorithm

- $(3 + \epsilon)$ -approx. in  $O(\log^2 n / \epsilon)$  rounds [Chierichetti, Dalvi, Kumar, KDD'14]
- Algorithm: while the graph is not empty
  - D = current maximum degree
  - Activate each node independently with prob.  $\epsilon/D$
  - Deactivate nodes connected to other active nodes
  - The remaining nodes are pivots
  - Create cluster around each pivot as before
  - Remove the clusters

# Parallel Pivot Algorithm: Analysis

- Fact: Halves max degree after  $\frac{1}{\epsilon} \log n$  rounds
  - $\Rightarrow$  terminates in  $O\left(\frac{\log^2 n}{\epsilon}\right)$  rounds
- Fact: Activation process induces close to uniform marginal distribution of the pivots
  - $\Rightarrow$  analysis similar to regular pivot gives (3 +  $\epsilon$ )-approximation

# Part 2: Clustering Vectors

- Input:  $v_1, \dots, v_n \in \mathbb{R}^d$ 
  - Feature vectors in ML, word embedings in NLP, etc.
  - (Implicit) weighted graph of pairwise distances
- Applications:
  - Same as before + Data visualization





# Problem 3: K-means

- Input:  $v_1, \dots, v_n \in \mathbb{R}^d$
- Find k centers  $c_1, \dots, c_k$
- Minimize sum of squared distance to the closest center:

$$\sum_{i=1}^{n} \min_{j=1}^{k} ||v_i - c_j||_2^2$$

- $||v_i c_j||_2^2 = \sum_{t=1}^d (v_{it} c_{jt})^2$
- NP-hard



# K-means++ [Arthur, Vassilvitskii'07]

- $C = \{c_1, ..., c_t\}$  (collection of centers)
- $d^2(v, C) = \min_{j=1}^k ||v c_j||_2^2$

K-means++ algorithm (gives  $O(\log k)$ -approximation):

- Pick  $c_1$  uniformly at random from the data
- Pick centers  $c_2 \dots, c_k$  sequentially from the distribution where point v has probability

$$\frac{d^2(v,C)}{\sum_{i=1}^n d^2(v_i,C)}$$

# K-means [Bahmani et al. '12]

- Pick  $C = c_1$  uniformly at random from data
- Initial cost:  $\psi = \sum_{i=1}^n d^2(v_i, c_1)$
- Do  $O(\log \psi)$  times:
  - Add O(k) centers from the distribution where point v has probability

$$\frac{d^2(v,C)}{\sum_{i=1}^n d^2(v_i,C)}$$

- Solve k-means for these  $O(k \log \psi)$  points locally
- Thm. If final step gives  $\alpha$ -approximation  $\Rightarrow O(\alpha)$ -approximation overall

# Problem 4: Single Linkage Clustering

• [Zahn'71] Clustering via Minimum Spanning Tree:

**k** clusters: remove k-1 longest edges from MST

Maximizes minimum intercluster distance



[Kleinberg, Tardos]



# Large geometric graphs

- Graph algorithms: Dense graphs vs. sparse graphs
  - Dense:  $S \gg |V|$ .
  - Sparse:  $S \ll |V|$ .

### • Our setting:

- Dense graphs, sparsely represented: O(n) space
- Output doesn't fit on one machine ( $S \ll n$ )
- Today:  $(1 + \epsilon)$ -approximate MST [Andoni, Onak, Nikolov, Y.]
  - d = 2 (easy to generalize)
  - $R = \log_S n = O(1) \text{ rounds } (S = n^{\Omega(1)})$

# $O(\log n)$ -MST in $R = O(\log n)$ rounds

• Assume points have integer coordinates  $[0, ..., \Delta]$ , where  $\Delta = O(n^2)$ .

Impose an  $O(\log n)$ -depth quadtree

Bottom-up: For each cell in the quadtree

- compute optimum MSTs in subcells
- Use only one representative from each cell on the next level



### *EL*-nets

•  $\epsilon L$ -net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance  $\leftarrow$   $\epsilon L$  from some vertex in S. (Fact: Can efficiently compute  $\epsilon$ -net of size  $O\left(\frac{1}{\epsilon^2}\right)$ )

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use  $\epsilon L$ -net from each cell on the next level
- Idea: Pay only  $O(\epsilon L)$  for an edge cut by cell with side L
- Randomly shift the quadtree:

  Pr[cut edge of length Whonk] presentation per level

  O(1)-approximation per level





# Randomly shifted quadtree

• Top cell shifted by a random vector in  $[0, L]^2$ 

Impose a randomly shifted quadtree (top cell length  $2\Delta$ )

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use  $\epsilon L$ -net from each cell on the next level



Pay 5 instead of 4

Pr[Bad Cut] =  $\Omega(1)$ 

# $(1 + \epsilon)$ -MST in $\mathbf{R} = O(\log n)$ rounds

Idea: Only use short edges inside the cells

Impose a **randomly shifted** quadtree (top cell length  $\frac{2\Delta}{\epsilon}$ )

Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length  $\leq \epsilon L$
- Use only  $\epsilon^2 L$ -net from each cell on the next level



$$L = \Omega(\frac{1}{\epsilon})$$

$$Pr[Bad Cut] = O(\epsilon)$$

# $(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

- $O(\log n)$  rounds =>  $O(\log_s n)$  = O(1) rounds
  - Flatten the tree:  $(\sqrt{M} \times \sqrt{M})$ -grids instead of (2x2) grids at each level.



Impose a randomly shifted  $(\sqrt{M} \times \sqrt{M})$ -tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length  $\leq \epsilon L$
- Use only  $\epsilon^2 L$ -net from each cell on the next level

# $(1 + \epsilon)$ -MST in $\mathbf{R} = 0(1)$ rounds

Theorem: Let l = # levels in a random tree P  $\mathbb{E}_{P}[\mathsf{ALG}] \leq \left(1 + O(\epsilon ld)\right)\mathsf{OPT}$ 

### **Proof (sketch):**

- $\Delta_P(u, v)$  = cell length, which first partitions (u, v)
- New weights:  $w_P(u,v) = ||u-v||_2 + \epsilon \Delta_P(u,v)$   $||u-v||_2 \le \mathbb{E}_P[w_P(u,v)] \le (1 + O(\epsilon d))||u-v||_2$
- Our algorithm implements Kruskal for weights  $w_P$

## **Technical Details**

### $(1+\epsilon)$ -MST:

- "Load balancing": partition the tree into parts of the same size
- Almost linear time locally: Approximate Nearest
   Neighbor data structure [Indyk'99]
- Dependence on dimension **d** (size of  $\epsilon$ -net is  $O\left(\frac{d}{\epsilon}\right)^a$ )
- Generalizes to bounded doubling dimension

# Thanks! Questions?

- Slides will be available on <a href="http://grigory.us">http://grigory.us</a>
- More about algorithms for massive data:

http://grigory.us/blog/

More in the classes I teach:



