Clustering on Clusters:
assively Parallel Algorithms for
lustering Graphs and Vectors

Grigory Yaroslavtsev
http://grigory.us

http://grigory.us/

Clustering on Clusters: Overview

Algorithm design for massively parallel computing
— Blog: http://grigorv.us/blog/mapreduce—model/

MPC algorithms for graphs
— Connectivity
— Correlation clustering

MPC algorithms for vectors
— K-means
— Single-linkage clustering

Open problems and directions

http://grigory.us/blog/mapreduce-model/
http://grigory.us/blog/mapreduce-model/
http://grigory.us/blog/mapreduce-model/

Clustering on Clusters: Overview

Vectors

Basic Connectivity K-means

Correlation Single-Linkage
Clustering Clustering

Advanced

Cluster Computation (a la BSP)

* Input: size n (e.g. n = billions of edges in a graph)

M Machines, S Space (RAM) each
— Constant overhead inRAM: M-S = 0(n)
—S=n'"¢,eg.e=010re=05(M=S=0Hn))

* Output: solution to a problem (often size O(n))
— Doesn’t fit in local RAM (S < n)

Input: sizen = % = Output

<l
e

S space

} M machines

Cluster Computation (a la BSP)

* Computation/Communication in R rounds:

— Every machine performs a near-linear time
computation => Total user time 0 (S1T°(VR)

— Every machine sends/receives at most S bits of
information => Total communication O (nR).

Goal: Minimize R. Ideally: R = constant.

= b } M machines

: 0(S1°M) time

S space

MapReduce-style computations

YaHoO! Godgle

What | won’t discuss today

* PRAMs (shared memory, multiple processors) (see
e.g. [Karloff, Suri, Vassilvitskii‘10])
— Computing XOR requires Q(logn) rounds in CRCW PRAM
— Can be done in O(logg n) rounds of MapReduce

* Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

* Lower-level implementation details (see e.g. ===
Rajaraman-Leskovec-Ullman book) @

Models of parallel computation

e Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models
Con: Many parameters, hard to design algorithms
* Massive Parallel Computation [Feldman-Muthukrishnan-

Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10,
Goodrich-Sitchinava-Zhang’1l, ..., Beame, Koutris, Suciu’13]

Pros:

* [Inspired by modern systems (Hadoop, MapReduce, Dryad,
Spark, Giraph, ...)

 Few parameters, simple to design algorithms
* New algorithmic ideas, robust to the exact model specification

* # Rounds is an information-theoretic measure => can prove
unconditional results

Con: sometimes not enough to model more complex behavior

* Pricings:

— https://cloud.google.com/pricing/

— https://aws.amazon.com/pricing/

 ~Linear with space and time usage
— 100 machines: 5K $/year
— 10000 machines: 0.5M S$/year

* You pay a lot more for using provided
algorithms

— https://aws.amazon.com/machine-

learning/pricing/

https://cloud.google.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/
https://aws.amazon.com/machine-learning/pricing/

Part 1: Clustering Graphs

Applications:

— Community detection
— Fake account detection
— Deduplication

— Storage localization

Problem 1: Connectivity

* Input: n edges of a graph (arbitrarily
partitioned between machines)

e Qutput: is the graph connected? (or # of
connected components)

* Question: how many rounds does it take?

1. 0(1)
«2. O(log%n)
3. 0(n%)

4. 002%™

5. Impossible

Algorithm for Connectivity

Version of Boruvka’s algorithm:

— All vertices assigned to different components
— Repeat O(log n) times:
* Each component chooses a neighboring component
 All pairs of chosen components get merged

How to avoid chaining?
O—=>0—>0—>0—>0—>0—>0—>0—>0—>0—>0

If the graph of components is bipartite and only
one side gets to choose then no chaining

e 7

Randomly assign components to the sides

Algorithm for Connectivity: Setup

Data: n edges of an undirected graph.

Notation:
* (V) = uniqueid of v
* I'(S) = set of neighbors of a subset of vertices S.

Labels:
* Algorithm assigns a label £(v) to each v.

* L, = the set of vertices with the label £(v) (invariant:
subset of the connected component containing v).

Active vertices:
* Some vertices will be called active (exactly one per L,,).

Algorithm for Connectivity

* Mark every vertex as active and let £(v) = n(v).
* Forphasesi =1,2,...,0(logn) do:

— Call each active vertex a leader with probability 1/2.
If v is a leader, mark all vertices in L,, as leaders.

— For every active non-leader vertex w, find the
smallest leader (by) vertexw* inT'(L,,).

— Mark w passive, relabel each vertex with label w by w™.

* Output: set of connected components based on ¥.

Algorithm for Connectivity: Analysis

If £(u) = £(v) then u and v are in the same CC.

Claim: Unique labels with high probability
after O(log N) phases.

For every CC # active vertices reduces by a constant factor

in every phase.

— Half of the active vertices declared as non-leaders.

— Fix an active non-leader vertex v.

— If at least two different labels in the CC of v then there is an
edge (v',u) such that £(v) = ¢(v') and £(v') # £(u).

— u marked as a leader with probability 1/2 = half of the active
non-leader vertices will change their label.

— Overall, expect 1/4 of labels to disappear.

— After O(log N) phases # of active labels in every connected
component will drop to one with high probability

Algorithm for Connectivity:
Implementation Details

Distributed data structure of size O(|V|) to maintain
labels, ids, leader/non-leader status, etc.

— O(1) rounds per stage to update the data structure

Edges stored locally with all auxiliary info

— Between stages: use distributed data structure to update
local info on edges

For every active non-leader vertex w, find the
smallest leader (w.r.t) vertex w* € I'(L,,)

— Each (non-leader, leader) edge sends an update to the
distributed data structure

Much faster with Distributed Hash Table Service (DHT)
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14]

Algorithms for Graphs

* Dense graphs vs. sparse graphs
— Dense: S > |V]

* Linear sketching: one round, see [McGregor’14]

e “Filtering” (Output fits on a single machine) [Karloff,
Suri Vassilvitskii, SODA’10; Ene, Im, Moseley, KDD’'11;
Lattanzi, Moseley, Suri, Vassilvitskii, SPAA’11; Suri,
Vassilvitskii, WWW’11]...

— Sparse: § < |V| (or § < solution size)

Sparse graph problems appear hard (Big open question:
connectivity in o(log n) rounds?)

= ad

Problem 2: Correlation Clustering

* Inspired by machine learning at Wh’im

LABS
* Practice: [Cohen, McCallum ‘01, Cohen, Richman ’02]

* Theory: [Blum, Bansal, Chawla ’04]

e | X

Correlation Clustering: Example

* Minimize # of incorrectly classified pairs:

Covered non-edges + # Non-covered edges

4 incorrectly classified =
1 covered non-edge +
3 non-covered edges

Approximating Correlation Clustering

* Minimize # of incorrectly classified pairs
— =~ 20000-approximation [Blum, Bansal, Chawla’04]

— [Demaine, Emmanuel, Fiat, Immorlica’04],[Charikar,
Guruswami, Wirth’05], [Ailon, Charikar, Newman’05]
[Williamson, van Zuylen’07], [Ailon, Liberty’08],...

— =~ 2-approximation [Chawla, Makarychev, Schramm,
Y. '15]

 Maximize # of correctly classified pairs

— (1 — €)-approximation [Blum, Bansal, Chawla’04]

Correlation Clustering

One of the most successful clustering methods:

* Only uses qualitative information about
similarities

* # of clusters unspecified (selected to best fit
data)

* Applications: document/image deduplication
(data from crowds or black-box machine
learning)

* NP-hard [Bansal, Blum, Chawla ‘04], admits
simple approximation algorithms with good
provable guarantees

Correlation Clustering

More:
e Survey [Wirth]

 KDD’14 tutorial: “Correlation Clustering: From
Theory to Practice” [Bonchi, Garcia-Soriano,
Liberty]
http://francescobonchi.com/CCtuto kdd14.pdf

* Wikipedia article:
http://en.wikipedia.org/wiki/Correlation cluster

ing

http://francescobonchi.com/CCtuto_kdd14.pdf
http://en.wikipedia.org/wiki/Correlation_clustering
http://en.wikipedia.org/wiki/Correlation_clustering

Data-Based Randomized Pivoting

3-approximation (expected) [Ailon, Charikar,
Newman]

Algorithm:
* Pick a random pivot vertex v

* Make a cluster v U N(v), where N(v) is the set
of neighbors of v

* Remove the cluster from the graph and repeat

Data-Based Randomized Pivoting

* Pick a random pivot vertex p

* Make a cluster p U N(p), where N(p) is the set
of neighbors of p

 Remove the cluster from the graph and repeat

8 incorrectly classified =
2 covered non-edges +
6 non-covered edges

Parallel Pivot Algorithm

* (3 + €)-approx. in O(log? n / €) rounds
[Chierichetti, Dalvi, Kumar, KDD’14]

e Algorithm: while the graph is not empty
— D = current maximum degree
— Activate each node independently with prob. €/D
— Deactivate nodes connected to other active nodes
— The remaining nodes are pivots
— Create cluster around each pivot as before
— Remove the clusters

Parallel Pivot Algorithm: Analysis

1
* Fact: Halves max degree after zlogn rounds

log? n

= terminates in O () rounds

€
e Fact: Activation process induces close to uniform
marginal distribution of the pivots

= analysis similar to regular pivot gives (3 + €)-
approximation

Part 2: Clustering Vectors

e Input: vq, ..., v, € R
— Feature vectors in ML, word embedings in NLP, etc.
— (Implicit) weighted graph of pairwise distances

* Applications:

— Same as before + Data visualization

Input: vy, ..., v, € R
Find k centers ¢4, ..., Ci

Minimize sum of squared
distance to the closest center:

n
.k 2
> minf v = 6113
=1

2 _ wd
v — 115 = Tie1(vie — ¢
NP-hard

K-means++ [ArthurVassilvitskii’07]

* C ={cq,...,C¢} (collection of centers)

_ ¢ 2
- d2(v,C) = m1nj=1||v—cj||2

K-means++ algorithm (gives O (log k)-approximation):

* Pick ¢y uniformly at random from the data

* Pick centers ¢, ..., ¢ sequentially from the
distribution where point v has probability

d*(v,C)
Qi1 d?(v;, C)

K-mea ns\ ‘ [Bahmani et al. ‘12]

Pick C = ¢4 uniformly at random from data
Initial cost: Y = Y-, d*(v;, ¢;1)
Do O(logy) times:

— Add O (k) centers from the distribution where point v
has probability

d?*(v, C)
Z?zl dz(vi, C)
Solve k-means for these O(k log) points locally

Thm. If final step gives a-approximation
= O(a)-approximation overall

Problem 4: Single Linkage Clustering

e [Zahn’71] Clustering via Minimum Spanning Tree:
k clusters: remove k — 1 longest edges from MST

e Maximizes minimum intercluster distance

quality of this

partitioning is O
min{a,b,c} O

[Kleinberg, Tardos]

Large geometric graphs

* Graph algorithms: Dense graphs vs. sparse graphs
— Dense: S > |V].
— Sparse: § < |V].

* Qur setting:
— Dense graphs, sparsely represented: O(n) space

— Output doesn’t fit on one machine (§ < n)

* Today: (1 + €)-approximate MST [Andoni, Onak, Nikolov, Y.]
— d = 2 (easy to generalize)
— R =loggn = 0O(1) rounds (§ = n®D)

O(logn)-MSTin R = O(logn) rounds

* Assume points have integer coordinates [0, ..., A], where
A =0(n?).

Impose an O (logn)- depth quadtree
Bottom-up: ForzeaeF

— compute ofFtiFiL
— Use only onedigs mieach on the next level

. Wrong representative:
\(.\/ O(1)-approximation per level

B

€L-nets
eL-net for a cell C with side length L:

Collection S of vertices in C, every vertex is at distance <= elL from some
vertex in S. (Fact: Can efficiently compute e-net of size O (6—2)

Bottom-up: For each cell in the quadtree

— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

Idea: Pay only O(€L) for an edge cut by cell with side L

Randomly shift the quadtree:
Pricut edge of length ¥Wbonk [{presehtatblvarge errors

O(1)-appryximation per level

A N

L L L

Randomly shifted quadtree

* Top cell shifted by a random vector in [0, L]?
Impose a randomly shifted quadtree (top cell length 2A)

Bottom-up: For each cell in the quadtree
— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

o (I Pay 5 jnstead of 4

2

Ll] Pr[BaEaéfl L 01)
—

(14 €)-MSTinR = 0(log n) rounds

 |dea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length ZE—A)

Bottom-up: For each node (cell) in the quadtree

— compute optimum Minimum Spanning Forests in subcells,
using edges of length < €L

— Use only €?L-net from each cell on the next level

A

L=0()

AT
I Pr[Bad Cut] = O(e€)

(1+€)-MSTinR = 0(1) rounds

* O(logn) rounds => O(logg n) = O(1) rounds
— Flatten the tree: (VM x v/M)-grids instead of (2x2) grids at

each level.
}m — 0

=

Impose a randomly shifted (VM X VM)-tree
Bottom-up: For each node (cell) in the tree
— compute optimum MSTs in subcells via edges of length < €L

— Use only €% L-net from each cell on the next level

(1+ €)-MSTinR = 0(1) rounds

Theorem: Let | = # levels in a random tree P
Ep[ALG] < (1 + O(eld))OPT

Proof (sketch):

* Ap(u,v) = cell length, which first partitions (u, v)

* New weights:

||u —UH2 <

e QOur algorith

Technical Details

(1 + €)-MST:

— “Load balancing”: partition the tree into parts of the
same size

— Almost linear time locally: Approximate Nearest
Neighbor data structure [Indyk’99]

d
— Dependence on dimension d (size of e-net is O (g))

— Generalizes to bounded doubling dimension

Thanks! Questions?

* Slides will be available on http://grigory.us
 More about algorithms for massive data:

http://grigory.us/blog/
* More in the classes | teach:
l,lJ
_ CSCI B609:
KECEII§ ZZ?Q?LM KEEP CALM
AND DIG
CRUNCH FOUNDATIONS
DATA IN o(N) DATA SCIENCE

http://grigory.us/
http://grigory.us/blog/

