
Clustering	on	Clusters	2049:	
Massively	Parallel	Algorithms	for	
Clustering	Graphs	and	Vectors

Grigory Yaroslavtsev
http://grigory.us

vs

• Algorithm	design	for	massively	parallel	computing
– Blog:	http://grigory.us/blog/mapreduce-model/

• MPC	algorithms	for	graphs
– Connectivity
– Correlation	clustering

• MPC	algorithms	for	vectors
– K-means
– Single-linkage	clustering

• Open	problems	and	directions

Clustering	on	Clusters:	Overview

Clustering	on	Clusters	2049:	Overview

Graphs Vectors

Basic Connectivity
Connectivity++

K-means
--

Advanced

Correlation
Clustering

Single-Linkage
Clustering

MST
Single-Linkage
Clustering

Cluster	Computation	(a	la	BSP)
• Input:	size	n	(e.g.	n	= billions of edges	in	a	graph)
• 𝑴Machines,	𝑺 Space	(RAM)	each	
– Constant	overhead	in	RAM:	𝑴 ⋅ 𝑺	 = 	𝑂(𝒏)
– 𝑺 =	𝒏*+,	,	e.g.	𝜖 =	0.1 or	𝜖 =	0.5	(𝑴 = 𝑺 = 𝑂(𝒏�))

• Output:	solution	to	a	problem	(often	size	O(𝒏))
– Doesn’t	fit	in	local	RAM	(𝑺 ≪ 𝒏)

} 𝑴	machines}
S	space

𝐈𝐧𝐩𝐮𝐭: size	𝒏 ⇒ ⇒	𝐎𝐮𝐭𝐩𝐮𝐭

} 𝑴	machines}
S	space

Cluster	Computation	(a	la	BSP)
• Computation/Communication	in	𝑹 rounds:
– Every	machine	performs	a	near-linear	time
computation	=>	Total	user	time	𝑂(𝑺𝟏?𝒐(𝟏)𝑹)

– Every	machine	sends/receives	at	most	𝑺 bits of	
information	=>	Total	communication	𝑂(𝒏𝑹).

Goal:Minimize	𝑹.																								Ideally:	𝑹 =	constant.

𝑶(𝑺𝟏?𝒐(𝟏)) time

≤ 𝑺 bits

MapReduce-style	computations

What	I	won’t	discuss	today
• PRAMs	(shared	memory,	multiple	processors)	(see	
e.g.	[Karloff,	Suri,	Vassilvitskii‘10])
– Computing	XOR	requires	ΩD(log 𝑛) rounds	in	CRCW	PRAM
– Can	be	done	in	𝑂(log𝒔 𝑛) rounds	of	MapReduce

• Pregel-style	systems,	Distributed	Hash	Tables	(see	
e.g.	Ashish	Goel’s class	notes	and	papers)

• Lower-level	implementation	details	(see	e.g.	
Rajaraman-Leskovec-Ullman book)

Models	of	parallel	computation
• Bulk-Synchronous	Parallel	Model (BSP)	[Valiant,90]

Pro:	Most	general,	generalizes	all	other	models
Con:Many	parameters,	hard	to	design	algorithms

• Massive	Parallel	Computation [Andoni,	Onak,	Nikolov,	Y.	‘14]	
[Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina’07,	Karloff-Suri-
Vassilvitskii’10,	Goodrich-Sitchinava-Zhang’11,	...,	Beame,	Koutris,	
Suciu’13]	
Pros:
• Inspired	by	modern systems	(Hadoop,	MapReduce,	Dryad,	Spark,	

Giraph,	…)
• Few	parameters,	simple to	design	algorithms
• New	algorithmic	ideas,	robust	to	the	exact	model	specification
• #	Rounds is	an	information-theoretic	measure	=>	can	prove	

unconditional	results
Con:	sometimes	not	enough	to	model	more	complex	behavior

Business	perspective
• Pricings:
– https://cloud.google.com/pricing/
– https://aws.amazon.com/pricing/

• ~Linear	with	space and	time usage
– 100	machines:	5K	$/year	
– 10000	machines:	0.5M	$/year

• You	pay	a	lot	more for	using	provided	
algorithms
– https://aws.amazon.com/machine-
learning/pricing/

Part	1:	Clustering	Graphs

• Applications:
– Community	detection
– Fake	account	detection
– Deduplication
– Storage	localization
– …

Problem	1:	Connectivity

• Input:	n edges	of	a	graph	(arbitrarily	
partitioned	between	machines)

• Output:	is	the	graph	connected?	(or	#	of	
connected	components)

• Question:	how	many	rounds	does	it	take?
1. 𝑂 1
2. 𝑂 logM n
3. 𝑂(nM)
4. 𝑂(2Mn)
5. Impossible

• Version	of	Boruvka’s algorithm:
– All	vertices	assigned	to	different	components
– Repeat	𝑂(log |V|) times:

• Each	component	chooses	a	neighboring	component
• All	pairs	of	chosen	components	get	merged

• How	to	avoid	chaining?

• If	the	graph	of	components	is	bipartite	and	only	
one	side	gets	to	choose	then	no	chaining

• Randomly assign	components	to	the	sides

Algorithm	for	Connectivity

Algorithms	for	Graphs:	Graph	Density

• Dense:	𝑺 ≫ |𝑉|,	e.g.	𝑺 ≥ 𝑉 T/V

• Semi-dense:	𝑺 = Θ(|𝑉|)
• Sparse:	𝑺 ≪ 𝑉 ,	e.g.	𝑺 ≤ 𝑉 */V	

Algorithms	for	Graphs:	Graph	Density

• Dense:	𝑺 ≫ |𝑉|,	e.g.	𝑺 ≥ 𝑉 T/V

– Linear	sketching:	one	round,	see	[McGregor’14]
• Workshop	at	Berkeley	tomorrow:	
http://caml.indiana.edu/linear-sketching-focs.html

• “Filtering”	[Karloff,	Suri	Vassilvitskii,	SODA’10;	
Ene,	Im,	Moseley,	KDD’11;	Lattanzi,	Moseley,	
Suri,	Vassilvitskii,	SPAA’11;	Suri,	Vassilvitskii,	
WWW’11]…

Algorithms	for	Graphs:	Graph	Density

• Semi-dense Graphs:	𝑺 = Θ(|𝑉|) [Avdyukhin,	Y.]
– Run	Boruvka’s algorithm	for	O(log |𝑉|	�)	rounds

– #	Vertices	reduces	down	to	 |Y|

		 V Z[\	|]|�

– Repeat	O(log |𝑉|	�) times:
• Compute	a	spanning	tree	of	locally	stored	edges

• Put		 2 ^_`	|Y|�
such	trees	per	machine

Algorithms	for	Graphs:	Graph	Density

• Sparse:	𝑺 ≪ 𝑉 , 𝑺 ≤ 𝑉 */V	

• Sparse	graph	problems	appear	hard	
– Big	open	question:	connectivity	in	o(log	|𝑉|) rounds?
– Probably	no:	[Roughgarden,	Vassilvitskii,	Wang’16]

• “One	Cycle	vs.	Two	Cycle”	Problem
– Distinguish	one	cycle	from	two	in	o(log	|𝑉|) rounds?

VS.

Other	Connectivity	Algorithms
• [Rastogi,Machanavajjhala,Chitnis,	Das	Sarma’13]
– D	=	graph	diameter

Algorithm MR	Rounds Communication	per	round

Hash-Min D 𝑂(𝑉 + |𝐸|)
Hash-to-all Log	D 𝑂(𝑉 V + |𝐸|)

Hash-to-Min 𝑂(log |𝑉|)
for	paths

𝑂c	((𝑉 + 𝐸))	
for	paths

Hash-Greater-to-
Min O(log	n) O(|V|	+	|E|)

Graph-Dependent	Connectivity	Algs?

• Big	question:	connectivity	in	𝑂 log		𝐷 rounds	
with	𝑂c(𝑉 + |𝐸|) communication	per	round?

• [Rastogi et	al’13]	conjectured	that	Hash-to-Min	
can	achieve	this

• [Avdyukhin,	Y.’17]:
– Hash-to-Min	takes	Ω 𝐷 rounds

• Open	problem:	better	connectivity	algorithms	if	
we	parametrize	by	graph	expansion?

• Other	work: [Kiveris et	al.	‘14]

What	about	clustering?

• ≈same	ideas	work	for	Single-Linkage	Clustering
• Using	connectivity	as	a	primitive	can	preserve	
cuts	in	graphs	[Benczur,	Karger’98]
– Construct	a	graph	with	O(n	log	n)	edges
– All	cut	sizes	are	preserved	with	a	factor	of	2

• Allows	to	run	clustering	algorithms	that	use	
cuts	in	the	objective	using	this	sparse	graph

Single	Linkage	Clustering
• [Zahn’71]	Clustering via	Minimum	Spanning	Tree:	
k clusters:	remove	𝒌 − 𝟏 longest	edges	from	MST
• Maximizes	minimum intercluster distance

[Kleinberg,	Tardos]

Part	2:	Clustering	Vectors
• Input:	𝑣*, … , 𝑣𝒏 ∈ 	ℝ𝒅
– Feature	vectors	in	ML,	word	embeddings in	NLP,	etc.
– (Implicit)	weighted	graph	of	pairwise	distances

• Applications:
– Same	as	before	+	Data	visualization

Large	geometric	graphs
• Graph	algorithms:	Dense	graphs vs.	sparse	graphs
– Dense:	𝑺 ≫ |𝑉|.	
– Sparse:	𝑺 ≪ |𝑉|.	

• Our	setting:
– Dense	graphs,	sparsely	represented:	O(n)	space
– Output	doesn’t	fit	on	one	machine	(𝑺 ≪ 	𝒏)

• Today:	(1 + 𝜖)-approximate	MST	[Andoni,	Onak,	Nikolov,	Y.]
– 𝒅 = 2 (easy	to	generalize)	
– 𝑹 = log𝑺 𝒏=	O(1)	rounds	(𝑺 = 𝒏𝛀(𝟏))

𝑂(log	𝑛)-MST	in 𝑅 = 𝑂(log	𝑛)		rounds	
• Assume	points	have	integer	coordinates	 0,… , Δ ,	where	
Δ = 𝑂 𝒏𝟐 	.

Impose	an	𝑂(log	𝒏)-depth	quadtree
Bottom-up:	For	each	cell	in	the	quadtree

– compute	optimum	MSTs	in	subcells
– Use	only	one representative from	each	cell	on	the	next	level

Wrong	representative:	
O(1)-approximation	per	level

Wrong	representative:	
O(1)-approximation	per	level

𝝐𝑳-nets
• 𝝐𝑳-net	for	a	cell	C	with	side	length	𝑳:

Collection	S of	vertices	in	C,	every	vertex	is	at	distance	<=	𝝐𝑳 from	some	
vertex	in	S.	(Fact:	Can	efficiently	compute	𝝐-net	of	size	𝑂 *

𝝐�
)

Bottom-up:	For	each	cell	in	the	quadtree
– Compute	optimum	MSTs	in	subcells
– Use	𝝐𝑳-net	from	each	cell	on	the	next	level

• Idea:	Pay	only	O(𝝐𝑳)	for	an	edge cut	by	cell	with	side	𝑳
• Randomly	shift	the	quadtree:	
Pr 𝑐𝑢𝑡	𝑒𝑑𝑔𝑒	𝑜𝑓	𝑙𝑒𝑛𝑔𝑡ℎ	ℓ	𝑏𝑦	𝑳 ∼ ℓ/𝑳 – charge	errors

𝑳 𝑳𝜖𝑳

Randomly	shifted	quadtree
• Top	cell	shifted	by	a	random	vector	in	 0, 𝑳 V

Impose	a	randomly	shifted quadtree (top	cell	length	𝟐𝚫)
Bottom-up:	For	each	cell	in	the	quadtree
– Compute	optimum	MSTs	in	subcells
– Use	𝝐𝑳-net	from	each	cell	on	the	next	level

Pay	5 instead	of	4
Pr[𝐁𝐚𝐝	𝐂𝐮𝐭]	=	𝛀(1)

2

1

𝐁𝐚𝐝	𝐂𝐮𝐭

1 + 𝝐 -MST	in 𝐑 = 𝑂(log		𝑛)		rounds	
• Idea: Only	use	short	edges	inside	the	cells

Impose	a	randomly	shifted quadtree (top	cell	length	𝟐𝚫
𝝐	
)

Bottom-up:	For	each	node	(cell)	in	the	quadtree
– compute	optimum	Minimum	Spanning	Forests in	subcells,	
using	edges	of	length≤ 𝝐𝑳

– Use	only	𝝐𝟐𝑳-net	from	each	cell	on	the	next	level

2

1
Pr[𝐁𝐚𝐝	𝐂𝐮𝐭]	=	𝑶(𝝐)

𝑳 = 𝛀(𝟏
𝝐
)

1 + 𝝐 -MST	in 𝐑 = 𝑂(1)		rounds
• 𝑂(log	𝒏) rounds	=>	O(log𝑺 𝒏)	=	O(1)	rounds
– Flatten	the	tree:	(𝑴� × 𝑴�)-grids	instead	of	(2x2)	grids	at	each	
level.

Impose	a	randomly	shifted (𝑴� × 𝑴�)-tree
Bottom-up:	For	each	node	(cell)	in	the	tree	
– compute	optimum	MSTs	in	subcells via	edges	of	length ≤ 𝝐𝑳
– Use	only	𝝐𝟐𝑳-net	from	each	cell	on	the	next	level

⇒ } 𝑴� = 𝒏�(*)

Single-Linkage	Clustering			[Y.,	Vadapalli]

• Q:	Single-linkage	clustering	from	(1 + 𝜖)-MST?
• A:	No,	a	fixed	edge	can	be	arbitrarily	distorted

• Idea:	
– Run	𝑂 log 𝑛 times	&	collect	all	(1 + 𝜖)-MST	edges
– Compute	MST	of	these	edges	using	Boruvka
– Use	this	MST	for	k-Single	Linkage	Clustering	for	all	k

• Overall:	O(log	n)	rounds	of	MPC	instead	of	O(1)
• Q:	Is	this	actually	necessary?
• A:	Most	likely	yes,	i.e.	yes,	assuming	sparse	
connectivity	is	hard

Single-Linkage	Clustering			[Y.,	Vadapalli]

• Conj 1:	Sparse	Connectivity	requires	Ω(log |𝑉|)
• Conj 2:	“1	cycle	vs.	2	cycles”	requires	Ω(log |𝑉|)
• Under	ℓ�-Distances:

Distance Approximation Hardness under	
Conjecture	1*

Hardness under	
Conjecture	2*

Hamming Exact 2 3
ℓ* (1 + 𝜖) 2	 3
ℓV (1 + 𝜖) 1.41	 − 𝜖 1.84	 − 𝜖
ℓ¡ (1 + 𝜖) 2

Thanks!	Questions?
• Slides	will	be	available	on	http://grigory.us
• More	about	algorithms	for	massive	data:

http://grigory.us/blog/
• More	in	the	classes	I	teach:

1 + 𝝐 -MST	in 𝐑 = 𝑂(1)		rounds
Theorem:	Let	𝒍 =	#	levels	in	a	random	tree	P

𝔼𝑷 𝐀𝐋𝐆 ≤ 1 + 𝑂 𝝐𝒍𝒅 𝐎𝐏𝐓	
Proof	(sketch):	
• 𝚫𝑷(𝑢, 𝑣) =	cell	length,	which	first	partitions	(𝑢, 𝑣)
• New	weights:𝒘𝑷 𝑢, 𝑣 = 𝑢	 − 𝑣 V + 𝝐𝚫𝑷 𝑢, 𝑣

𝑢	 − 𝑣 V ≤ 𝔼𝑷[𝒘𝑷 𝑢, 𝑣] ≤ 1 + 𝑂 𝝐𝒍𝒅 𝑢	 − 𝑣 V

• Our	algorithm	implements	Kruskal for	weights	𝒘𝑷

𝑢 𝑣
𝚫𝑷 𝑢, 𝑣

Technical	Details

(1 + 𝜖)-MST:
– “Load	balancing”:	partition	the	tree	into	parts	of	the	
same	size

– Almost	linear	time	locally:	Approximate	Nearest	
Neighbor	data	structure	[Indyk’99]

– Dependence	on	dimension	d (size	of	𝝐-net	is	𝑂 𝒅
𝝐

𝒅
)

– Generalizes	to	bounded	doubling	dimension

Algorithm	for	Connectivity:	Setup
Data:	n	edges	of	an	undirected	graph.	

Notation:
• 𝜋(𝑣) ≡	unique	id	of	𝑣
• Γ(𝑆) ≡ set	of	neighbors	of	a	subset	of	vertices S.

Labels:
• Algorithm	assigns	a	label ℓ(𝑣) to	each	𝑣.	
• 𝐿´ ≡	the	set	of	vertices	with	the	label ℓ(𝑣) (invariant:	
subset	of	the	connected	component	containing 𝑣).	

Active vertices:
• Some	vertices	will	be	called	active	(exactly	one	per	𝐿´).

Algorithm	for	Connectivity

• Mark	every	vertex as active and	let ℓ(𝑣) = 𝜋(𝑣).
• For	phases 𝑖 = 1,2, … , 𝑂(log	n) do:
– Call	each active vertex	a leader with	probability 1/2.	
If v is	a	leader,	mark	all	vertices	in 𝐿´ as leaders.

– For	every active	non-leader vertex w,	find	the	
smallest leader	(by 𝜋)	vertexw⋆ in	Γ(𝐿¸).

– Mark w passive, relabel each	vertex	with	label w by w⋆.

• Output:	set	of	connected	components	based	on	 ℓ.

Algorithm	for	Connectivity:	Analysis
• If ℓ(𝑢) = ℓ(𝑣) then 𝑢 and 𝑣 are	in	the	same	CC.
• Claim: Unique	labels	with	high	probability	
after 𝑂(log𝑁) phases.	

• For	every	CC	#	active	vertices	reduces	by	a	constant	factor	
in	every	phase.	
– Half	of	the	active	vertices	declared	as	non-leaders.	
– Fix	an	active	non-leader vertex 𝒗.	
– If	at	least	two	different	labels	in	the	CC	of v then	there	is	an	
edge (𝒗′, 𝒖) such	that ℓ(𝒗) = ℓ(𝒗′) and	ℓ(𝒗′) ≠ ℓ(𝒖).	

– 𝒖marked	as	a	leader with	probability 1/2	⇒	half	of	the	active	
non-leader	vertices	will	change	their	label.	

– Overall,	expect 1/4 of	labels	to	disappear.	
– After 𝑂(log𝑁) phases	#	of	active	labels	in	every	connected	
component	will	drop	to	one	with	high	probability

Algorithm	for	Connectivity:	
Implementation	Details

• Distributed	data	structure		of	size	𝑂 𝑉 	to	maintain	
labels,	ids,	leader/non-leader	status,	etc.
– O(1)	rounds	per	stage	to	update	the	data	structure

• Edges	stored	locally	with	all	auxiliary	info
– Between	stages:	use	distributed	data	structure	to	update	
local	info	on	edges

• For	every active	non-leader vertex w,	find	the	
smallest leader	(w.r.t 𝜋)	vertexw⋆ ∈ Γ(𝐿¸)
– Each	(non-leader,	leader)	edge	sends	an	update	to	the	
distributed	data	structure

• Much	faster	with	Distributed	Hash	Table	Service	(DHT)	
[Kiveris,	Lattanzi,	Mirrokni,	Rastogi,	Vassilvitskii’14]

⇒
Problem	3:	K-means

• Input:	𝑣*, … , 𝑣𝒏 ∈ 	ℝ𝒅
• Find	𝒌 centers	𝑐*, … , 𝑐𝒌
• Minimize	sum	of	squared	
distance	to	the	closest	center:	

¾min¿À*Á ||𝑣Â − 𝑐¿||VV	
Ã

ÂÀ*

• ||𝑣Â − 𝑐¿||VV = ∑ 𝑣ÂÅ − 𝑐¿Å
V𝒅

ÅÀ*
• NP-hard

K-means++	[Arthur,Vassilvitskii’07]

• 𝐶 = {𝑐*, … , 𝑐Å} (collection	of	centers)
• 𝑑V 𝑣, 𝐶 = min¿À*Á ||𝑣 − 𝑐¿||VV	

K-means++	algorithm	(gives	𝑂 log 𝒌 -approximation):
• Pick	𝑐* uniformly	at	random	from	the	data
• Pick	centers	𝑐V … , 𝑐𝒌 sequentially	from	the	
distribution	where	point	𝑣 has	probability

𝑑V 𝑣, 𝐶
∑ 𝑑V(𝑣Â, 𝐶)Ã
ÂÀ*

K-means|| [Bahmani et	al.	‘12]

• Pick	𝐶 = 𝑐* uniformly	at	random	from	data
• Initial	cost:	𝜓 = ∑ 𝑑V(𝑣Â, 𝑐*)Ã

ÂÀ*
• Do	𝑂(log𝜓) times:
– Add	𝑂 𝒌 centers	from	the	distribution	where	point	𝑣
has	probability

𝑑V 𝑣, 𝐶
∑ 𝑑V(𝑣Â, 𝐶)Ã
ÂÀ*

• Solve	k-means	for	these	O(𝒌 log𝜓)	points	locally

• Thm. If	final	step	gives	𝜶-approximation	
⇒𝑂(𝜶)-approximation	overall

Problem	2:	Correlation	Clustering

• Inspired	by	machine	learning	at
• Practice:	[Cohen,	McCallum	‘01,	Cohen,	Richman	’02]

• Theory: [Blum,	Bansal,	Chawla	’04]

Correlation	Clustering:	Example
• Minimize #	of	incorrectly classified	pairs:

#	Covered	non-edges	+	#	Non-covered	edges

4 incorrectly	classified	=
1 covered	non-edge	+
3 non-covered	edges

Approximating	Correlation	Clustering

• Minimize #	of	incorrectly classified	pairs
– ≈ 20000-approximation [Blum,	Bansal,	Chawla’04]
– [Demaine,	Emmanuel,	Fiat,	Immorlica’04],[Charikar,	
Guruswami,	Wirth’05],	[Ailon,	Charikar,	Newman’05]	
[Williamson,	van	Zuylen’07],	[Ailon,	Liberty’08],…

– ≈ 2-approximation	[Chawla,	Makarychev,	Schramm,	
Y.	’15]

• Maximize #	of	correctly classified	pairs
– (1 − 𝜖)-approximation	[Blum,	Bansal,	Chawla’04]

Correlation	Clustering
One	of	the	most	successful	clustering	methods:
• Only	uses	qualitative	information about	
similarities

• #	of	clusters	unspecified	(selected	to	best	fit	
data)

• Applications:	document/image	deduplication
(data	from	crowds	or	black-box	machine	
learning)

• NP-hard [Bansal,	Blum,	Chawla ‘04],	admits	
simple	approximation	algorithms with	good	
provable	guarantees	

Correlation	Clustering

More:
• Survey [Wirth]
• KDD’14 tutorial:	“Correlation	Clustering:	From	
Theory	to	Practice”	[Bonchi,	Garcia-Soriano,	
Liberty]	
http://francescobonchi.com/CCtuto_kdd14.pdf

• Wikipedia article:	
http://en.wikipedia.org/wiki/Correlation_cluster
ing

Data-Based	Randomized	Pivoting

3-approximation	(expected)	[Ailon,	Charikar,	
Newman]
Algorithm:
• Pick	a	random	pivot	vertex	𝒗
• Make	a	cluster	𝒗 ∪ 𝑁(𝒗),	where	𝑁 𝒗 is	the	set	
of	neighbors	of	𝒗

• Remove	the	cluster	from	the	graph	and	repeat	

Data-Based	Randomized	Pivoting

• Pick	a	random	pivot	vertex	𝒑
• Make	a	cluster	𝒑 ∪ 𝑁(𝒑),	where	𝑁 𝒑 is	the	set	
of	neighbors	of	𝒑

• Remove	the	cluster	from	the	graph	and	repeat	

8 incorrectly	classified	=
2 covered	non-edges	+
6 non-covered	edges

Parallel	Pivot	Algorithm

• (3 + 𝝐)-approx.	in	𝑂(logV 𝑛 /	𝜖) rounds	
[Chierichetti,	Dalvi,	Kumar,	KDD’14]

• Algorithm:	while	the	graph	is	not	empty
– 𝑫 = current	maximum	degree
– Activate	each	node	independently	with	prob.	𝝐/𝑫
– Deactivate	nodes	connected	to	other	active	nodes
– The	remaining	nodes	are	pivots
– Create	cluster	around	each	pivot	as	before
– Remove	the	clusters

Parallel	Pivot	Algorithm:	Analysis

• Fact:	Halves	max	degree	after	*
𝝐
log 𝒏 rounds	

⇒ terminates	in	O ^_`� 𝒏
𝝐

rounds

• Fact:	Activation	process	induces	close	to	uniform
marginal	distribution	of	the	pivots		
⇒ analysis	similar	to	regular	pivot	gives	(3 + 𝝐)-
approximation

