Clustering on Clusters 2049:
Massively Parallel Algorithms for
Clustering Graphs and Vectors

Grigory Yaroslavtsev
http://grigory.us

Clustering on Clusters: Overview

Algorithm design for massively parallel computing
— Blog: http://grigorv.us/blog/mapreduce—'mode‘l/

P

MPC algorithms for graphs F 8

— Connectivity

— Correlation clustering

MPC algorithms for vectors
— K-means
— Single-linkage clustering

Open problems and directions

Clustering on Clusters 2049: Overview

Vectors
Basi Connectivity K-means
asic Connectivity++ --
Correlation
Clustering MST

Advanced Single-Linkage Single-Linkage
Clustering Clustering

Cluster Computation (a la BSP)

* Input: size n (e.g. n = billions of edges in a graph)

* M Machines, S Space (RAM) each
— Constant overhead inRAM: M -§ = 0(n)
—S=n'"¢,eg.e=010re=05(M=S=0H/n))

* Output: solution to a problem (often size O(n))
— Doesn’t fit in local RAM (§ < n)

Input: sizen = % = Output
E” } M machines

o’

S space

Cluster Computation (a la BSP)

* Computation/Communication in R rounds:

— Every machine performs a near-linear time
computation => Total user time 0 (S1T°(VR)

— Every machine sends/receives at most S bits of
information => Total communication O(nR).

Goal: Minimize R.

Ideally: R = constant.

' < § bits

o’

S space

0(S1t°M) time

} M machines

MapReduce-style computations
YaHoo! (Google € &

What | won’t discuss today

 PRAMs (shared memory, multiple processors) (see
e.g. [Karloff, Suri, Vassilvitskii‘10])
— Computing XOR requires (logn) rounds in CRCW PRAM
— Can be done in O(logg) rounds of MapReduce

* Pregel-style systems, Distributed Hash Tables (see
e.g. Ashish Goel’s class notes and papers)

* Lower-level implementation details (see e.g. _—
Rajaraman-Leskovec-Ullman book) @

Models of parallel computation

e Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models
Con: Many parameters, hard to design algorithms

* Massive Parallel Computation [Andoni, Onak, Nikolov, Y. ‘14]
[Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina’07, Karloff-Suri-
Vassilvitskii’10, Goodrich-Sitchinava-Zhang’'11, ..., Beame, Koutris,
Suciu’13]

Pros:
* Inspired by modern systems (Hadoop, MapReduce, Dryad, Spark,
Giraph, ...)

* Few parameters, simple to design algorithms
* New algorithmic ideas, robust to the exact model specification

* # Rounds is an information-theoretic measure => can prove
unconditional results

Con: sometimes not enough to model more complex behavior

* Pricings:
— https://cloud.google.com/pricing/

— https://aws.amazon.com/pricing/

 ~Linear with space and time usage
— 100 machines: 5K S/year
— 10000 machines: 0.5M $/year

* You pay a lot more for using provided
algorithms

— https://aws.amazon.com/machine-

learning/pricing/

Part 1: Clustering Graphs

* Applications:
— Community detection
— Fake account detection
— Deduplication
— Storage localization

Problem 1: Connectivity

* Input: n edges of a graph (arbitrarily
partitioned between machines)

e Qutput: is the graph connected? (or # of
connected components)

* Question: how many rounds does it take?

1. 0(1)
«2. O(log%n)
3. 0(n%)

4. 002%™

5. Impossible

Algorithm for Connectivity

Version of Boruvka’s algorithm:
— All vertices assigned to different components
— Repeat O(log |V]) times:
 Each component chooses a neighboring component
 All pairs of chosen components get merged

How to avoid chaining?
O—=>0—>0—>0—>0—>0—>0—>0—>0—>0—>0

If the graph of components is bipartite and only
one side gets to choose then no chaining

e 7

Randomly assign components to the sides

Algorithms for Graphs: Graph Density

* Dense: S > |V|,e.g. § = |V|3/2
* Semi-dense: S = O(|V]|)
 Sparse: S L |V|, e.g. § < |V]|1/?

Algorithms for Graphs: Graph Density

* Dense: S > |V],e.g. S = |V]|3/2
— Linear sketching: one round, see [McGregor’14]

* Workshop at Berkeley tomorrow:
http://caml.indiana.edu/linear-sketching-focs.html

e “Filtering” [Karloff, Suri Vassilvitskii, SODA’10;
Ene, Im, Moseley, KDD’11; Lattanzi, Moseley,
Suri, Vassilvitskii, SPAA’11; Suri, Vassilvitskii,
WWW’11]...

Algorithms for Graphs: Graph Density

* Semi-dense Graphs: S = O(|V|) [Avdyukhin, Y.]
— Run Boruvka’s algorithm for O(\/ log |V'|) rounds

4

2V/log V]
— Repeat O(\/ log |V|) times:

 Compute a spanning tree of locally stored edges

« put 2vI°81Vl sych trees per machine

— # Vertices reduces down to

Algorithms for Graphs: Graph Density

e Sparse: S L |V|, S < |V|1/?
e Sparse graph problems appear harc
— Big open question: connectivity in o(log |V|) rounds?

— Probably no: [Roughgarden, Vassilvitskii, Wang’16]
* “One Cycle vs. Two Cycle” Problem

— Distinguish one cycle from two in o(log |V|) rounds?

=0

Other Connectivity Algorithms

e [Rastogi,Machanavajjhala,Chitnis, Das Sarma’13]
— D = graph diameter

Algorithm MR Rounds Communication per round

Hash-Min D O(|lV| + |E|)
Hash-to-all Log D O(lV|? + |E)])
o 0QoglVD O((VI+IED)

for paths for paths

Hash-Greater-to-

o Oflog n) o(| V| + EI)

Graph-Dependent Connectivity Algs?

Big question: connectivity in O(log D) rounds
with O(|V| + |E|) communication per round?

[Rastogi et al’13] conjectured that Hash-to-Min
can achieve this

[Avdyukhin, Y.17]:
— Hash-to-Min takes Q(D) rounds

Open problem: better connectivity algorithms if
we parametrize by graph expansion?

Other work: [Kiveris et al. ‘14]

What about clustering?

~same ideas work for Single-Linkage Clustering
Using connectivity as a primitive can preserve
cuts in graphs [Benczur, Karger’98]

— Construct a graph with O(n log n) edges

— All cut sizes are preserved with a factor of 2

Allows to run clustering algorithms that use
cuts in the objective using this sparse graph

Single Linkage Clustering

* [Zahn’71] Clustering via Minimum Spanning Tree:
k clusters: remove k — 1 longest edges from MST

e Maximizes minimum intercluster distance

quality of this
partitioning is O

min{a,b,c} O

[Kleinberg, Tardos]

Part 2: Clustering Vectors

* |Input: vq,...,7,, € R4
— Feature vectors in ML, word embeddings in NLP, etc.
— (Implicit) weighted graph of pairwise distances

* Applications:

— Same as before + Data visualization

Large geometric graphs

* Graph algorithms: Dense graphs vs. sparse graphs
— Dense: S > |V].
— Sparse: § < |V].

* QOur setting:
— Dense graphs, sparsely represented: O(n) space

— Output doesn'’t fit on one machine (§ K n)

* Today: (1 + €)-approximate MST [Andoni, Onak, Nikolov, Y.]
— d = 2 (easy to generalize)
— R =loggn = 0(1) rounds (§ = n®D)

O(logn)-MSTin R = O(logn) rounds

e Assume points have integer coordinates [0, ..., A], where
A =0(n?).

Impose an O (log n) -depth quadtree
Bottom-up: Forzes

— compute oftiFL
— Useonlyo

. Wrong representative:
V .\/ O(1)-approximation per level

} ' i
blﬂ?{ﬁ' B baaca T M i
\z @ d ¥ ° ————p
|
q I °° < q

Y
ﬂ

(o
' ' I9UunN

ive fremleach ce

on the next level

€L-nets
eL-net for a cell C with side length L:

Collection S of vertices in C, every vertex is at distance <= elL from some
vertex in S. (Fact: Can efficiently compute e-net of size O (6—2))

Bottom-up: For each cell in the quadtree

— Compute optimum MSTs in subcells
— Use eL-net from each cell on the next level

Idea: Pay only O(€L) for an edge cut by cell with side L
Randomly shift the quadtree:
Pricut edge of length ¥Wb9nL [xprésehtatitearge errors

O(1)-appr{ximation per level

A N

L L L

Randomly shifted quadtree

* Top cell shifted by a random vector in [0, L]?
Impose a randomly shifted quadtree (top cell length 2A)

Bottom-up: For each cell in the quadtree
— Compute optimum MSTs in subcells
— Use €L-net from each cell on the next level

t 17 Pay 5 jnstead of 4

2

Ll] Pr[Ba%]a(ffl L 01)
1

(14 €)-MSTinR = 0O(log n) rounds

 |dea: Only use short edges inside the cells

Impose a randomly shifted quadtree (top cell length ZG—A)

Bottom-up: For each node (cell) in the quadtree

— compute optimum Minimum Spanning Forests in subcells,
using edges of length < €L

— Use only €?L-net from each cell on the next level

N

L=00)

AT
I Pr[Bad Cut] = O(e€)

(1+€)-MSTinR = 0(1) rounds

* O(logn) rounds => O(logg n) = O(1) rounds
— Flatten the tree: (VM X+ M)-grids instead of (2x2) grids at each

level.
} 9t = no

=

Impose a randomly shifted (v M X+ M)-tree
Bottom-up: For each node (cell) in the tree
— compute optimum MSTs in subcells via edges of length < €L

— Use only €?L-net from each cell on the next level

Single-Linkage Clustering [Y., Vadapalli]

* Q: Single-linkage clustering from (1 + €)-MST?
* A: No, a fixed edge can be arbitrarily distorted

* Idea:
— Run O(logn) times & collect all (1 + €)-MST edges
— Compute MST of these edges using Boruvka
— Use this MST for k-Single Linkage Clustering for all k

* Overall: O(log n) rounds of MPC instead of O(1)
* Q:Is this actually necessary?

* A: Most likely yes, i.e. yes, assuming sparse
connectivity is hard

Single-Linkage Clustering Y., Vadapalli]

* Conj 1: Sparse Connectivity requires Q(log |V])

* Conj 2: “1 cycle vs. 2 cycles” requires Q(log |V])

e Under f -Distances:

Abbroximation Hardness under Hardness under
= Conjecture 1* Conjecture 2*
Hamming
2
1
'

Exact
(1+¢) 2 3
(1+€e) 141 —e 184 —¢€
(1+¢) 2

Thanks! Questions?

* Slides will be available on http://grigory.us
 More about algorithms for massive data:

http://grigory.us/blog/
e More in the classes | teach:
& P
CSCI B609:
KECEII§ ZZ?&)LM KEEP CALM
AND DIG
CRUNCH FOUNDATIONS
DATA IN o(N) DATA SCIENCE

(1+€)-MSTinR = 0(1) rounds

Theorem: Let [= # levels in a random tree P
Ep[ALG] < (1 + O(eld))OPT

Proof (sketch):

* Ap(u,v) = cell length, which first partitions (u, v)

* New weights:

Hu —vH2 <

e QOur algorith

Technical Details

(1 + €)-MST:

— “Load balancing”: partition the tree into parts of the
same size

— Almost linear time locally: Approximate Nearest
Neighbor data structure [Indyk’99]

d
— Dependence on dimension d (size of e-net is O (g))

— Generalizes to bounded doubling dimension

Algorithm for Connectivity: Setup

Data: n edges of an undirected graph.

Notation:
 m(v) = uniqueid of v
* I'(S) = set of neighbors of a subset of vertices S.

Labels:
* Algorithm assigns a label (v) to each v.

* L, =the set of vertices with the label £(v) (invariant:
subset of the connected component containing v).

Active vertices:
* Some vertices will be called active (exactly one per L,,).

Algorithm for Connectivity

* Mark every vertex as active and let £(v) = w(v).
* Forphasesi =1,2,...,0(logn) do:

— Call each active vertex a leader with probability 1/2.
If vis a leader, mark all vertices in L,, as leaders.

— For every active non-leader vertex w, find the
smallest leader (by) vertex w* in I'(L,,).

— Mark w passive, relabel each vertex with label w by w™.

* Qutput: set of connected components based on .

Algorithm for Connectivity: Analysis

If #(u) = £(v) then u and v are in the same CC.

Claim: Unique labels with high probability
after O(log N) phases.
For every CC # active vertices reduces by a constant factor
in every phase.
— Half of the active vertices declared as non-leaders.
— Fix an active non-leader vertex v.
— If at least two different labels in the CC of v then there is an
edge (v',u) such that (v) = £(v") and (V") # £(u).
— u marked as a leader with probability 1/2 = half of the active
non-leader vertices will change their label.
— Overall, expect 1/4 of labels to disappear.

— After O(log N) phases # of active labels in every connected
component will drop to one with high probability

Algorithm for Connectivity:
Implementation Details

Distributed data structure of size O(|V|) to maintain
labels, ids, leader/non-leader status, etc.

— O(1) rounds per stage to update the data structure

Edges stored locally with all auxiliary info

— Between stages: use distributed data structure to update
local info on edges

For every active non-leader vertex w, find the
smallest leader (w.r.t) vertex w* € I'(L,,)

— Each (non-leader, leader) edge sends an update to the
distributed data structure

Much faster with Distributed Hash Table Service (DHT)
[Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii’14]

Problem 3: K-means

Input: v4, ..., v, € R4
Find k centers ¢4, ..., Ci

Minimize sum of squared
distance to the closest center:

n
-k 2
2 min;_, ||v; — ¢ll2
i=1

2
lvi — ¢il|5 = Xi=1(vie — ¢i¢)
NP-hard

K-means++ [Arthur,Vassilvitskii’07]

 C ={cq, ..., ¢t} (collection of centers)

_ ik 2
* d*(v,C) = min’, ||[v — ¢ll3

K-means++ algorithm (gives O (log k)-approximation):

* Pick ¢; uniformly at random from the data

* Pick centers ¢, ..., ¢ sequentially from the
distribution where point v has probability

d?*(v, C)
Z?=1 d? (vi' C)

K-mea ns\ ‘ [Bahmani et al. ‘12]

Pick € = ¢4 uniformly at random from data
nitial cost: Y = X, d*(v;, ¢1)
Do O(log Y) times:

— Add O (k) centers from the distribution where point v
has probability

d?*(v, C)
Z?:l dz(vi, C)
Solve k-means for these O(k log y) points locally

Thm. If final step gives a-approximation
= O(a)-approximation overall

Problem 2: Correlation Clustering

* |nspired by machine learning at WhTzB}ng;!(

LABS
* Practice: [Cohen, McCallum ‘01, Cohen, Richman '02]

* Theory: [Blum, Bansal, Chawla ’04]

Correlation Clustering: Example

 Minimize # of incorrectly classified pairs:

Covered non-edges + # Non-covered edges

4 incorrectly classified =
1 covered non-edge +
3 non-covered edges

Approximating Correlation Clustering

 Minimize # of incorrectly classified pairs
— =~ 20000-approximation [Blum, Bansal, Chawla’04]

— [Demaine, Emmanuel, Fiat, Immorlica’04],[Charikar,
Guruswami, Wirth’05], [Ailon, Charikar, Newman’05]
[Williamson, van Zuylen’07], [Ailon, Liberty’08],...

— =~ 2-approximation [Chawla, Makarychev, Schramm,
Y. '15]

 Maximize # of correctly classified pairs

— (1 — €)-approximation [Blum, Bansal, Chawla’04]

Correlation Clustering

One of the most successful clustering methods:

* Only uses qualitative information about
similarities

* # of clusters unspecified (selected to best fit
data)

* Applications: document/image deduplication
(data from crowds or black-box machine
learning)

* NP-hard [Bansal, Blum, Chawla ‘04], admits
simple approximation algorithms with good
provable guarantees

Correlation Clustering

More:
e Survey [Wirth]

 KDD’14 tutorial: “Correlation Clustering: From
Theory to Practice” [Bonchi, Garcia-Soriano,

Liberty]
http://francescobonchi.com/CCtuto kdd14.pdf

* Wikipedia article:
http://en.wikipedia.org/wiki/Correlation cluster

ing

Data-Based Randomized Pivoting

3-approximation (expected) [Ailon, Charikar,
Newman]

Algorithm:
* Pick a random pivot vertex v

* Make a cluster v U N(v), where N (v) is the set
of neighbors of v

* Remove the cluster from the graph and repeat

Data-Based Randomized Pivoting

* Pick a random pivot vertex p

* Make a cluster p U N(p), where N(p) is the set
of neighbors of p

* Remove the cluster from the graph and repeat

8 incorrectly classified =
2 covered non-edges +
6 non-covered edges

Parallel Pivot Algorithm

(3 + €)-approx. in O(logn / €) rounds
[Chierichetti, Dalvi, Kumar, KDD’14]

e Algorithm: while the graph is not empty
— D = current maximum degree
— Activate each node independently with prob. €/D
— Deactivate nodes connected to other active nodes
— The remaining nodes are pivots
— Create cluster around each pivot as before
— Remove the clusters

Parallel Pivot Algorithm: Analysis

1
* Fact: Halves max degree after Zlogn rounds

log? n

= terminates in O () rounds

€
* Fact: Activation process induces close to uniform
marginal distribution of the pivots

= analysis similar to regular pivot gives (3 + €)-
approximation

