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Differential privacy in databases

e-differential privacy

For all pairs of neighbors D, D' and all outputs S:
Pr|A(D) = S| < e€Prl[A(D") = S}

¢ € —privacy budget
¢ Probability is over the randomness of A

¢ Requires the distributions to be close:
A

A(D’)
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Optimizing Linear Queries

¢ Linear queries capture many common cases for data release
— Data is represented as a vector x (histogram)
— Want to release answers to linear combinations of entries of x
— Model queries as matrix Q, want to know y=Qx
— Examples: histograms, contingency tables in statistics
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Answering Linear Queries

— Answer each query in Q directly, partition the privacy budget
uniformly and add independent noise

¢ Basic approach is suboptimal
— Especially when some queries overlap and others are disjoint
¢ Several opportunities for optimization:

— Can assign different privacy budgets to different queries
— Can ask different queries S, and recombine to answer Q
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The Strategy/Recovery Approach

¢ Pick a strategy matrix S

— Computez=Sx+v

— Find Rso that Q = RS
— Returny =Rz =Qx + Rv as the set of answers

— Accuracy given by var(y) = var(Rv)

#
é
Var(y)
¢ Strategies used in prior work:
Q: Query Matrix F: Fourier Transform Matrix

|: Identity Matrix H: Haar Wavelets

C: Selected Marginals P: Random projections



Step 2: Error Minimization

¢ Step 1: Fix strategy S for efficiency reasons

¢ Given Q, R, S, ¢ want to find a set of values {¢;}
— Noise vector v has noise in entry i with variance 1/¢?
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¢ Yields an optimization problem of the form:

Minimize 2_. b. / €2 (minimize variance)

Subject to 2., 1S;;l &,<e Vusersj (guarantees ¢ differential privacy)
¢ The optimization is convex, can solve via interior point methods

— Costly when Siis large

¢ — We seekan efficient closed form for common strategies



Grouping Approach

¢ We observe that many strategies S can be broken into groups
that behave in a symmetrical way

— Sets of non-zero entries of rows in the group are pairwise disjoint
— Non-zero values in group i have same magnitude C,

¢ Many common strategies meet this grouping condition
— ldentity (I), Fourier (F), Marginals (C), Projections (P), Wavelets (H)

¢ Simplifies the optimization: (s s o5 o o & s o )
— Asingle constraint over the g/s et
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Step 3: Optimal Recovery Matrix
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¢ Given Q, S, {¢;}, find R so that Q=RS

— Minimize the variance Var(Rz) = Var(RSx + Rv) = Var(Rv)
¢ Find an optimal solution by adapting Least Squares method
¢ This finds x” as an estimate of x given z=Sx + v
— Define X = Cov(z) = diag(2/¢?) and U = X2 S
— OLS solutionis x’ = (UTU)t UT X2z
¢ ThenR=Q(STX1S)1ST>1
¢ Result: y =Rz =Qx’ is consistent—corresponds to queries on x

’

— R minimizes the variance

s — Special case: S is orthonormal basis (S" = S*) then R=QS'



Experimental Study

¢ Used two real data sets:
- data — census data on 32K individuals (7 attributes)
— data— binary data on 21K individuals (16 attribues)
¢ Tried a variety of query workloads Q over these
— Based on low-order k-way marginals (1-3-way)
¢ Compared the original and optimized strategies for:
— Original queries, Q/Q
— Fourier strategy F/F* [Barak et al. 07]

— Clustered sets of marginals C/C*[Ding et al. 11]
— ldentity basis |



Relative error

Experimental Results
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¢ Optimized error gives constant factor improvement

¢ Time cost for the optimization is negligible on this data
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Overall Process

¢ |deal version: given query matrix Q, compute strategy S,
recovery R and noise budget {¢.} to minimize Var(y)

— Not practical: sets up a rank-constrained SDP [Li et al., PODS’10]
— Follow the 3-step process instead

Fix S
2. Given query matrix Q, strategy S, compute optimal noise
budgets {¢;} to minimize Var(y)

3. Given query matrix Q, strategy S and noise budgets {¢ },
compute new recovery matrix R to minimize Var(y)
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Advantages
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Best on datasets with many individuals (no dependence on
how many)

Best on large datasets (for small datasets, use [Li et al.])

Best realtively small query workloads (for large query
workloads, use multiplicative weights [Hardt, Ligett
Mcsherry’12])

Fairly fast (matrix multiplications and inversions)

— Faster when S is e.g. Fourier, since can use FFT

— Adds negligible computational overhead to the computation of
qgueries themselves



