Accurate and Efficient Private Release of Data Cubes & Contingency Tables

Grigory Yaroslavtsev, work done at Penn State, at&t

With Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, at&t
Differential privacy in databases

ϵ-differential privacy

For all pairs of neighbors D, D' and all outputs S:

$$Pr[A(D) = S] \leq e^\epsilon \Pr[A(D') = S]$$

- ϵ—privacy budget
- Probability is over the randomness of A
- Requires the distributions to be close:
Optimizing Linear Queries

- **Linear queries** capture many common cases for data release
 - Data is represented as a vector x (histogram)
 - Want to release answers to linear combinations of entries of x
 - Model queries as matrix Q, want to know $y=Qx$
 - Examples: histograms, contingency tables in statistics
Answering Linear Queries

♦ Basic approach:
 – Answer each query in Q directly, partition the privacy budget uniformly and add independent noise

♦ Basic approach is suboptimal
 – Especially when some queries overlap and others are disjoint

♦ Several opportunities for optimization:
 – Can assign different privacy budgets to different queries
 – Can ask different queries S, and recombine to answer Q
The Strategy/Recovery Approach

- Pick a strategy matrix S
 - Compute $z = Sx + v$
 - Find R so that $Q = RS$
 - Return $y = Rz = Qx + Rv$ as the set of answers
 - Accuracy given by $\text{var}(y) = \text{var}(Rv)$

Strategies used in prior work:
- Q: Query Matrix
- F: Fourier Transform Matrix
- I: Identity Matrix
- H: Haar Wavelets
- C: Selected Marginals
- P: Random projections
Step 2: Error Minimization

- Step 1: Fix strategy S for efficiency reasons
- Given Q, R, S, \(\varepsilon \) want to find a set of values \(\{\varepsilon_i\} \)
 - Noise vector \(v \) has noise in entry \(i \) with variance \(1/\varepsilon_i^2 \)

Yields an optimization problem of the form:

\[
\text{Minimize } \sum_i b_i / \varepsilon_i^2 \quad (\text{minimize variance})
\]

Subject to \(\sum_i |S_{ij}| \varepsilon_i \leq \varepsilon \quad \forall \text{ users } j \quad (\text{guarantees } \varepsilon \text{ differential privacy})

- The optimization is convex, can solve via interior point methods
 - Costly when \(S \) is large
 - We seek an efficient closed form for common strategies
Grouping Approach

♦ We observe that many strategies S can be broken into groups that behave in a symmetrical way
 - Sets of non-zero entries of rows in the group are pairwise disjoint
 - Non-zero values in group i have same magnitude C_i
♦ Many common strategies meet this grouping condition
 - Identity (I), Fourier (F), Marginals (C), Projections (P), Wavelets (H)
♦ Simplifies the optimization:
 - A single constraint over the ε_i's
 - New constraint: $\sum_{\text{Groups} i} C_i \varepsilon_i = \varepsilon$
 - Closed form solution via Lagrangian

\[
\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}
\]
Step 3: Optimal Recovery Matrix

Given Q, S, $\{\varepsilon_i\}$, find R so that $Q=RS$
- Minimize the variance $\text{Var}(Rz) = \text{Var}(RSx + Rv) = \text{Var}(Rv)$

Find an optimal solution by adapting Least Squares method

This finds x' as an estimate of x given $z = Sx + v$
- Define $\Sigma = \text{Cov}(z) = \text{diag}(2/\varepsilon_i^2)$ and $U = \Sigma^{-1/2} S$
- OLS solution is $x' = (U^T U)^{-1} U^T \Sigma^{-1/2} z$

Then $R = Q(S^T \Sigma^{-1} S)^{-1} S^T \Sigma^{-1}$

Result: $y = Rz = Qx'$ is consistent—corresponds to queries on x'
- R minimizes the variance
- Special case: S is orthonormal basis ($S^T = S^{-1}$) then $R=QS^T$
Experimental Study

- Used two real data sets:
 - **ADULT** data – census data on 32K individuals (7 attributes)
 - **NLTCS** data– binary data on 21K individuals (16 attributes)

- Tried a variety of query workloads Q over these
 - Based on low-order k-way marginals (1-3-way)

- Compared the original and optimized strategies for:
 - Original queries, \(\frac{Q}{Q^+} \)
 - Fourier strategy \(\frac{F}{F^+} \) [Barak et al. 07]
 - Clustered sets of marginals \(\frac{C}{C^+} \) [Ding et al. 11]
 - Identity basis I
Experimental Results

- Optimized error gives constant factor improvement
- Time cost for the optimization is negligible on this data
Overall Process

- **Ideal version**: given query matrix Q, compute strategy S, recovery R and noise budget $\{\varepsilon_i\}$ to minimize $\text{Var}(y)$
 - **Not practical**: sets up a rank-constrained SDP [Li et al., PODS’10]
 - Follow the 3-step process instead

1. Fix S
2. Given query matrix Q, strategy S, compute optimal noise budgets $\{\varepsilon_i\}$ to minimize $\text{Var}(y)$
3. Given query matrix Q, strategy S and noise budgets $\{\varepsilon_i\}$, compute new recovery matrix R to minimize $\text{Var}(y)$
Advantages

- Best on datasets with many individuals (no dependence on how many)
- Best on large datasets (for small datasets, use [Li et al.])
- Best relatively small query workloads (for large query workloads, use multiplicative weights [Hardt, Ligett Mcsherry’12])
- Fairly fast (matrix multiplications and inversions)
 - Faster when S is e.g. Fourier, since can use FFT
 - Adds negligible computational overhead to the computation of queries themselves