Accurate and Efficient Private Release of Data Cubes & Contingency Tables

Grigory Yaroslavtsev

With Graham Cormode,

Cecilia M. Procopiuc Divesh Srivastava

Differential privacy in databases

€-differential privacy

For all pairs of neighbors D, D' and all outputs S:

$$Pr[A(\mathbf{D}) = \mathbf{S}] \le e^{\epsilon} \Pr[A(\mathbf{D}') = \mathbf{S}]$$

- ϵ -privacy budget
- Probability is over the randomness of A
- Requires the distributions to be close:

Optimizing Linear Queries

- ♦ Linear queries capture many common cases for data release
 - Data is represented as a vector x (histogram)
 - Want to release answers to linear combinations of entries of x
 - Model queries as matrix Q, want to know y=Qx
 - Examples: histograms, contingency tables in statistics

Answering Linear Queries

- ♦ Basic approach:
 - Answer each query in Q directly, partition the privacy budget uniformly and add independent noise
- Basic approach is suboptimal
 - Especially when some queries overlap and others are disjoint
- Several opportunities for optimization:
 - Can assign different privacy budgets to different queries
 - Can ask different queries S, and recombine to answer Q

The Strategy/Recovery Approach

- Pick a strategy matrix S
 - Compute z = Sx + v noise vectorstrategy on data
 - Find R so that Q = RS
 - Return y = Rz = Qx + Rv as the set of answers
 - Accuracy given by var(y) = var(Rv)

Strategies used in prior work:

Q: Query Matrix F: Fourier Transform Matrix

I: Identity Matrix H: Haar Wavelets

C: Selected Marginals P: Random projections

Step 2: Error Minimization

- Step 1: Fix strategy S for efficiency reasons
- Given Q, R, S, ε want to find a set of values $\{\varepsilon_i\}$
 - Noise vector v has noise in entry i with variance $1/\epsilon_i^2$

- Yields an optimization problem of the form:
 - Minimize $\sum_{i} b_{i} / \varepsilon_{i}^{2}$ (minimize variance)
 - Subject to $\sum_{i} |S_{i,i}| \epsilon_{i} \le \epsilon \quad \forall \text{ users } j \quad \text{(guarantees } \epsilon \text{ differential privacy)}$
- The optimization is convex, can solve via interior point methods
 - Costly when S is large
 - We seek an efficient closed form for common strategies

Grouping Approach

- We observe that many strategies S can be broken into groups that behave in a symmetrical way
 - Sets of non-zero entries of rows in the group are pairwise disjoint
 - Non-zero values in group i have same magnitude C_i
- Many common strategies meet this grouping condition
 - Identity (I), Fourier (F), Marginals (C), Projections (P), Wavelets (H)
- Simplifies the optimization:
 - A single constraint over the ε_i 's
 - New constraint: $\sum_{\text{Groups i}} C_i \varepsilon_i = \varepsilon$
 - Closed form solution via Lagrangian

$$\begin{pmatrix} \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$

Step 3: Optimal Recovery Matrix

- Given Q, S, $\{\varepsilon_i\}$, find R so that Q=RS
 - Minimize the variance Var(Rz) = Var(RSx + Rv) = Var(Rv)
- Find an optimal solution by adapting Least Squares method
- ◆ This finds x' as an estimate of x given z = Sx + v
 - Define $\Sigma = \text{Cov}(z) = \text{diag}(2/\epsilon_i^2)$ and $U = \Sigma^{-1/2} S$
 - OLS solution is $x' = (U^T U)^{-1} U^T \Sigma^{-1/2} z$
- ♦ Then R = Q(S^T Σ^{-1} S)⁻¹ S^T Σ^{-1}
- ♦ Result: y = Rz = Qx' is consistent—corresponds to queries on x'
 - R minimizes the variance
 - Special case: S is orthonormal basis ($S^T = S^{-1}$) then $R = QS^T$

Experimental Study

- Used two real data sets:
 - ADULT data census data on 32K individuals (7 attributes)
 - NLTCS data binary data on 21K individuals (16 attribues)
- Tried a variety of query workloads Q over these
 - Based on low-order k-way marginals (1-3-way)
- Compared the original and optimized strategies for:
 - Original queries, Q/Q+
 - Fourier strategy F/F⁺ [Barak et al. 07]
 - Clustered sets of marginals C/C⁺ [Ding et al. 11]
 - Identity basis I

Experimental Results

- Optimized error gives constant factor improvement
- ◆ Time cost for the optimization is negligible on this data

Overall Process

- Ideal version: given query matrix Q, compute strategy S, recovery R and noise budget {ε_i} to minimize Var(y)
 - Not practical: sets up a rank-constrained SDP [Li et al., PODS'10]
 - Follow the 3-step process instead
- **1**. Fix S
- 2. Given query matrix Q, strategy S, compute optimal noise budgets $\{\varepsilon_i\}$ to minimize Var(y)
- 3. Given query matrix Q, strategy S and noise budgets $\{\epsilon_i\}$, compute new recovery matrix R to minimize Var(y)

Advantages

- Best on datasets with many individuals (no dependence on how many)
- Best on large datasets (for small datasets, use [Li et al.])
- Best realtively small query workloads (for large query workloads, use multiplicative weights [Hardt, Ligett Mcsherry'12])
- Fairly fast (matrix multiplications and inversions)
 - Faster when S is e.g. Fourier, since can use FFT
 - Adds negligible computational overhead to the computation of queries themselves