Primal-dual algorithms for node-weighted network design in planar graphs

Grigory Yaroslavtsev Penn State (joint work with Piotr Berman)

Feedback Vertex Set Problems

- Given: a collection of cycles in a graph
- Goal: break them, removing a small # of vertices

Example: Collection = All cycles

Weighted vertices => remove set of min cost

FVS: Flavors and toppings

- All cycles = Feedback Vertex Set
- All Directed cycles = **Directed** FVS
- All **odd-length** cycles = Bipartization
- Cycles through a subset of vertices = Subset FVS

FVS in general graphs

• NP-hard (even in planar graph [Yannakakis])

Problem	Approximation		
FVS	2 [Becker, Geiger; Bafna, Berman, Fujito]		
Bipartization	O (log n) [Garg, Vazirani, Yannakakis]		
Directed FVS	$O(\log n \log \log n)$ [Even, Naor, Schieber, Sudan]		
Subset FVS	8 [Even, Naor, Zosin]		

- MAX-SNP complete [Lewis, Yannakakis; Papadimitriou, Yannakakis] =>
 - 1.3606, if $P \neq NP$ [Dinur, Safra]
 - 2ϵ under UGC [Khot, Regev]

FVS in planar graphs (via primal-dual)

• NP-hard (even in planar graph [Yannakakis])

Problems	Previous work		This work
FVS	10 [Bar-Yehuda, Geiger, Naor, Roth]	3	
BIP, D-FVS, S-FVS		[Goemans, Williamson, 96]	ЭЛ
Node-Weighted Steiner Forest	6	3 [Moldenhauer'11]	2.4 (2.57)
More general class of problems	[Demaine, Hajiaghayi, Klein'09]		(2.37)

- Feedback Edge Set in general graphs = Complement of MST
- Planar edge-weighted BIP and D-FVS are also in P
- Planar edge-weighted Steiner Forest has a PTAS [Bateni, Hajiaghayi, Marx, STOC'11]
- Planar unweighted Feedback Vertex Set has a PTAS [Baker; Demaine, Hajiaghayi, SODA'05]

Class 1: Uncrossing property

• Uncrossing:

• Uncrossing property of a family of cycles *C*:

For every two crossing cycles $C_1, C_2 \in C$, one of their two uncrossings has $C'_1, C'_2 \in C$.

 Holds for all FVS problems, crucial for the algorithm of GW

Proper functions [GW, DHK]

- A function $f: 2^V \to \{0,1\}$ is proper if $f(\emptyset) = 0$,
 - Symmetry: $f(S) = f(V \setminus S)$
 - Disjointness: If $S_1 \cap S_2 = \emptyset$ and $f(S_1) = f(S_2) = 0 \Rightarrow f(S_1 \cup S_2) = 0$
- A set $S \subseteq V$ is active, if f(S) = 1
- Boundary Γ(S):

• A boundary $\Gamma(S) \subseteq V$ is active, if S is active

Class 2: Hitting set IP [DHK]

• The class of problems:

$$\begin{split} \text{Minimize:} & \sum_{v \in V} w(v) x(v) \\ \text{Subject to:} & \sum_{v \in \Gamma(S)} x(v) \geq \boldsymbol{f}(S), \text{ for all } \boldsymbol{S} \subseteq V \\ & x_v \in \{0,1\}, \end{split}$$

where *f* is a **proper function**

- Theorem: f is proper => the collection of all active boundaries forms an uncrossable family (requires triangulation)
- Proof sketch: *f* is proper => in one of the cases both interior sets are active => their boundaries are active

Class 1 = Class 2

- **Example:** Node-Weighted Steiner Forest
 - Connect pairs (s_i, t_i) via a subset of nodes of min cost
 - Proper function f(S) = 1 iff $|S \cap \{s_i, t_i\}| = 1$ for some i.

Primal-dual method (local-ratio version)

- Given: G (graph), W (weights), C (cycles)
 - $-\overline{w} = w$
 - -S =set of all vertices of zero weight
 - While **S** is not a hitting set for **C**
 - *M* = collection of cycles returned by oracle Violation (G, C, S)
 - $c_M(u) = #$ of cycles in M, which contain u
 - $\overline{w}(u) = \overline{w}(u) \min_{u \in V \setminus S} \frac{\overline{w}(u)}{c_M(u)} \cdot c_M(u)$
 - $S = \text{set of all vertices of zero weight } \overline{W}$
 - **Return** a minimal hitting set $H \subset S$ for C

Oracle 1 = Face-minimal cycles [GW]

• Example for Subset FVS with $\gamma = 3$:

- Oracle returns all gray cycles => all white nodes are selected
- Cost = 3 * # blocks, OPT ~ $(1 + \epsilon)$ * # blocks

Oracle 2 = Pocket removal [GW]

- **Pocket** defined by two cycles: region between their common points containing another cycle
- New oracle: no pocket => all face-minimal cycles, otherwise run recursively inside any pocket.

• Our analysis:
$$\gamma = \frac{18}{7} \approx 2.57$$

Oracle 3 = Triple pocket removal

- **Triple pocket =** region defined by three cycles
- Analysis: $\gamma = 2.4$

Red nodes have cost 3, other nodes have cost degree+ ϵ , black nodes form the optimum solution

Open problems

For our class of node-weighted problems:

- **Big question:** APX-hardness or a PTAS?
- Integrality gap = 2, how to approach it?
 - Pockets of higher multiplicities are harder to analyze
 - Pockets cannot go beyond **2** + δ

Applications and ramifications

- **Applications:** from maintenance of power networks to computational sustainability
- Example: VLSI design.
 - Primal-dual approximation algorithms of Goemans and Williamson are competitive with heuristics [Kahng, Vaya, Zelikovsky]
- Connections with bounds on the size of FVS
 - Conjectures of Akiyama and Watanabe and Gallai and Younger [see GW for more details]

Approximation factor

 Theorem [GW'96]: If for any minimal solution H the set M returned by the oracle satisfies:

$$\sum_{u\in H} c_M(u) \leq \gamma |M|,$$

then the primal-dual algorithm has approximation γ .

- Examples of oracles:
 - Single cycle: $\gamma \leq 10$ [Bar-Yehuda, Geiger, Naor, Roth]
 - Single cycle: $\gamma \leq 5$ [Goemans, Williamson]
 - Collection of all face-minimal cycles: $\gamma \leq 3$ [Goemans, Williamson]