Primal-dual algorithms for node-weighted network design in planar graphs

Grigory Yaroslavtsev
Penn State
(joint work with Piotr Berman)

Feedback Vertex Set Problems

- Given: a collection of cycles in a graph
- Goal: break them, removing a small \# of vertices

Example: Collection = All cycles

Weighted vertices => remove set of min cost

FVS: Flavors and toppings

- All cycles = Feedback Vertex Set
- All Directed cycles = Directed FVS
- All odd-length cycles = Bipartization
- Cycles through a subset of vertices = Subset FVS

FVS in general graphs

- NP-hard (even in planar graph [Yannakakis])

Problem	Approximation
FVS	$\mathbf{2}$ [Becker, Geiger; Bafna, Berman, Fujito]
Bipartization	$\boldsymbol{O}(\log \boldsymbol{n})$ [Garg, Vazirani, Yannakakis]
Directed FVS	$\boldsymbol{O}(\log \boldsymbol{n} \log \log \boldsymbol{n})$ [Even, Naor, Schieber, Sudan]
Subset FVS	$\mathbf{8}$ [Even, Naor, Zosin]

FVS
Bipartization $\boldsymbol{O}(\log \boldsymbol{n})$ [Garg, Vazirani, Yannakakis]
Directed FVS $\boldsymbol{O}(\log \boldsymbol{n} \log \log \boldsymbol{n})$ [Even, Naor, Schieber, Sudan]
Subset FVS
8 [Even, Naor, Zosin]

- MAX-SNP complete [Lewis, Yannakakis; Papadimitriou, Yannakakis] =>
- 1.3606, if $\mathrm{P} \neq N P$ [Dinur, Safra]
- $2-\epsilon$ under UGC [Khot, Regev]

FVS in planar graphs (via primal-dual)
 - NP-hard (even in planar graph [Yannakakis])

Problems	Previous work		This work
FVS	10 [Bar-Yehuda, Geiger, Naor, Roth]	O	
BIP, D-FVS, S-FVS		[Goemans, Williamson, 96]	
Node-Weighted Steiner Forest	[Demaine, Hajiaghayi, Klein'09]	[Moldenhauer'11]	$15,5$
More general class of problems			

Bigger picture

Graphs

General

Planar

Weights

Vertices

Edges

- Feedback Edge Set in general graphs = Complement of MST
- Planar edge-weighted BIP and D-FVS are also in P
- Planar edge-weighted Steiner Forest has a PTAS ${ }_{\text {Bateni, }}$ Hajiaghayi, Marx, STOC'11]
- Planar unweighted Feedback Vertex Set has a PTAS [Baker; Demaine, Hajiaghayi, SODA'05]

Class 1: Uncrossing property

- Uncrossing:

- Uncrossing property of a family of cycles C :

For every two crossing cycles $\boldsymbol{C}_{\mathbf{1}}, \boldsymbol{C}_{\mathbf{2}} \in C$, one of their two uncrossings has $\boldsymbol{C}_{1}^{\prime}, \boldsymbol{C}_{\mathbf{2}} \in C$.

- Holds for all FVS problems, crucial for the algorithm of GW

Proper functions [GW, DHK]

- A function $\boldsymbol{f}: 2^{V} \rightarrow\{0,1\}$ is proper if $\boldsymbol{f}(\varnothing)=0$,
- Symmetry: $f(S)=f(V \backslash S)$
- Disjointness: If $S_{1} \cap S_{2}=\emptyset$ and $\boldsymbol{f}\left(S_{1}\right)=\boldsymbol{f}\left(S_{2}\right)=0=>$ $\boldsymbol{f}\left(S_{1} \cup S_{2}\right)=0$
- A set $S \subseteq V$ is active, if $f(S)=1$
- Boundary $\Gamma(S)$:

S

- A boundary $\Gamma(S) \subseteq V$ is active, if S is active

Class 2: Hitting set IP [DHK]

- The class of problems:

$$
\begin{aligned}
& \text { Minimize: } \sum_{v \in \mathrm{~V}} w(v) x(v) \\
& \text { Subject to: } \sum_{v \in \Gamma(S)} x(v) \geq \boldsymbol{f}(S) \text {, for all } S \subseteq V \\
& \quad x_{v} \in\{0,1\},
\end{aligned}
$$

where \boldsymbol{f} is a proper function

- Theorem: \boldsymbol{f} is proper $=>$ the collection of all active boundaries forms an uncrossable family (requires triangulation)
- Proof sketch: \boldsymbol{f} is proper $=>$ in one of the cases both interior sets are active => their boundaries are active

Class 1 = Class 2

- Example: Node-Weighted Steiner Forest
- Connect pairs $\left(s_{i}, \boldsymbol{t}_{\boldsymbol{i}}\right)$ via a subset of nodes of min cost
- Proper function $\boldsymbol{f}(\boldsymbol{S})=1$ iff $\left|\boldsymbol{S} \cap\left\{\boldsymbol{s}_{\boldsymbol{i}}, \boldsymbol{t}_{\boldsymbol{i}}\right\}\right|=1$ for some i.

Primal-dual method (local-ratio version)

- Given: G (graph), w (weights), \boldsymbol{C} (cycles)
$-\bar{w}=w$
$-S=$ set of all vertices of zero weight
- While S is not a hitting set for \boldsymbol{C}
- $M=$ collection of cycles returned by oracle Violation (G, C, S)
- $\boldsymbol{c}_{M}(u)=\#$ of cycles in M, which contain u
- $\bar{w}(\boldsymbol{u})=\bar{w}(u)-\min _{u \in V \backslash S} \frac{\bar{w}(u)}{\boldsymbol{c}_{M}(u)} \cdot \boldsymbol{c}_{M}(u)$
- $S=$ set of all vertices of zero weight \bar{w}
- Return a minimal hitting set $H \subset S$ for \boldsymbol{C}

Oracle 1 = Face-minimal cycles [GW]

- Example for Subset FVS with $\gamma=3$:

- Oracle returns all gray cycles => all white nodes are selected
- Cost $=3$ * blocks, OPT $\sim(1+\epsilon)^{*}$ \# blocks

Oracle 2 = Pocket removal [GW]

- Pocket defined by two cycles: region between their common points containing another cycle
- New oracle: no pocket => all face-minimal cycles, otherwise run recursively inside any pocket.
- Our analysis: $\gamma=\frac{18}{7} \approx 2.57$

Each \bullet costs 3 , each costs degree $+\varepsilon$

Oracle 3 = Triple pocket removal

- Triple pocket = region defined by three cycles
- Analysis: $\gamma=2.4$

Red nodes have cost 3 , other nodes have cost degree $+\varepsilon$, black nodes form the optimum solution

Open problems

For our class of node-weighted problems:

- Big question: APX-hardness or a PTAS?
- Integrality gap = 2, how to approach it?
- Pockets of higher multiplicities are harder to analyze
- Pockets cannot go beyond $\mathbf{2 + \boldsymbol { \delta }}$

Applications and ramifications

- Applications: from maintenance of power networks to computational sustainability
- Example: VLSI design.
- Primal-dual approximation algorithms of Goemans and Williamson are competitive with heuristics [Kahng, Vaya, Zelikovsky]
- Connections with bounds on the size of FVS
- Conjectures of Akiyama and Watanabe and Gallai and Younger [see GW for more details]

Approximation factor

- Theorem [GW'96]: If for any minimal solution H the set M returned by the oracle satisfies:

$$
\sum_{\boldsymbol{u} \in H} \boldsymbol{c}_{M}(u) \leq \gamma|M|
$$

then the primal-dual algorithm has approximation γ.

- Examples of oracles:
- Single cycle: $\gamma \leq 10$ [Bar-Yehuda, Geiger, Naor, Roth]
- Single cycle: $\gamma \leq 5$ [Goemans, williamson]
- Collection of all face-minimal cycles: $\gamma \leq 3$ [Goemans, Williamson]

