

Grigory Yaroslavtsev

Joint work with Piotr Berman and Sofya Raskhodnikova

Testing Big Data

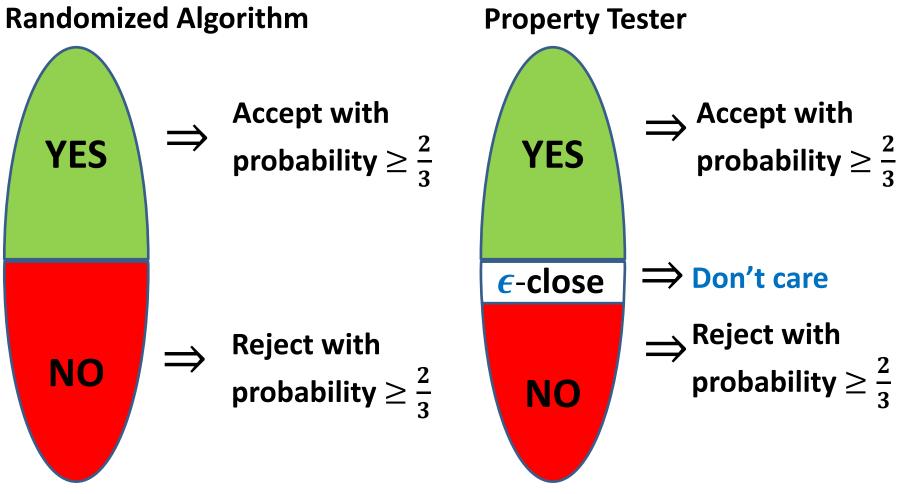
- **Q**: How to understand properties of large data looking only at a small sample?
- **Q**: How to ignore noise and outliers?
- **Q**: How to minimize assumptions about the sample generation process?
- **Q**: How to optimize running time?

Which stocks were growing steadily?

Data from http://finance.google.com

Property Testing

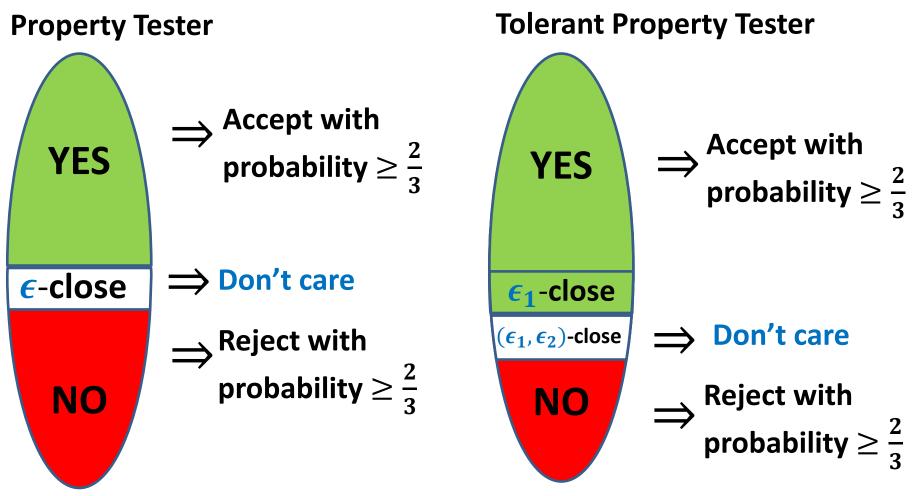
[Goldreich, Goldwasser, Ron; Rubinfeld, Sudan]



 ϵ -close : $\leq \epsilon$ fraction has to be changed to become YES

Tolerant Property Testing

[Parnas, Ron, Rubinfeld]



 ϵ -close : $\leq \epsilon$ fraction has to be changed to become YES

Which stocks were growing steadily?

Data from http://finance.google.com

Tolerant "L₁Property Testing"

- $f: \{1, ..., n\} \to [0, 1]$
- *P* = class of monotone functions

•
$$dist_1(\boldsymbol{f}, \boldsymbol{P}) = \frac{\min_{\boldsymbol{g} \in \boldsymbol{P}} |\boldsymbol{f} - \boldsymbol{g}|_1}{n}$$

• ϵ -close: $dist_1(f, P) \leq \epsilon$

Tolerant "L₁ Property Tester" $\Rightarrow \frac{\text{Accept with}}{\text{probability} \ge \frac{2}{3}}$ YES **€**1-close (ϵ_1, ϵ_2) -close \Rightarrow Don't care $\Rightarrow \frac{\text{Reject with}}{\text{probability} \ge \frac{2}{3}}$ NO

New L_p-Testing Model for Real-Valued Data

- Generalizes standard Hamming testing
- For p > 0 still have a **probabilistic interpretation**: $d_p(f,g) = (\mathbf{E}[|f - g|^p])^{1/p}$
- Compatible with existing **PAC-style learning models** (preprocessing for model selection)
- For Boolean functions, $d_0(f,g) = d_p(f,g)^p$.

Our Contributions

- 1. Relationships between L_p -testing models
- 2. Algorithms
 - $-L_p$ -testers for $p \ge 1$
 - monotonicity, Lipschitz, convexity
 - Tolerant L_p -tester for $p \ge 1$
 - monotonicity in 1D (sublinear algorithm for isotonic regression)

Our L_p-testers beat lower bounds for Hamming testers
 Simple algorithms backed up by involved analysis
 Uniformly sampled (or easy to sample) data suffices

3. Nearly tight lower bounds

Implications for Hamming Testing

Some techniques/results carry over to Hamming testing

- Improvement on Levin's work investment strategy
 - Connectivity of bounded-degree graphs [Goldreich, Ron '02]
 - Properties of images [Raskhodnikova '03]
 - Multiple-input problems [Goldreich '13]
- First example of monotonicity testing problem where adaptivity helps
- Improvements to Hamming testers for Boolean functions

Definitions

- $f: D \rightarrow [0,1]$ (D = finite domain/poset)
- $||f||_{p} = (\sum_{x \in D} |f(x)|^{p})^{1/p}$, for $p \ge 1$
- $||f||_0$ = Hamming weight (# of non-zero values)
- Property P = class of functions (monotone, convex, linear, Lipschitz, ...)

•
$$dist_p(f, P) = \frac{\min_{g \in P} ||f - g||_p}{||1||_p}$$

Relationships: L_p -Testing

 $Q_p(\mathbf{P}, \boldsymbol{\epsilon}) =$ query complexity of L_p -testing property \mathbf{P} at distance $\boldsymbol{\epsilon}$

- $Q_1(\mathbf{P}, \boldsymbol{\epsilon}) \le Q_0(\mathbf{P}, \boldsymbol{\epsilon})$
- $Q_1(\mathbf{P}, \epsilon) \leq Q_2(\mathbf{P}, \epsilon)$ (Cauchy-Shwarz)
- $Q_1(\mathbf{P}, \epsilon) \ge Q_2(\mathbf{P}, \sqrt{\epsilon})$

Boolean functions $f: D \to \{0,1\}$ $Q_0(P,\epsilon) = Q_1(P,\epsilon) = Q_2(P,\sqrt{\epsilon})$ Relationships: Tolerant L_p -Testing

 $Q_p(P,\epsilon_1,\epsilon_2) =$ query complexity of tolerant L_p -testing property P with distance parameters ϵ_1, ϵ_2

- No general relationship between tolerant L_1 -testing and tolerant Hamming testing
- L_p -testing for p > 1 is close in complexity to L_1 -testing $Q_1(P, \varepsilon_1^p, \varepsilon_2) \le Q_p(P, \varepsilon_1, \varepsilon_2) \le Q_1(P, \varepsilon_1, \varepsilon_2^p)$

For Boolean functions $f: D \to \{0,1\}$ $Q_0(P, \varepsilon_1, \varepsilon_2) = Q_1(P, \varepsilon_1, \varepsilon_2) = Q_p(P, \varepsilon_1^{1/p}, \varepsilon_2^{1/p})$

Our Results: Testing Monotonicity

• Hypergrid ($D = [n]^d$)

	L ₀	L_1
Upper bound	$O\left(\frac{d \log n}{\epsilon}\right)$ [Dodis et al. '99,, Chakrabarti, Seshadhri '13]	$O\left(\frac{\mathbf{d}}{\epsilon}\log\frac{\mathbf{d}}{\epsilon}\right)$
Lower bound	$\Omega\left(\frac{d \log n}{\epsilon}\right)$ [Dodis et al.'99, Chakrabarti, Seshadhri '13]	$\Omega\left(\frac{1}{\epsilon}\log\frac{1}{\epsilon}\right)$ Non-adaptive 1-sided error

• $2^{O(d)}/\epsilon$ adaptive tester for Boolean functions

Monotonicity: Key Lemma

- M = class of monotone functions
- Boolean slicing operator $f_{\gamma}: D \rightarrow \{0,1\}$

$$f_y(x) = 1$$
, if $f(x) \ge y$,
 $f_y(x) = 0$, otherwise.

• Theorem:

$$dist_1(\boldsymbol{f}, \boldsymbol{M}) = \int_0^1 dist_0(\boldsymbol{f}_{\boldsymbol{y}}, \boldsymbol{M}) d\boldsymbol{y}$$

Proof sketch: slice and conquer

1) Closest monotone function with **minimal** L_1 -norm is **unique** (can be denoted as an operator M_f^1).

2)
$$||f - g||_1 = \int_0^1 ||f_y - g_y|| dy$$

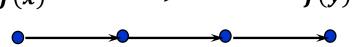
3) M_f^1 and f_y commute: $(M_f^1)_y = M_{(f_y)}^1$

$$1) \quad \left| \left| f - M_{f}^{1} \right| \right|_{1} \\ 2) \quad \int_{0}^{1} \left| f_{y} - (M_{f}^{1})_{y} \right| \right|_{1} dy \\ 3) \\ = \frac{\int_{0}^{1} \left| f_{y} - M_{(f_{y})}^{1} \right| \left| dy \\ dy \\ |D| \\ = \int_{0}^{1} dist_{0} (f_{y}, M) dy \\ 3)$$

L₁-Testers from Boolean Testers

Thm: A nonadaptive, 1-sided error L_0 -test for monotonicity of $f: D \rightarrow \{0,1\}$ is also an L_1 -test for monotonicity of $f: D \rightarrow [0,1]$. Proof: f(x) > f(y)

• A violation (*x*, *y*):



- A nonadaptive, 1-sided error test queries a random set Q ⊆ D and rejects iff Q contains a violation.
- If $f: D \rightarrow [0,1]$ is monotone, Q will not contain a violation.
- If $d_1(f, M) \ge \varepsilon$ then $\exists t^* : d_0(f_{(t^*)}, M) \ge \varepsilon$
- W.p. $\geq 2/3$, set Q contains a violation (x, y) for $f_{(t^*)}$

$$f_{(t^*)}(x) = 1, f_{(t^*)}(y) = 0$$

$$\downarrow$$

$$f(x) > f(y)$$

Distance Approximation and Tolerant Testing

Approximating L_1 -distance to monotonicity $\pm \delta w. \, p. \geq 2/3$

f	L ₀	L_1
[n] → [0,1]	polylog $n \cdot \left(\frac{1}{\delta}\right)^{O(1/\delta)}$ [Saks Seshadhri 10]	$\Theta\left(\frac{1}{\delta^2}\right)$

• Time complexity of tolerant L_1 -testing for monotonicity is

$$0\left(\frac{\boldsymbol{\varepsilon}_2}{(\boldsymbol{\varepsilon}_2-\boldsymbol{\varepsilon}_1)^2}\right)$$

- Better dependence than what follows from distance appoximation for $\epsilon_2 \ll 1$
- Improves $\tilde{O}\left(\frac{1}{\delta^2}\right)$ adaptive distance approximation of [Fattal,Ron'10] for Boolean functions

L₁-Testers for Other Properties

Via combinatorial characterization of L_1 -distance to the property

 $\Theta\left(\frac{d}{\epsilon}\right)$

• Lipschitz property $f: [n]^d \rightarrow [0,1]$:

Via (implicit) **proper learning**: approximate in L_1 up to error ϵ , test approximation on a random $O(1/\epsilon)$ -sample

• Convexity $f: [n]^d \rightarrow [0,1]$:

$$O\left(\epsilon^{-\frac{d}{2}}+\frac{1}{\epsilon}\right)$$
 (tight for $d \leq 2$)

• Submodularity $f: \{0,1\}^d \rightarrow [0,1]$

 $2^{\tilde{O}\left(\frac{1}{\epsilon}\right)} + poly\left(\frac{1}{\epsilon}\right)\log d$ [Feldman, Vondrak 13]

Open Problems

- All our algorithms for for p > 1 were obtained directly from L_1 testers.
- Can one design better algorithms by working directly with L_p -distances?
- Our complexity for L_p -testing convexity grows exponentially with d • Is there an L_p -testing algorithm for convexity with subexponential dependence on the dimension?
- Our L_1 -tester for monotonicity is nonadaptive, but we show that adaptivity helps for Boolean range.

Is there a better adaptive tester?

We designed tolerant tester only for monotonicity (d=1,2). Tolerant testers for higher dimensions?

Other properties?