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Testing Big Data 

• Q: How to understand properties of large data 
looking only at a small sample? 

• Q: How to ignore noise and outliers? 

• Q: How to minimize assumptions about the 
sample generation process? 

• Q: How to optimize running time? 

 



Which stocks were growing steadily? 
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Property Testing  
[Goldreich, Goldwasser, Ron; Rubinfeld, Sudan] 
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Tolerant Property Testing  
[Parnas, Ron, Rubinfeld] 

𝝐-close : ≤ 𝝐 fraction has to be changed to become YES 
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• 𝒇: *1,… , 𝑛+ → 0,1  

• 𝑷 = class of monotone 
functions 

• 𝑑𝑖𝑠𝑡1 𝒇, 𝑷 =
min
𝒈∈𝑷

𝒇 −𝒈 1

𝑛
 

• 𝝐-close: 𝑑𝑖𝑠𝑡1 𝒇, 𝑷 ≤ 𝝐 

Tolerant “𝑳𝟏Property Testing”  
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New 𝐿𝑝-Testing Model for  

Real-Valued Data 
• Generalizes standard Hamming testing 

 

• For 𝑝 > 0 still have a probabilistic interpretation:  

𝑑𝑝 𝑓, 𝑔 = 𝐄 𝒇 − 𝒈 𝒑 1/𝑝 

 

• Compatible with existing PAC-style learning models 
(preprocessing for model selection) 

 

• For Boolean functions, 𝑑0 𝑓, 𝑔 = 𝑑𝑝 𝑓, 𝑔 𝑝. 
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Our Contributions 

1. Relationships between 𝐿𝒑-testing models 

2. Algorithms 
– 𝐿𝒑-testers for 𝒑 ≥ 1  

• monotonicity, Lipschitz, convexity 

– Tolerant 𝐿𝒑-tester for 𝒑 ≥ 1  
• monotonicity in 1D (sublinear algorithm for isotonic regression) 

 

Our 𝐿𝒑-testers  beat lower bounds for Hamming testers 
Simple algorithms backed up by involved analysis 
Uniformly sampled  (or easy to sample) data suffices 

 

3. Nearly tight lower bounds 
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Implications for Hamming Testing 

Some techniques/results carry over to Hamming testing 
 

– Improvement on Levin’s work investment strategy 
• Connectivity of bounded-degree graphs [Goldreich, Ron ‘02+ 

• Properties of images [Raskhodnikova ‘03+ 

• Multiple-input problems [Goldreich ‘13+ 

 

– First example of monotonicity testing problem where 
adaptivity helps 

– Improvements to Hamming testers for Boolean 
functions 
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Definitions 

• 𝒇:  𝐷 → 0,1  (D = finite domain/poset) 

• 𝒇
𝒑
= ( 𝒇 𝑥 𝒑)𝑥∈ 𝐷

1/𝒑
, for 𝒑 ≥ 1 

• 𝒇
𝟎
= Hamming weight (# of non-zero values) 

• Property 𝑷 = class of functions (monotone, 
convex, linear, Lipschitz, …) 

• 𝑑𝑖𝑠𝑡𝒑 𝒇, 𝑷 =  
min
𝑔∈𝑷

||𝒇 −𝑔||𝒑

1
𝒑

 



Relationships: 𝐿𝑝-Testing 

𝑄𝒑(𝑷,𝝐) = query complexity of 𝐿𝒑-testing 
property 𝑷 at distance 𝝐 

 

• 𝑄𝟏(𝑷,𝝐) ≤ 𝑄𝟎(𝑷,𝝐) 

• 𝑄𝟏(𝑷,𝝐) ≤ 𝑄𝟐(𝑷,𝝐) (Cauchy-Shwarz) 

• 𝑄𝟏(𝑷,𝝐) ≥ 𝑄𝟐(𝑷, 𝝐) 

 

Boolean functions 𝒇: 𝐷 → 0,1  

𝑄𝟎(𝑷,𝝐) = 𝑄𝟏(𝑷,𝝐) = 𝑄𝟐(𝑷, 𝝐)  

 

 



Relationships: Tolerant 𝐿𝑝-Testing 
 

𝑄𝒑(𝑷,𝝐𝟏, 𝝐𝟐) = query complexity of tolerant 𝐿𝒑-testing 
property 𝑷 with distance parameters 𝝐𝟏, 𝝐𝟐 

 

• No general relationship between tolerant 𝐿𝟏-testing 
and tolerant Hamming testing 

• 𝐿𝒑-testing for 𝒑 > 1 is close in complexity to 𝐿𝟏-testing  

𝑄𝟏(𝑷,𝜺𝟏
𝒑
, 𝜺𝟐) ≤ 𝑄𝒑(𝑷,𝜺𝟏, 𝜺𝟐) ≤ 𝑄𝟏(𝑷,𝜺𝟏, 𝜺𝟐

𝒑
) 

 

For Boolean functions 𝒇: 𝐷 → 0,1  

𝑄𝟎(𝑷,𝜺𝟏, 𝜺𝟐) = 𝑄𝟏(𝑷,𝜺𝟏, 𝜺𝟐) = 𝑄𝒑(𝑷,𝝐𝟏
𝟏/𝒑

, 𝜺𝟐
𝟏/𝒑

)  

 



Our Results: Testing Monotonicity 

• Hypergrid (𝐷 = 𝒏 𝒅) 

 

 

 

 

 

 

 

• 2𝑂 𝒅 /𝜖 adaptive tester for Boolean functions 

𝐿0  𝐿1 
Upper 
bound 

𝑂
𝐝 log 𝒏

𝝐
   

[Dodis  et al. ’99,…, 
Chakrabarti, Seshadhri ’13] 

𝑂  
𝒅

𝝐
log

𝒅

𝝐
  

Lower 
bound 

Ω
𝐝 log 𝒏

𝝐
 

[Dodis  et al.’99…, 
Chakrabarti, Seshadhri ’13+ 
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Non-adaptive 1-sided error 



Monotonicity: Key Lemma 

• M = class of monotone functions 

• Boolean slicing operator 𝒇𝒚: 𝐷 → *0,1+ 

  𝒇𝒚 𝑥 = 1, if  𝒇 𝑥 ≥  𝒚, 

  𝒇𝒚 𝑥 = 0, otherwise. 

• Theorem: 

 

𝑑𝑖𝑠𝑡1 𝒇,𝑀 = ∫0

1
𝑑𝑖𝑠𝑡0 𝒇𝒚, 𝑀 𝑑𝒚 

 



Proof sketch: slice and conquer 

1) Closest monotone function with minimal 𝑳𝟏-norm is 
unique (can be denoted as an operator 𝑀𝒇

1). 

2) 𝑓 − 𝑔
1
= ∫ 𝑓𝒚  − 𝑔𝒚 𝑑𝒚

1

0
 

3) 𝑀𝒇
1 and 𝒇𝒚 commute: 𝑀𝒇

1

𝒚
= 𝑀1

(𝒇𝒚)
 

 

𝑑𝑖𝑠𝑡1 𝑓,𝑀 =
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𝐿1-Testers from Boolean Testers  
 

Thm: A nonadaptive, 1-sided error 𝐿0-test for monotonicity of  

𝑓: 𝐷 → *0,1+ is also an 𝐿1-test for monotonicity of 𝑓: 𝐷 → ,0,1-. 

Proof: 

• A violation (𝑥, 𝑦): 

• A nonadaptive, 1-sided error test queries a random set 𝑄 ⊆ 𝐷 
and rejects iff 𝑄 contains a violation. 

• If 𝑓: 𝐷 → ,0,1- is monotone, 𝑄 will not contain a violation. 

• If 𝑑1 𝑓,𝑀 ≥ 𝜀 then ∃𝒕∗: 𝑑0 𝒇(𝒕∗), 𝑀 ≥ 𝜺 

• W.p. ≥ 2/3, set 𝑄 contains a violation (𝑥, 𝑦) for 𝒇(𝒕∗) 

𝒇(𝒕∗) 𝑥 = 1, 𝒇(𝒕∗) 𝑦 = 0 

⇓ 
𝒇 𝑥 > 𝒇 𝑦  

1
2

𝒇(𝒙) 𝒇(𝒚) > 



Distance Approximation and Tolerant Testing 

𝑓 𝐿0  𝐿1 

𝒏 → ,0,1- 
 polylog 𝒏 ⋅

𝟏

𝜹

𝑶 𝟏/𝜹

 

[Saks Seshadhri 10] 

Θ
𝟏

𝜹𝟐
  

 

Approximating 𝑳𝟏-distance to monotonicity ±𝜹 𝒘. 𝒑.≥ 𝟐/𝟑 

• Time complexity of tolerant 𝐿1-testing for monotonicity is 

O
𝜺𝟐

(𝜺𝟐 − 𝜺𝟏)
𝟐

 

– Better dependence than what follows from distance 
appoximation for  𝝐𝟐 ≪ 1  

– Improves 𝑂 
𝟏

𝜹𝟐   adaptive distance approximation of 
*Fattal,Ron’10+ for Boolean functions 



𝐿1-Testers for Other Properties 
Via combinatorial characterization of 𝐿1-distance to the property 

• Lipschitz property 𝒇: 𝒏 𝒅 → ,0,1-:  

Θ
𝒅

𝜖
 

Via (implicit) proper learning: approximate in 𝐿1 up to error 𝝐, 
test approximation on a random 𝑂(1/𝜖)-sample 

• Convexity 𝒇: 𝒏 𝒅 → ,0,1-:  

O 𝝐−
𝒅

2 +
1

𝝐
 (tight for 𝒅 ≤ 2)  

• Submodularity 𝒇: 0,1 𝒅 → 0,1  

2
𝑂 

1

𝝐 + 𝑝𝑜𝑙𝑦
1

𝝐
log 𝒅 [Feldman, Vondrak 13] 



Open Problems 

• All our algorithms for for 𝑝 > 1 were obtained directly from 𝐿1-
testers. 

Can one design better algorithms by working directly with 𝐿𝑝-distances? 

• Our complexity for 𝐿𝑝-testing convexity grows exponentially with d 

Is there an 𝐿𝑝-testing algorithm for convexity with subexponential 
dependence on the dimension? 

  
• Our 𝐿1-tester for monotonicity is nonadaptive, but we show that 

adaptivity helps for Boolean range. 
Is there a better adaptive tester? 

• We designed tolerant tester only for monotonicity (d=1,2). 
Tolerant testers for higher dimensions?  

Other properties? 


