Advances in Directed Spanners

Grigory Yaroslavtsev Penn State

Joint work with

Berman (PSU), Bhattacharyya (MIT), Grigorescu (GaTech), Makarychev (IBM), Raskhodnikova (PSU), Woodruff (IBM)

Directed Spanner Problem

- k-Spanner [Awerbuch '85, Peleg, Shäffer '89]
 Subset of edges, preserving distances up to a factor k > 1 (stretch k).
- Graph G(V, E) with weights $w : E \to \mathbb{R}^{\geq 0}$ H(V, $E_H \subseteq E$): $\forall (u, v) \in E \ dist_H(u, v) \leq k \cdot w(u, v)$

• **Problem:** Find the sparsest k-spanner of a directed graph.

Directed Spanners and Their Friends

Unit lengths

Transitive-closure spanner

Minimum cost spanner

Steiner spanner

Applications of spanners

- First application: simulating synchronized protocols in unsynchronized networks [Peleg, Ullman '89]
- Efficient routing [PU'89, Cowen '01, Thorup, Zwick '01, Roditty, Thorup, Zwick '02, Cowen, Wagner '04]
- Parallel/Distributed/Streaming approximation algorithms for shortest paths [Cohen '98, Cohen '00, Elkin'01, Feigenbaum, Kannan, McGregor, Suri, Zhang '08]
- Algorithms for approximate distance oracles [Thorup, Zwick '01, Baswana, Sen '06]

Applications of directed spanners

- Access control hierarchies
 - Previous work: [Atallah, Frikken, Blanton, CCCS '05; De Santis, Ferrara, Masucci, MFCS'07]
 - Solution: TC-spanners [Bhattacharyya, Grigorescu, Jung, Raskhodnikova, Woodruff, SODA'09]
 - Steiner TC-spanners for access control: [Berman, Bhattacharyya, Grigorescu, Raskhodnikova, Woodruff, Y' ICALP'11]
- Property testing and property reconstruction [BGJRW'09; Raskhodnikova '10 (survey)]

Plan

- Approximation algorithms
 - Undirected vs. Directed
 - Framework for directed case = Sampling + LP
 - Randomized rounding
 - Directed Spanner
 - Unit-length 3-spanner
 - Directed Steiner Forest
- Combinatorial bounds on TC-Spanners
 - Upper bounds for low-dimensional posets
 - Lower bounds via linear programming

Undirected vs. Directed

- Trivial lower bound: $\geq n 1$ edges needed
- Every undirected graph has a (2t+1)-spanner with $\leq n^{1+1/t}$ edges. [Althofer, Das, Dobkin, Joseph, Soares '93]
- Kruskal-like greedy + girth argument => $n^{\frac{1}{t}}$ -approximation
- Time/space-efficient constructions of undirected approximate distance oracles [Thorup, Zwick, STOC '01]

Undirected vs Directed

• For some directed graphs $\Omega(n^2)$ edges needed for a k-spanner:

• No space-efficient directed distance oracles: some graphs require $\Omega(n^2)$ space. [TZ '01]

Unit-Length Directed k-Spanner

• O(n)-approximation: trivial (whole graph)

Stretch	k = 2	k = 3	$k \ge 4$
		$\tilde{O}(n^{2/3})$ [EP00]	_
Previous work	$O(\log n)$	$\tilde{O}(n^{2/3})$ [BGJRW09]	$\tilde{O}(n^{1-\frac{1}{k}})$ [BGJRW09]
	[KP94]	$\tilde{O}(\sqrt{n})$ [BRR10]	$\tilde{O}(n^{1-\frac{1}{\lceil k/2 \rceil}})$ [BRR10]
		$\tilde{O}(\sqrt{n})$ [DK11]	$\tilde{O}(n^{2/3})$ [DK11]
Our work		$ ilde{O}(n^{1/3}) + undirected!$	$\tilde{O}(\sqrt{n})$
Integrality gap	$\Omega(\log n)$	$\Omega(\frac{1}{k}n^{1/3-\epsilon})$	
	[DK11]	[DK11]	
	$\Omega(\log n)$	$2^{\log^{1-\epsilon} n}$	
Hardness	NP-hard	quasi-NP-hard	
	[K01]	[EP00]	

Our $\tilde{O}(\sqrt{n})$ -approximation

- Paths of stretch at most k for all edges =>
- Classify edges: **thick** and **thin**
- Take union of spanners for them

 Thick edges: Sampling
 Thin edges: LP + randomized rounding

Local Graph

• Local graph for an edge (a,b): Induced by vertices on paths of stretch $\leq k$ from a to b

- Paths of stretch $\leq k$ only use edges in local graphs
- Thick edges: $\geq \sqrt{n}$ vertices in their local graph. Otherwise thin.

Sampling [BGJRW'09, DK11]

- Pick $O(\sqrt{n \ln n})$ seed vertices at random
- Take in- and out- shortest path trees for each

- Handles all **thick** edges ($\geq \sqrt{n}$ vertices in their local graph) w.h.p.
- # of edges $\leq 2(n-1)O(\sqrt{n}\ln n) \leq OPT \cdot \tilde{O}(\sqrt{n}).$

Key Idea: Antispanners

 Antispanner – subset of edges, whose removal destroys all paths from a to b of stretch at most k

- Graph is spanner <=> hits all antispanners
- Enough to hit all minimal antispanners for all thin edges
- If E_H is not a spanner for an edge $(a,b) \Rightarrow E \setminus E_H$ is an antispanner, can be minimized greedily

Linear Program (~dual to [DK'11])

- # of minimal antispanners may be exponential in $\sqrt{n} \Rightarrow$ Ellipsoid + Separation oracle
- We will show: $\leq \sqrt{n}^{\sqrt{n}} = e^{\frac{1}{2}\sqrt{n} \ln n}$ minimal antispanners for a fixed thin edge
- Assume that we guessed OPT = the size of the sparsest k-spanner (at most n² values)

Oracle

 We use a randomized oracle => in both cases oracle fails with exponentially small probability.

Randomized Oracle = Rounding

• Rounding: Take **e** w.p. $p_e = \min(\sqrt{n \ln n} \cdot x_e, 1)$

- **SMALL SPANNER**: We have a set of edges of size $\leq \sum_{e} x_{e} \cdot \tilde{O}(\sqrt{n}) \leq OPT \cdot \tilde{O}(\sqrt{n})$ w.h.p.
- $\Pr[\text{LARGE SPANNER}] \leq e^{-\Omega(\sqrt{n})}$ by Chernoff.
- $\Pr[\text{CONSTRAINT NOT VIOLATED}] \le e^{-\Omega(\sqrt{n})}$ (next slide)

Pr[CONSTRAINT NOT VIOLATED]

- Set $S: \forall e \in E$ we have $\Pr[e \in S] = \min(\sqrt{n \ln n} x_e, 1)$
- For a fixed minimal antispanner **A**, such that $\sum_{e \in A} x_e \ge 1$:

$$\Pr[S \cap \mathbf{A} = \emptyset] \le \prod_{e \in \mathbf{A}} (1 - \sqrt{n} \ln n \, x_e) \le e^{-\sqrt{n} \ln n \sum_{e \in \mathbf{A}} x_e} \le e^{-\sqrt{n} \ln n}$$

• #minimal antispanners for a fixed edge $(s, t) \leq$

#different shortest path trees with root **s** in a local graph $\leq \sqrt{n}^{\sqrt{n}} = e^{\frac{1}{2}\sqrt{n} \ln n} \text{ (for a thin edge)}$

• #minimal antispanners $\leq |E|e^{\frac{1}{2}\sqrt{n}\ln n} =>$ union bound: Pr[CONSTRAINT NOT VIOLATED] $\leq |E|e^{-\frac{1}{2}\sqrt{n}\ln n}$

Unit-length 3-spanner

- Õ(n^{1/3})-approximation algorithm

 Sampling Õ(n^{1/3}) times
 Dual LP + Different randomized rounding
 - (simplified version of [DK'11])
- Rounding scheme (vertex-based):
 - For each vertex $u \in V$: sample $r_u \in [0,1]$

- Take all edges (u, v) if $\min(r_u, r_v) \le \tilde{O}(n^{1/3}) x_{(u,v)}$

– Feasible solution => 3-spanner w.h.p. (see paper)

Approximation wrap-up

- Sampling + LP with randomized rounding
- Improvement for **Directed Steiner Forest**:
 - Cheapest set of edges, connecting pairs (s_i, t_i)
 - Previous: Sampling + similar LP [Feldman, Kortsarz, Nutov, SODA '09]. Deterministic rounding gives $\tilde{O}(n^{4/5+\epsilon})$ -approximation
 - We give $\tilde{O}(n^{2/3+\epsilon})$ -approximation via **randomized rounding**

Approximation wrap-up

- $\tilde{O}(\sqrt{n})$ -approximation for Directed Spanner
- Small local graphs => better approximation
- Can we do better for general graphs?
 - Hardness: only excludes polylog(n)approximation
 - Integrality gap: $\Omega(n^{1/3-\epsilon})$ [DK'11]
- Can we do better for specific graphs
 - Planar graphs (still NP-hard)?

Transitive-Closure Spanners

Transitive closure TC(*G*) has an edge from *u* to *v* iff *G* has a path from *u* to *v*

H is a k-TC-spanner of G if H is a subgraph of TC(G) TC(G) f dr-TC-ispanner of G if H is a subgraph of f (G) f dr-TC-ispanner of f dr-TC-ispanner o

Shortcut edge consistent with ordering Bhattacharyya, Grigorescu, Jung, Raskhodnikova, Woodruff, SODA'09], generalizing [Yao 82; Chazelle 87; Alon, Schieber 87, ...]

Applications of TC-Spanners

- Data structures for storing partial products [Yao, '82; Chazelle '87, Alon, Schieber, 88]
- Constructions of unbounded fan-in circuits [Chandra, Fortune, Lipton ICALP, STOC'83]
- Property testers for monotonicity and Lipschitzness [Dodis et al. '99,BGJRW'09; Jha, Raskhodnikova, FOCS '11]
- Lower bounds for reconstructors for monotonicity and Lipshitzness [BGJJRW'10, JR'11]
- Efficient key management in access hierarchies

Follow references in [Raskhodnikova '10 (survey)]

Bounds for Steiner TC-Spanners

• No non-trivial upper bound for arbitrary graphs

<u>FACT</u>: For a random directed bipartite graph of density $\frac{1}{2}$, any Steiner 2-TC-spanner requires $\tilde{\Omega}(n^2)$ edges.

Low-Dimensional Posets

- [ABFF 09] access hierarchies are lowdimensional posets
- Poset \equiv DAG
- Poset G has dimension d if G can be <u>embedded</u> into a <u>hypergrid</u> of dimension d and d is minimum.

 $e: G \to G'$ is a **poset embedding** if for all $x, y \in G$, $x \leq_G y$ iff $e(x) \leq_{G'} e(y)$.

Hypergrid $[m]^d$ has ordering $(x_1, ..., x_d) \leq (y_1, ..., y_d)$ iff $x_i \leq y_i$ for all i

Main Results

2-TC-Spanner for $[m]^d$

• d = 1 (so, n = m)

2-TC-spanner with $\leq m \log m = n \log n$ edges

We show this is tight upto α^d for a • d > 1 (so, $n = m^d$) constant α . 2-TC-spanner with $\leq (m \log m)^d = n \left(\frac{\log n}{d}\right)^d$ edges by taking d-wise Cartesian product of 2-TCspanners for a line.

Lower Bound Strategy

- Write in IP for a minimal 2-TC-spanner.
- OPT $\geq LP = LP_{dual}$
- It is crucial that the integrality gap of the primal is small.
- Idea: Construct some feasible solution for the dual => lower bound on OPT.
- OPT $\geq LP = LP_{dual} \geq LB$

IP Formulation

• {0,1}-program for Minimal 2-TC-spanner:

subject to:

minimize

$$\sum_{u,v:u\leqslant v} x_{uv}$$

$$\begin{array}{ll} x_{uw} \geq p_{uwv} & \forall u \leqslant w \leqslant v \\ x_{wv} \geq p_{uwv} & \forall u \leqslant w \leqslant v \\ \sum_{w:u \leqslant w \leqslant v} p_{uwv} \geq 1 & \forall u \leqslant v \end{array}$$

Dual LP

• Take fractional relaxation of IP and look at its dual:

Constructing solution to dual LP

• Now we use fact that poset is a hypergrid! For $u \leq v$, set $y_{uv} = \frac{1}{V(v-u)}$, where V(v - u) is volume of box with corners u and v.

Constructing solution to dual LP

• Now we use fact that poset is a hypergrid! For $u \leq v$, set $y_{uv} = \frac{1}{(4\pi)^d V(v-u)'}$, where V(v-u) is volume of box with corners u and v.

Wrap-up

- Upper bound for Steiner 2-TC-spanner
- Lower bound for 2-TC-spanner for a hypergrid.
 Technique: find a feasible solution for the dual LP
- Lower bound of $\Omega(n \log^{\lceil (d-1)/k \rceil} n)$ for $k \ge 3$.
 - Combinatorial
 - Holds for randomly generated posets, not explicit.
- OPEN PROBLEM:
 - Can the LP technique give a better lower bound for $k \ge 3$?