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Directed Spanner Problem 
• k-Spanner [Awerbuch ‘85, Peleg, Shäffer ‘89] 

Subset of edges, preserving distances up to a factor k > 1 
(stretch k). 

• Graph G V, E  with weights 𝑤 ∶  𝐸 → ℝ ≥0  

 H(V, 𝑬𝑯 ⊆ 𝑬): ∀(𝑢, 𝑣) ∈ 𝐸 𝑑𝑖𝑠𝑡𝑯 𝑢, 𝑣 ≤ 𝑘 ⋅ 𝑤(𝑢, 𝑣) 

 

 

 

 

 

• Problem: Find the sparsest k-spanner of a directed 
graph. 



Directed Spanners and Their Friends 



Applications of spanners 

• First application: simulating synchronized 
protocols in unsynchronized networks [Peleg, 

Ullman ’89] 

• Efficient routing [PU’89, Cowen ’01, Thorup, Zwick ’01, 
Roditty, Thorup, Zwick ’02 , Cowen, Wagner ’04] 

• Parallel/Distributed/Streaming approximation 
algorithms for shortest paths [Cohen ’98, Cohen ’00, 
Elkin’01, Feigenbaum, Kannan, McGregor, Suri, Zhang ’08] 

• Algorithms for approximate distance oracles 
[Thorup, Zwick ’01, Baswana, Sen ’06] 

  



Applications of directed spanners 

• Access control hierarchies 

• Previous work: [Atallah, Frikken, Blanton, CCCS 

‘05; De Santis, Ferrara, Masucci, MFCS’07]  

•  Solution: TC-spanners [Bhattacharyya, Grigorescu, 
Jung, Raskhodnikova, Woodruff, SODA’09] 

•  Steiner TC-spanners for access control: 
[Berman, Bhattacharyya, Grigorescu, Raskhodnikova, 
Woodruff, Y’ ICALP’11] 

• Property testing and property reconstruction 
[BGJRW’09; Raskhodnikova ’10 (survey)] 



Plan 

• Approximation algorithms 
– Undirected vs. Directed 

– Framework for directed case = Sampling + LP 

– Randomized rounding  
• Directed Spanner 

• Unit-length 3-spanner 

• Directed Steiner Forest 

• Combinatorial bounds on TC-Spanners 
– Upper bounds for low-dimensional posets 

– Lower bounds via linear programming 



Undirected vs. Directed 

• Trivial lower bound: ≥ 𝒏 − 𝟏 edges needed 

• Every undirected graph has a (2t+1)-spanner 
with ≤ 𝑛1+1/𝑡 edges. [Althofer, Das, Dobkin, 
Joseph, Soares ‘93] 

• Kruskal-like greedy + girth argument 

=> 𝑛
1

𝑡 −approximation 

• Time/space-efficient constructions of 
undirected approximate distance oracles 
[Thorup, Zwick, STOC ‘01] 

 

 



Undirected vs Directed 

• For some directed graphs Ω 𝑛2  edges 
needed for a k-spanner: 

 

 

 

 

 

 

• No space-efficient directed distance oracles: 
some graphs require Ω 𝑛2  space. [TZ ‘01] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit-Length Directed k-Spanner 
• O(n)-approximation: trivial (whole graph) 



Our 𝑂 ( 𝑛)-approximation 

• Paths of stretch at most k for all  edges =>  

• Classify edges: thick and thin 

• Take union of spanners for them 

–Thick edges: Sampling 

–Thin edges: LP + randomized rounding 

 

 



Local Graph 

• Local graph for an edge (a,b): Induced by 
vertices on paths of stretch ≤ 𝑘 from a to b 

 

 

 

 

 

• Paths of stretch ≤ 𝑘 only use edges in local 
graphs 

• Thick edges: ≥ 𝒏  vertices in their local graph. 
Otherwise thin. 



Sampling [BGJRW’09, DK11] 
• Pick O( 𝒏 𝐥𝐧𝒏)  seed vertices at random 

• Take in- and out- shortest path trees for each 

 

 

 

 

• Handles all thick edges (≥ 𝑛  vertices in their 
local graph) w.h.p. 

• # of edges ≤ 2 𝑛 − 1 𝑶( 𝒏 𝐥𝐧𝒏) ≤ 𝑂𝑃𝑇 ⋅ Õ 𝑛 . 



Key Idea: Antispanners 
• Antispanner – subset of edges, whose 

removal destroys all paths from a to b of 
stretch at most k 

• Graph is spanner <=> hits all antispanners 
• Enough to hit all minimal antispanners for all thin 

edges 
• If 𝐸𝐻 is not a spanner for an edge (a,b) => 𝐸 ∖ 𝐸𝐻 is 

an antispanner, can be minimized greedily 
 



Linear Program (~dual to [DK’11]) 
 Hitting-set LP:  𝑥𝑒𝑒∈𝐸 → 𝑚𝑖𝑛 

 𝑥𝑒
𝑒∈𝐀 

≥ 1 

for all minimal antispanners A for all thin edges. 

• # of minimal antispanners may be 
exponential in 𝑛 =>  Ellipsoid + Separation 
oracle 

• We will show: ≤ 𝑛
𝑛
= 𝑒

1

2
𝑛 ln 𝑛minimal 

antispanners for a fixed thin edge  
• Assume that we guessed OPT = the size of 

the sparsest k-spanner (at most 𝑛2 values) 



Oracle 
Hitting-set LP:  𝑥𝑒𝑒∈𝐸 ≤ 𝑂𝑃𝑇 

 𝑥𝑒
𝑒∈𝐀 

≥ 1 

for all minimal antispanners A for all thin edges. 

• We use a randomized oracle => in both cases 
oracle fails with exponentially small probability. 



• Rounding: Take e w.p. 𝑝𝑒 = min 𝒏 𝐥𝐧𝒏 ⋅ 𝑥𝑒 , 1  

 

 

 

 

 

• SMALL SPANNER: We have a set of edges of 
size ≤  𝑥𝑒𝑒 ⋅ 𝑂 𝑛 ≤ 𝑂𝑃𝑇 ⋅ 𝑂 𝑛  w.h.p. 

• Pr[LARGE SPANNER]  ≤ e− Ω( 𝑛) by Chernoff. 

• Pr[CONSTRAINT NOT VIOLATED] ≤ e− Ω( 𝑛) 
(next slide) 

Randomized Oracle = Rounding 



Pr[CONSTRAINT NOT VIOLATED] 

• Set 𝑆: ∀𝑒 ∈ 𝐸 we have Pr [𝑒 ∈ 𝑆] = min 𝑛 ln 𝑛 𝑥𝑒 , 1  

• For a fixed minimal antispanner A, such that 
 𝑥𝑒 ≥ 1𝑒∈𝐴 :  

Pr 𝑆 ∩A = ∅ ≤  1 − 𝑛 ln 𝑛 𝑥𝑒
𝑒∈A

≤ 𝑒− 𝑛 ln 𝑛  𝑥𝑒𝑒∈𝐴 ≤ 𝒆− 𝒏 𝒍𝒏 𝒏 

• #minimal antispanners for a fixed edge (𝒔, 𝒕) ≤  

#different shortest path trees with root s in a local graph 

                         ≤ 𝑛
𝑛
= 𝑒

1

2
𝑛 ln 𝑛 (for a thin edge) 

• #minimal antispanners ≤ |𝐸|𝒆
𝟏

𝟐
𝒏 𝐥𝐧 𝒏 => union bound: 

Pr[CONSTRAINT NOT VIOLATED] ≤ |𝐸|𝒆−
𝟏

𝟐
𝒏 𝐥𝐧 𝒏 

 

 



Unit-length 3-spanner 

• 𝑂 (𝑛1/3)-approximation algorithm 
– Sampling 𝑂 (𝑛1/3) times 

– Dual LP + Different randomized rounding 
(simplified version of [DK’11]) 

• Rounding scheme (vertex-based): 
– For each vertex 𝑢 ∈ 𝑉: sample 𝑟𝑢 ∈ 0,1   

– Take all edges 𝑢, 𝑣  if 

min 𝑟𝑢, 𝑟𝑣 ≤ 𝑂 (𝑛1/3)𝑥(𝑢,𝑣) 

– Feasible solution => 3-spanner w.h.p. (see paper) 



Approximation wrap-up 
• Sampling + LP with randomized rounding 

• Improvement for Directed Steiner Forest: 

–Cheapest set of edges, connecting pairs 𝑠𝑖 , 𝑡𝑖  

– Previous: Sampling + similar LP [Feldman, 

Kortsarz, Nutov, SODA ‘09] . Deterministic 

rounding gives 𝑂 𝑛4/5+𝜖 -approximation 

–We give 𝑂 𝑛2/3+𝜖 -approximation via 
randomized rounding 



Approximation wrap-up 

• Õ( 𝒏)-approximation for Directed Spanner 

• Small local graphs => better approximation 

• Can we do better for general graphs?  

• Hardness: only excludes polylog(n)-
approximation   

• Integrality gap: 𝜴(𝒏𝟏/𝟑−𝝐) [DK’11] 

• Can we do better for specific graphs 

• Planar graphs (still NP-hard)? 

 

 



H is a k-TC-spanner of G if H is a k-spanner of 
TC(G) 

Transitive-Closure Spanners 

Transitive closure TC(G) has an edge from u to v iff 

G has a path from u to v 

 

 

 

 

 

 

H is a k-TC-spanner of G if H is a subgraph of 
TC(G) for which distanceH(u,v) ≤ k iff G has a path 

from u to v 

G TC(G) 

2-TC-spanner of G 

Shortcut edge 
consistent with 

ordering 
[Bhattacharyya, Grigorescu, Jung, Raskhodnikova, Woodruff, SODA‘09],  
generalizing [Yao 82; Chazelle 87; Alon, Schieber 87, …] 
 



Applications of TC-Spanners 

 Data structures for storing partial products [Yao, 

’82; Chazelle ’87, Alon, Schieber, 88] 

 Constructions of unbounded fan-in circuits 
[Chandra, Fortune, Lipton ICALP, STOC‘83] 

 Property testers for monotonicity and 
Lipschitzness [Dodis et al. ‘99,BGJRW’09; Jha, 
Raskhodnikova, FOCS ‘11] 

 Lower bounds for reconstructors for 
monotonicity and Lipshitzness [BGJJRW’10, JR’11] 

 Efficient key management in access hierarchies  

 

 

 

 

 

 

Follow references in [Raskhodnikova ’10 (survey)] 



Bounds for Steiner TC-Spanners 

• No non-trivial upper bound for arbitrary 
graphs 

FACT: For a random directed 
bipartite graph of density ½, 
any Steiner 2-TC-spanner 
requires Ω n2  edges. 



Low-Dimensional Posets 

• [ABFF 09] access hierarchies are low-
dimensional posets 

• Poset ≡ DAG 

• Poset G has dimension d if G can be 
embedded into a hypergrid of dimension d 
and d is minimum. 

 

 

𝑒: 𝐺 → 𝐺′ is a poset embedding if for 
all 𝑥, 𝑦 ∈ 𝐺, 𝑥 ≼𝐺 𝑦 iff 𝑒 𝑥 ≼𝐺′ 𝑒(𝑦). 
 
Hypergrid 𝑚 𝑑 has ordering 
𝑥1, … , 𝑥𝑑 ≼ (𝑦1, … , 𝑦𝑑) iff 𝑥𝑖 ≤ 𝑦𝑖 

for all i 



Main Results 

Stretch k Upper Bound Lower Bound 

2 𝑂 𝑛 log𝑑 𝑛  
Ω 𝑛

𝛼log𝑛

𝑑

𝑑

 

where 𝛼 is a constant 

≥ 3  𝑂(𝑛 log𝑑−1 𝑛 log log 𝑛)   
for constant d 

[DFM 07] 

Ω(𝑛 log (𝑑−1)/𝑘 𝑛) 
for constant d 

𝒌 = 𝟑. Nothing 
better known for 

larger k. 

d is the poset dimension 



2-TC-Spanner for 𝑚 𝑑 
• d = 1 (so, n = m) 

2-TC-spanner with ≤ 𝑚 log𝑚 =𝑛 log 𝑛 edges 

 

 

 

 

 

… … 

• d > 1 (so, n = md) 

2-TC-spanner with ≤ (m logm)d= n
log n

d

d
 edges 

by taking d-wise Cartesian product of 2-TC-
spanners for a line. 

 

We show this is 

tight upto 𝜶𝒅 for a 

constant 𝜶. 



Lower Bound Strategy 

• Write in IP for a minimal 2-TC-spanner. 

• OPT ≥ 𝐿𝑃 = 𝐿𝑃𝑑𝑢𝑎𝑙 

• It is crucial that the integrality gap of the primal 
is small. 

• Idea: Construct some feasible solution for the 
dual => lower bound on OPT. 

• OPT ≥ 𝐿𝑃 = 𝐿𝑃𝑑𝑢𝑎𝑙 ≥ 𝐿𝐵  

 

 

 



IP Formulation 

• {0,1}-program for Minimal 2-TC-spanner: 

minimize  
 

subject to: 
    
   𝑥𝑢𝑤 ≥ 𝑝𝑢𝑤𝑣  ∀𝑢 ≼ 𝑤 ≼ 𝑣 
   𝑥𝑤𝑣 ≥ 𝑝𝑢𝑤𝑣  ∀𝑢 ≼ 𝑤 ≼ 𝑣 
    
      ∀𝑢 ≼ 𝑣 
 

 𝑥𝑢𝑣
𝑢,𝑣:𝑢≼𝑣

 

 

 𝑝𝑢𝑤𝑣 ≥ 1

𝑤:𝑢≼𝑤≼𝑣

 



Dual LP 

• Take fractional relaxation of IP and look at its dual: 

maximize 
 

 
subject to:      ∀𝑢 ≼ 𝑣 
 
 
          𝑦𝑢𝑣 ≤ 𝑞𝑢𝑤𝑣 + 𝑟𝑢𝑤𝑣  ∀𝑢 ≼ 𝑤 ≼ 𝑣 
         0 ≤ 𝑦𝑢𝑣 , 𝑞𝑢𝑤𝑣 , 𝑟𝑢𝑤𝑣 ≤ 1  ∀𝑢 ≼ 𝑤 ≼ 𝑣 
       

 𝑦𝑢𝑣
𝑢,𝑣:𝑢≼𝑣

 

 𝑞𝑢𝑣𝑤 +  𝑟𝑤𝑢𝑣 ≤ 1

𝑤:𝑤≼𝑢𝑤:𝑣≼𝑤

 



Constructing solution to dual LP 

• Now we use fact that poset is a hypergrid! For 𝑢 ≼ 𝑣, set 

𝑦𝑢𝑣 = 
1

𝑉(𝑣−𝑢)
, where 𝑉(𝑣 −  𝑢) is volume of box with 

corners u and v. 

 

 maximize 
 
subject to: 
      ∀𝑢 ≼ 𝑣 
 
 
         𝑦𝑢𝑣 = 𝑞𝑢𝑤𝑣 + 𝑟𝑢𝑤𝑣  ∀𝑢 ≼ 𝑤 ≼ 𝑣 
       

 𝑦𝑢𝑣
𝑢,𝑣:𝑢≼𝑣

 

 𝑞𝑢𝑣𝑤 +  𝑟𝑤𝑢𝑣 ≤ 1

𝑤:𝑤≼𝑢𝑤:𝑣≼𝑤

 

> 𝒎𝐥𝐧𝒎 𝒅 

Set 𝒒𝒖𝒘𝒗 = 𝒚𝒖𝒗
𝑽(𝒘−𝒖)

𝑽 𝒘−𝒖 +𝑽(𝒗−𝒘)
, 𝒓𝒖𝒘𝒗 = 𝒚𝒖𝒗

𝑽(𝒗−𝒘)

𝑽 𝒘−𝒖 +𝑽(𝒗−𝒘)
 

≤ 𝟒𝝅 𝒅 



Constructing solution to dual LP 

• Now we use fact that poset is a hypergrid! For 

𝑢 ≼ 𝑣, set 𝑦𝑢𝑣 = 
1

4𝜋 𝑑𝑉(𝑣−𝑢)
, where 𝑉(𝑣 − 𝑢) is 

volume of box with corners u and v. 

 

 maximize 
 
subject to: 
      ∀𝑢 ≼ 𝑣 
 
 
         𝑦𝑢𝑣 = 𝑞𝑢𝑤𝑣 + 𝑟𝑢𝑤𝑣  ∀𝑢 ≼ 𝑤 ≼ 𝑣 
       

 𝑦𝑢𝑣
𝑢,𝑣:𝑢≼𝑣

 

 𝑞𝑢𝑣𝑤 +  𝑟𝑤𝑢𝑣 ≤ 1

𝑤:𝑤≼𝑢𝑤:𝑣≼𝑤

 

> 𝒎𝐥𝐧𝒎 𝒅/ 𝟒𝝅 𝒅 

Set 𝒒𝒖𝒘𝒗 = 𝒚𝒖𝒗
𝑽(𝒘−𝒖)

𝑽 𝒘−𝒖 +𝑽(𝒗−𝒘)
, 𝒓𝒖𝒘𝒗 = 𝒚𝒖𝒗

𝑽(𝒗−𝒘)

𝑽 𝒘−𝒖 +𝑽(𝒗−𝒘)
 

≤ 𝟏 



Wrap-up 
• Upper bound for Steiner 2-TC-spanner  

• Lower bound for 2-TC-spanner for a hypergrid. 

– Technique: find a feasible solution for the dual LP 

• Lower bound of Ω(𝑛 log (𝑑−1)/𝑘 𝑛) for 𝑘 ≥ 3. 
– Combinatorial 

– Holds for randomly generated posets, not explicit. 

• OPEN PROBLEM:  

– Can the LP technique give a better lower bound 
for 𝑘 ≥  3? 


