Advances in Directed Spanners

Grigory Yaroslavtsev
Penn State

Joint work with
Berman (PSU), Bhattacharyya (MIT), Grigorescu
(GaTech), Makarychev (IBM), Raskhodnikova (PSU),
Woodruff (IBM)

Directed Spanner Problem

- k-Spanner [Awerbuch '85, Peleg, Shäffer '89]

Subset of edges, preserving distances up to a factor $k>1$ (stretch k).

- Graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ with weights $w: E \rightarrow \mathbb{R} \geq 0$

$$
\mathrm{H}\left(\mathrm{~V}, E_{H} \subseteq E\right): \forall(u, v) \in E \operatorname{dist}_{H}(u, v) \leq k \cdot w(u, v)
$$

- Problem: Find the sparsest k-spanner of a directed graph.

Directed Spanners and Their Friends

Unit lengths

Minimum cost spanner

Steiner spanner

Applications of spanners

- First application: simulating synchronized protocols in unsynchronized networks [Peleg, Ullman '89]
- Efficient routing [PU'89, Cowen '01, Thorup, Zwick '01, Roditty, Thorup, Zwick '02, Cowen, Wagner '04]
- Parallel/Distributed/Streaming approximation algorithms for shortest paths [Cohen '98, Cohen '00, Elkin'01, Feigenbaum, Kannan, McGregor, Suri, Zhang '08]
- Algorithms for approximate distance oracles [Thorup, Zwick '01, Baswana, Sen '06]

Applications of directed spanners

- Access control hierarchies
- Previous work: [Atallah, Frikken, Blanton, CCCS '05; De Santis, Ferrara, Masucci, MFCS'07]
- Solution: TC-spanners [Bhattacharyya, Grigorescu, Jung, Raskhodnikova, Woodruff, SODA'09]
- Steiner TC-spanners for access control:
[Berman, Bhattacharyya, Grigorescu, Raskhodnikova, Woodruff, Y' ICALP'11]
- Property testing and property reconstruction [BGJRW'09; Raskhodnikova '10 (survey)]

Plan

- Approximation algorithms
- Undirected vs. Directed
- Framework for directed case $=$ Sampling + LP
- Randomized rounding
- Directed Spanner
- Unit-length 3-spanner
- Directed Steiner Forest
- Combinatorial bounds on TC-Spanners
- Upper bounds for low-dimensional posets
- Lower bounds via linear programming

Undirected vs. Directed

- Trivial lower bound: $\geq \boldsymbol{n}-1$ edges needed
- Every undirected graph has a ($2 \mathrm{t}+1$)-spanner with $\leq n^{1+1 / t}$ edges. [Althofer, Das, Dobkin, Joseph, Soares '93]
- Kruskal-like greedy + girth argument $=>n^{\frac{1}{t}}$-approximation
- Time/space-efficient constructions of undirected approximate distance oracles [Thorup, Zwick, STOC ‘01]

Undirected vs Directed

- For some directed graphs $\Omega\left(n^{2}\right)$ edges needed for a k-spanner:

- No space-efficient directed distance oracles: some graphs require $\Omega\left(n^{2}\right)$ space. [TZ '01]

Unit-Length Directed k-Spanner

- $\mathrm{O}(\mathrm{n})$-approximation: trivial (whole graph)

Stretch	$k=2$	$k=3$	$k \geq 4$
Previous work	$\begin{aligned} & O(\log n) \\ & {[K P 94]} \end{aligned}$	$\begin{aligned} & \tilde{O}\left(n^{2 / 3}\right)[\mathrm{EP} 00] \\ & \tilde{O}\left(n^{2 / 3}\right) \text { [BGJRW09] } \\ & \tilde{O}(\sqrt{n})[\mathrm{BRR} 10] \\ & \tilde{O}(\sqrt{n})[\mathrm{DK} 11] \end{aligned}$	$\begin{aligned} & \tilde{O}\left(n^{1-\frac{1}{k}}\right) \text { [BGJRW09] } \\ & \tilde{O}\left(n^{1-\frac{1}{k / 2 \dagger}}\right) \text { [BRR10] } \\ & \tilde{O}\left(n^{2 / 3}\right) \text { [DK11] } \end{aligned}$
Our work		$\tilde{O}\left(n^{1 / 3}\right)+$ undirected!	$\tilde{O}(\sqrt{n})$
Integrality gap	$\begin{aligned} & \Omega(\log n) \\ & {[\mathrm{DK} 11]} \end{aligned}$	$\begin{array}{r} \Omega\left(\frac{1}{k} n^{1}\right. \\ {[\mathrm{DK}} \end{array}$	
Hardness	$\Omega(\log n)$ NP-hard [K01]	$\begin{array}{r} 2^{\log ^{1}} \\ \text { quasi- } N \\ {[E P(} \end{array}$	-hard 0]

Our $\tilde{O}(\sqrt{n})$-approximation

- Paths of stretch at most k for all edges =>
- Classify edges: thick and thin
- Take union of spanners for them
-Thick edges: Sampling
-Thin edges: LP + randomized rounding

Local Graph

- Local graph for an edge (a,b): Induced by vertices on paths of stretch $\leq k$ from a to b

- Paths of stretch $\leq k$ only use edges in local graphs
- Thick edges: $\geq \sqrt{n}$ vertices in their local graph. Otherwise thin.

Sampling [BGJRW'09, DK11]

- Pick $O(\sqrt{n} \ln n)$ seed vertices at random
- Take in- and out- shortest path trees for each

- Handles all thick edges $(\geq \sqrt{n}$ vertices in their local graph) w.h.p.
- \# of edges $\leq 2(n-1) O(\sqrt{n} \ln n) \leq O P T \cdot O \tilde{O}(\sqrt{n})$.

Key Idea: Antispanners

- Antispanner - subset of edges, whose removal destroys all paths from a to b of stretch at most k

- Graph is spanner <=> hits all antispanners
- Enough to hit all minimal antispanners for all thin edges
- If E_{H} is not a spanner for an edge $(\mathbf{a}, \mathbf{b}) \Rightarrow E \backslash E_{H}$ is an antispanner, can be minimized greedily

Linear Program (~dual to [DK'11])

Hitting-set LP: $\sum_{e \in E} x_{e} \rightarrow \min$

$$
\sum_{e \in \mathbf{A}} x_{e} \geq 1
$$

for all minimal antispanners \mathbf{A} for all thin edges.

- \# of minimal antispanners may be exponential in $\sqrt{n}=>$ Ellipsoid + Separation oracle
- We will show: $\leq \sqrt{n}^{\sqrt{n}}=e^{\frac{1}{2} \sqrt{n} \ln n}$ minimal antispanners for a fixed thin edge
- Assume that we guessed OPT = the size of the sparsest k-spanner (at most n^{2} values)

Oracle

Hitting-set LP: $\sum_{e \in E} x_{e} \leq O P T$

$$
\sum_{e \in \mathbf{A}} x_{e} \geq 1
$$

for all minimal antispanners \mathbf{A} for all thin edges.

- We use a randomized oracle => in both cases oracle fails with exponentially small probability.

Randomized Oracle $=$ Rounding

- Rounding: Take e w.p. $p_{e}=\min \left(\sqrt{n} \ln n \cdot x_{e}, 1\right)$

- SMALL SPANNER: We have a set of edges of size $\leq \sum_{e} x_{e} \cdot \tilde{O}(\sqrt{n}) \leq O P T \cdot \tilde{O}(\sqrt{n})$ w.h.p.
- $\operatorname{Pr}\left[\right.$ LARGE SPANNER] $\leq \mathrm{e}^{-\Omega(\sqrt{n})}$ by Chernoff.
- $\operatorname{Pr}[$ CONSTRAINT NOT VIOLATED $] \leq \mathrm{e}^{-\Omega(\sqrt{n)}}$ (next slide)

Pr[CONSTRAINT NOT VIOLATED]

- Set $S: \forall e \in E$ we have $\operatorname{Pr}[e \in S]=\min \left(\sqrt{n} \ln n x_{e}, 1\right)$
- For a fixed minimal antispanner A, such that $\sum_{e \in A} x_{e} \geq 1:$
$\operatorname{Pr}[S \cap \mathbf{A}=\varnothing] \leq \prod_{e \in \mathbf{A}}\left(1-\sqrt{n} \ln n x_{e}\right) \leq e^{-\sqrt{n} \ln n \sum_{e \in A} x_{e}} \leq e^{-\sqrt{n} \ln n}$
- \#minimal antispanners for a fixed edge $(\boldsymbol{s}, \boldsymbol{t}) \leq$ \#different shortest path trees with root \mathbf{s} in a local graph

$$
\leq \sqrt{n}^{\sqrt{n}}=e^{\frac{1}{2} \sqrt{n} \ln n}(\text { for a thin edge })
$$

- \#minimal antispanners $\leq|E| e^{\frac{1}{2} \sqrt{n} \ln n}=>$ union bound: $\operatorname{Pr}[$ CONSTRAINT NOT VIOLATED $] \leq|E| e^{-\frac{1}{2} \sqrt{n} \ln n}$

Unit-length 3-spanner

- $\tilde{O}\left(n^{1 / 3}\right)$-approximation algorithm
- Sampling $\tilde{O}\left(n^{1 / 3}\right)$ times
- Dual LP + Different randomized rounding (simplified version of [DK'11])
- Rounding scheme (vertex-based):
- For each vertex $u \in V$: sample $r_{u} \in[0,1]$
- Take all edges (u, v) if

$$
\min \left(r_{u}, r_{v}\right) \leq \tilde{O}\left(n^{1 / 3}\right) x_{(u, v)}
$$

- Feasible solution $=>3$-spanner w.h.p. (see paper)

Approximation wrap-up

- Sampling + LP with randomized rounding
- Improvement for Directed Steiner Forest:
- Cheapest set of edges, connecting pairs (s_{i}, t_{i})
- Previous: Sampling + similar LP [Feldman, Kortsarz, Nutov, SODA '09]. Deterministic rounding gives $\tilde{O}\left(n^{4 / 5+\epsilon}\right)$-approximation
- We give $\tilde{O}\left(n^{2 / 3+\epsilon}\right)$-approximation via randomized rounding

Approximation wrap-up

- Õ (\sqrt{n})-approximation for Directed Spanner
- Small local graphs => better approximation
- Can we do better for general graphs?
- Hardness: only excludes polylog(n)approximation
- Integrality gap: $\Omega\left(n^{1 / 3-\epsilon}\right)$ [DK'11]
- Can we do better for specific graphs
- Planar graphs (still NP-hard)?

Transitive-Closure Spanners

Transitive closure TC(G) has an edge from u to v iff G has a path from u to v

H is ${ }^{G}{ }^{G} \quad \mathrm{TC}(G)$ H is a k-TC-spanner of G if H is a subgraph of
 fronTh(G) v

Shortcut edge consistent with ordering generalizing [Yao 82; Chazelle 87; Alon, Schieber 87, ...]

Applications of TC-Spanners

- Data structures for storing partial products [Yao, '82; Chazelle '87, Alon, Schieber, 88]
- Constructions of unbounded fan-in circuits [Chandra, Fortune, Lipton ICALP, STOC'83]
- Property testers for monotonicity and Lipschitzness [Dodis et al. '99,BGJRW'09; Jha, Raskhodnikova, FOCS ‘11]
- Lower bounds for reconstructors for monotonicity and Lipshitzness [BGJJRW'10, JR'11]
- Efficient key management in access hierarchies

Follow references in [Raskhodnikova '10 (survey)]

Bounds for Steiner TC-Spanners

- No non-trivial upper bound for arbitrary graphs

FACT: For a random directed bipartite graph of density $1 / 2$, any Steiner 2-TC-spanner requires $\widetilde{\Omega}\left(\mathrm{n}^{2}\right)$ edges.

Low-Dimensional Posets

- [ABFF 09] access hierarchies are lowdimensional posets
- Poset DAG
- Poset G has dimension d if G can be embedded into a hypergrid of dimensiond and d is minimum.
 all $x, y \in G, x \preccurlyeq_{G} y$ iff $e(x) \preccurlyeq_{G^{\prime}} e(y)$.

Hypergrid [$m]^{d}$ has ordering $\left(x_{1}, \ldots, x_{d}\right) \leqslant\left(y_{1}, \ldots, y_{d}\right)$ iff $x_{i} \leq y_{i}$ for all i

Main Results

2-TC-Spanner for $[m]^{d}$

- $\mathrm{d}=1$ (so, $\mathrm{n}=\mathrm{m}$)

2-TC-spanner with $\leq m \log m=n \log n$ edges

> We show this is tight upto α^{d} for a constant α.

- $\mathrm{d}>1$ (so, $\left.\mathrm{n}=\mathrm{m}^{\mathrm{d}}\right)$

2-TC-spanner with $\leq(m \log m)^{d}=n\left(\frac{\log n}{d}\right)^{d}$ edges by taking d-wise Cartesian product of 2-TCspanners for a line.

Lower Bound Strategy

- Write in IP for a minimal 2-TC-spanner.
- OPT $\geq L P=L P_{\text {dual }}$
- It is crucial that the integrality gap of the primal is small.
- Idea: Construct some feasible solution for the dual $=>$ lower bound on OPT.
- OPT $\geq L P=L P_{\text {dual }} \geq L B$

IP Formulation

- $\{0,1\}$-program for Minimal 2-TC-spanner: minimize
subject to:

$$
\sum_{u, v: u \preccurlyeq v} x_{u v}
$$

$$
\begin{array}{ll}
x_{u w} \geq p_{u w v} & \forall u \preccurlyeq w \preccurlyeq v \\
x_{w v} \geq p_{u w v} & \forall u \preccurlyeq w \preccurlyeq v \\
\sum_{w: u \preccurlyeq w \preccurlyeq v} p_{u w v} \geq 1 & \forall u \preccurlyeq v
\end{array}
$$

Dual LP

- Take fractional relaxation of IP and look at its dual:
maximize

$$
\sum_{u, v: u \leqslant v} y_{u v}
$$

subject to: $\sum_{w: v \leqslant w} q_{u v w}+\sum_{w: w \preccurlyeq u} r_{w u v} \leq 1 \quad \forall u \leqslant v$

$$
\begin{gathered}
y_{u v} \leq q_{u w v}+r_{u w v} \\
0 \leq y_{u v}, q_{u w v}, r_{u w v} \leq 1
\end{gathered}
$$

$\forall u \preccurlyeq w \preccurlyeq v$
$\forall u \preccurlyeq w \preccurlyeq v$

Constructing solution to dual LP

- Now we use fact that poset is a hypergrid! For $u \leqslant v$, set $y_{u v}=\frac{1}{V(v-u)}$, where $V(v-u)$ is volume of box with corners u and v.
maximize

subject to:

$$
\begin{array}{ll}
\sum_{w: v \leqslant w} q_{u v w}+\sum_{w: w \leqslant u} r_{w u v} \leq 1 & \forall u \leqslant v \\
y_{u v}=q_{u w v}+r_{u w v} & \forall u \leqslant w \leqslant v
\end{array}
$$

$$
\text { Set } q_{u w v}=y_{u v} \frac{V(w-u)}{V(w-u)+V(v-w)}, r_{u w v}=y_{u v} \frac{V(v-w)}{V(w-u)+V(v-w)}
$$

Constructing solution to dual LP

- Now we use fact that poset is a hypergrid! For $u \leqslant v$, set $y_{u v}=\frac{1}{(4 \pi)^{d} V(v-u)^{\prime}}$, where $V(v-u)$ is volume of box with corners u and v.
maximize

$$
\sum_{u, v: u \leqslant v} y_{u v} \gg(m \ln m)^{d} /(4 \pi)^{d}
$$

subject to:

$$
\begin{gathered}
\sum_{w: v \leqslant w} q_{u v w}+\sum_{w: w \leqslant u} r_{w u v} \leq 1 \forall u \leqslant v \\
y_{u v}=q_{u w v}+r_{u w v} \quad \begin{array}{l}
\forall u \leqslant w \leqslant v
\end{array}, ~
\end{gathered}
$$

$$
\text { Set } q_{u w v}=y_{u v} \frac{V(w-u)}{V(w-u)+V(v-w)}, r_{u w v}=y_{u v} \frac{V(v-w)}{V(w-u)+V(v-w)}
$$

Wrap-up

- Upper bound for Steiner 2-TC-spanner
- Lower bound for 2-TC-spanner for a hypergrid.
- Technique: find a feasible solution for the dual LP
- Lower bound of $\Omega\left(n \log ^{\lceil(d-1) / k]} n\right)$ for $k \geq 3$.
- Combinatorial
- Holds for randomly generated posets, not explicit.
- OPEN PROBLEM:
- Can the LP technique give a better lower bound for $k \geq 3$?

