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Directed Spanner Problem

. k-Spanner [Awerbuch ‘85, Peleg, Shaffer ‘89]

Subset of edges, preserving distances up to a factor k > 1
(stretch k).

* Graph G(V,E) with weightsw : E - R =°
H(V,Ey € E):V(u,v) € E disty(u,v) < k-w(u,v)

* Problem: Find the sparsest k-spanner of a directed
graph.



Directed Spanners and Their Friends

Unit lengths Transitive-closure spanner
Minimum cost spanner Steiner spanner

O




Applications of spanners

First application: simulating synchronized
protocols in unsynchronized networks [Peleg,
Ullman "89]

Efficient routing [PU’89, Cowen '01, Thorup, Zwick '01,
Roditty, Thorup, Zwick '02 , Cowen, Wagner "04]
Parallel/Distributed/Streaming approximation
algorithms for shortest paths [Cohen 98, Cohen "00,
Elkin’01, Feigenbaum, Kannan, McGregor, Suri, Zhang "08]

Algorithms for approximate distance oracles
[Thorup, Zwick 01, Baswana, Sen "06]



Applications of directed spanners

e Access control hierarchies

* Previous work: [Atallah, Frikken, Blanton, CCCS
‘05; De Santis, Ferrara, Masucci, MFCS'07]

* Solution: TC-spanners [Bhattacharyya, Grigorescu,
Jung, Raskhodnikova, Woodrutf, SODA’09]

 Steiner TC-spanners for access control:

[Berman, Bhattacharyya, Grigorescu, Raskhodnikova,
Woodruff, Y ICALP'11]

* Property testing and property reconstruction
[BGJRW’09; Raskhodnikova "10 (survey)]



Plan

* Approximation algorithms
— Undirected vs. Directed
— Framework for directed case = Sampling + LP

— Randomized rounding
* Directed Spanner
* Unit-length 3-spanner
* Directed Steiner Forest
* Combinatorial bounds on TC-Spanners
— Upper bounds for low-dimensional posets

— Lower bounds via linear programming



Undirected vs. Directed

Trivial lower bound: = n — 1 edges needed

Every undirected graph has a (2t+1)-spanner

with < n1+1/ t edges. [ Althofer, Das, Dobkin,
Joseph, Soares ‘93]

Kruskal-like greedy + girth argument
1

=>nt —approximation

Time/space-etficient constructions of

undirected approximate distance oracles
[Thorup, Zwick, STOC “01]



Undirected vs Directed

» For some directed graphs Q(n*) edges
needed for a k-spanner:

* No space-etficient directed distance oracles:
some graphs require Q(n*) space. [TZ ‘01]



Unit-Length Directed k-Spanner

* O(n)-approximation: trivial (whole graph)

Stretch k =2 k=3 k>4
O(n*/3) [EPOOQ]
Previous work | O(logn) | O(n?/3) [BGIJRWOY] O(nl—%)l [BGJRWOO]
[KP94] | O(/n) [BRR10] O(n*~ T772T) [BRR10]
O(y/n) [DK11] O(n?/3)[DK11]
Our work O(n'/3) + undirected! | O(v/n)
Integrality gap | Q(log n) Q(%nl/?’_ﬁ)
[DK11] [DK11]
Q(log n) plog™™*n
Hardness NP-hard quasi-NP-hard
[KO1] [EPOO]




Our 0(y/n)-approximation

* Paths of stretch at most k for all edges =>
* Classify edges: thick and thin
* Take union of spanners for them

—Thick edges: Sampling

—Thin edges: LP + randomized rounding



Local Graph

* Local graph for an edge (a,b): Induced by
vertices on paths of stretch < k fromatob

* Paths of stretch < k only use edges in local
graphs

» Thick edges: = +/n vertices in their local graph.
Otherwise thin.



Sampling [BGJRW'09, DK11]

Pick O(/nInn) seed vertices at random
Take in- and out- shortest path trees for each

Handles all thick edges (= v/n vertices in their
local graph) w.h.p.

# of edges < 2(n — 1)0(y/nlnn) < OPT - O(y/n).



Key Idea: Antispanners

 Antispanner — subset of edges, whose
removal destrois all paths from a to b of
stretch at most

* Graph is spanner <=> hits all antispanners
* Enough to hit all minimal antispanners for all thin

edges
 If Ey is not a spanner for an edge (a,b) => E \ Ey is
an antispanner, can be minimized greedily



Linear Program (~dual to [DK'11])

Hitting-set LP: ). .cp X, = min

erzl

eeA
for all minimal antispanners A for all thin edges.

* # of minimal antispanners may be
exponential in y/n => Ellipsoid + Separation
oracle

. Vn 1 ninn__. .
 We will show: <+/n" = ez minimal
antispanners for a fixed thin edge

* Assume that we guessed OPT = the size of
the sparsest k-spanner (at most n* values)



Oracle
Hitting-set LP: ). ,cp X, < OPT

erzl

eeA
for all minimal antispanners A for all thin edges.

FEASIBLE SOLUTION

Solution
ELLIPSOID —>» ORACLE
VIOLATED CONSTRAINT (ANTISPANNER)

* We use a randomized oracle => in both cases
oracle fails with exponentially small probability.



Randomized Oracle = Rounding
* Rounding: Take e w.p. p, = min(\/ﬁlnn X, 1)

- \
ﬁom'ze ALL SPANNER VIOLATED

SM

Solution rounding
CONSTRAINT
ELLIPSOID —> ORACLE LARGE SPANNER
ANTISPANNER CONSTRAINT
NOT VIOLATED

SMALL SPANNER: We have a set of edges of
size < Y. x. - 0(y/n) < OPT - 0(v/n) w.h.p.

» Pr[LARGE SPANNER] < e~ 24/™ by Chernoff.

+ PrfCONSTRAINT NOT VIOLATED] < e~ &W/®)
(next slide)




Pr[CONSTRAINT NOT VIOLATED]

* Set S:Ve € E we have Pr[e € S| = min(\/nlnnx,, 1)
 For a fixed minimal antispanner A, such that
Dieea Xe = 1:

PF[S NA = @] < 1_[(1 — \/ﬁlnnxe) < e—\/ﬁlnnzeeAxe < e—\/ﬁlnn
ecA
* #minimal antispanners for a fixed edge (s,t) <

#ditferent shortest path trees with root s in a local graph
1
< \/ﬁ\m= e2'™"!"™ (for a thin edge)

%\/ﬁlnn

* #minimal antispanners < |E|e => union bound:

1
Pr[CONSTRAINT NOT VIOLATED] < |E|e 2/ "™



Unit-length 3-spanner

« 0(nl/3)-approximation algorithm
— Sampling 0(n'/3) times

— Dual LP + Different randomized rounding
(simplified version of [DK’11])

* Rounding scheme (vertex-based):
— For each vertex u € V: sample r;, € [0,1]
— Take all edges (u, v) if
min(r,, 7,) < 0(n'/3)x .

— Feasible solution => 3-spanner w.h.p. (see paper)



Approximation wrap-up

* Sampling + LP with randomized rounding

* Improvement for Directed Steiner Forest:
— Cheapest set of edges, connecting pairs (sj, t;)

— Previous: Sampling + similar LP [Feldman,
Kortsarz, Nutov, SODA “09] . Deterministic

rounding gives 0(n*/>*¢)-approximation

— We give 0(n?/3*¢)-approximation via
randomized rounding



Approximation wrap-up

O(y/n)-approximation for Directed Spanner
Small local graphs => better approximation

Can we do better for general graphs?

* Hardness: only excludes polylog(n)-
approximation

» Integrality gap: 2(n'/37¢) [DK’11]
Can we do better for specific graphs
* Planar graphs (still NP-hard)?



Transitive-Closure Spanners

Transitive closure TC(G) has an edge from u to v iff
G has a path from u to v

= = = = = = == D =
> > > —> - -

TC(G)
Hisa k-TC -spanner of G if H is a subgraph of

TE( B ddi-Whishahavenof, Gt ik ks pannepath
fronh @ (fe)v

Shortcut edge m

consistent with
ordering

2-TC-spanner of G

» Grigorescu, Jung, Raskhodnikova, Woodruff, SODA’09],
generahzmg [Yao 82; Chazelle 87; Alon, Schieber 87, ...]



Applications of TC-Spanners

e Data structures for storing partial products [Yao,
’82; Chazelle '87, Alon, Schieber, 88]

e Constructions of unbounded fan-in circuits
(Chandra, Fortune, Lipton ICALP, STOC’83]

e Property testers for monotonicity and

Lipschitzness [Dodis et al. “99,BGJRW’09; Jha,
Raskhodnikova, FOCS “11]

e Lower bounds for reconstructors for
monotonicity and Lipshitzness [BGJJRW’10, JR'11]

e Efficient key management in access hierarchies

Follow references in [Raskhodnikova "10 (survey)]



Bounds for Steiner TC-Spanners

* No non-trivial upper bound for arbitrary

graphs

FACT: For a random directed
bipartite graph ot density 2,
any Steiner 2-TC-spanner
requires (J(n?) edges.




Low-Dimensional Posets

* [ABFF 09] access hierarchies are low-

dimensional posets

e Poset = DAG

e Poset G has dimension d if G can be
embedded into a hypergrid of dimension d

and d is minimum.

RS

e:G - G' is a poset embedding if for
allx,y € G, x <; yiffe(x) <¢ e(y).

Hypergrid [m]? has ordering

(X1, r Xg) < (Y1, ., Vg) iff x; < y;
for all i



Main Results

2 0(nlogn) o (n (al(;gn)d)

where a is a constant

> 3 O(nlog® tnloglogn) Q(nlogl@-D/klp)
for constantd o for constant d
[DFM 07] @)
O

k = 3. Nothing
better known for
larger k.

d is the poset dimension



2-TC-Spanner for [m]“

* d=1(so,n=m)
2-TC-spanner with < mlogm =nlogn edges

We show this is
tight upto a? for a

constant a.

* d>1(so,n=mY)

d
2-TC-spanner with < (mlog m)9=n loi n) edges
by taking d-wise Cartesian product of 2-TC-
spanners for a line.



Lower Bound Strategy

Write in IP for a minimal 2-TC-spanner.
OPT 2 LP —_ LPdual

It is crucial that the integrality gap of the primal
is small.

Idea: Construct some feasible solution for the
dual => lower bound on OPT.

OPT > LP = LP,,,; = LB



IP Formulation

e {0,1}-program for Minimal 2-TC-spanner:

minimize

subject to:

Vuswsv
Vuswsv

xuw 2 p'LLWU

xWU 2 puwv
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<
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<



Dual LP

e Take fractional relaxation of IP and look at its dual:

maximize E Yuv

Yuv = Quwy T Tuww Vuswsv
0 < Yuvs Quwvr Tuwy = 1 Vuswsv



Constructing solution to dual LP

* Now we use fact that poset is a hypergrid! For u < v, set

1 . .
Yuv = 30y where V(v — u) is volume of box with

corners u and v.

maximize

subject to:

V(iw—u) V(v-w)

SEt quwv — yuv ml ruwv — Yuv V(W-ll)‘l'V(v_W)



Constructing solution to dual LP

* Now we use fact that Foset is a hypergrid! For
u < v, sety,, = where V(v —u) is

(4m)4V (v—u)’

volume of box with corners u# and v.
maximize Z Yuv > (mInm)?/(4m)“
U,V UV

subject to:
unW-I_ z rwuvglvu<v

W vsSW w:wsu

Yuv = Quwy T Tuwv

V(iw—u) V(v-w)

SEt quwv — yuv ml ruwv — Yuv V(W-ll)‘l'V(v_W)



Wrap-up
Upper bound for Steiner 2-TC-spanner
Lower bound for 2-TC-spanner for a hypergrid.

— Technique: find a feasible solution for the dual LP

Lower bound of Q(nlog/(@=/kIn) for k > 3.

— Combinatorial
— Holds for randomly generated posets, not explicit.

OPEN PROBLEM:

— Can the LP technique give a better lower bound
for k = 37



