Improved Approximation for the Directed Spanner Problem

Grigory Yaroslavtsev Penn State + AT&T Labs - Research (intern)

Joint work with Berman (PSU), Bhattacharyya (MIT), Makarychev (IBM), Raskhodnikova (PSU)

Directed Spanner Problem

• **k-Spanner** [Awerbuch '85, Peleg, Shäffer '89]

Subset of edges, preserving distances up to a factor k > 1 (stretch k).

- Graph G(V, E) \rightarrow k-spanner $H(V, E_H \subseteq E)$: $\forall u, v \in V \quad dist_H(u, v) \leq k \cdot dist_G(u, v)$
- **Problem:** Find the sparsest k-spanner of a directed graph (edges have lengths).

Directed Spanners and Their Friends

Unit lengths

Transitive-closure spanner

Minimum cost spanner

Steiner spanner

Applications of spanners

- First application: simulating synchronized protocols in unsynchronized networks [Peleg, Ullman '89]
- Efficient routing [PU'89, Cowen '01, Thorup, Zwick '01, Roditty, Thorup, Zwick '02, Cowen, Wagner '04]
- Parallel/Distributed/Streaming approximation algorithms for shortest paths [Cohen '98, Cohen '00, Elkin'01, Feigenbaum, Kannan, McGregor, Suri, Zhang '08]
- Algorithms for approximate distance oracles [Thorup, Zwick '01, Baswana, Sen '06]

Applications of directed spanners

- Access control hierarchies
 - Previous work: [Atallah, Frikken, Blanton, CCCS '05; De Santis, Ferrara, Masucci, MFCS'07]
 - Solution: [Bhattacharyya, Grigorescu, Jung, Raskhodnikova, Woodruff, SODA'09]
 - Steiner spanners for access control: [Berman, Bhattacharyya, Grigorescu, Raskhodnikova, Woodruff, Y' ICALP'11 (more on Friday)]
- Property testing and property reconstruction [BGJRW'09; Raskhodnikova '10 (survey)]

Plan

- Undirected vs Directed
- Previous work
- Framework = Sampling + LP
- Sampling
- LP + Randomized rounding
 - -Directed Spanner
 - –Unit-length 3-spanner
 - -Directed Steiner Forest

Undirected vs Directed

- Every undirected graph has a (2t-1)-spanner with $\leq n^{1+1/t}$ edges. [Althofer, Das, Dobkin, Joseph, Soares '93]
 - Simple greedy + girth argument

$$-n^{\frac{1}{t}}$$
 – approximation

• Time/space-efficient constructions of undirected approximate distance oracles [Thorup, Zwick, STOC '01]

Undirected vs Directed

• For some directed graphs $\Omega(n^2)$ edges needed for a k-spanner:

• No space-efficient directed distance oracles: some graphs require $\Omega(n^2)$ space. [TZ '01]

Unit-Length Directed k-Spanner

• O(n)-approximation: trivial (whole graph)

Stretch	<i>k</i> = 2	k = 3	$k \ge 4$
		$\tilde{O}(n^{2/3})$ [EP00]	-
Previous work	$O(\log n)$	$\tilde{O}(n^{2/3})$ [BGJRW09]	$\tilde{O}(n^{1-\frac{1}{k}})$ [BGJRW09]
	[KP94]	$\tilde{O}(\sqrt{n})$ [BRR10]	$\tilde{O}(n^{1-\frac{1}{\lceil k/2 \rceil}})$ [BRR10]
		$\tilde{O}(\sqrt{n})$ [DK11]	$\tilde{O}(n^{2/3})$ [DK11]
Our work		$ ilde{O}(n^{1/3}) + undirected!$	$ ilde{O}(\sqrt{n})$
Integrality gap	$\Omega(\log n)$	$\Omega(\frac{1}{k}n^{1/3-\epsilon})$	
	[DK11]	[DK11]	
	$\Omega(\log n)$	$2^{\log^{1-\epsilon} n}$	
Hardness	NP-hard	quasi-NP-hard	
	[K01]	[EP00]	

Overview of the algorithm

- Paths of stretch k for all edges => paths of stretch k for all pairs of vertices
- Classify edges: **thick** and **thin**
- Take union of spanners for them

 Thick edges: Sampling
 Thin edges: LP + randomized rounding
- Choose **thickness** parameter to balance approximation

Local Graph

• Local graph for an edge (a,b): Induced by vertices on paths of stretch $\leq k$ from a to b

- Paths of stretch k only use edges in local graphs
- Thick edges: $\geq \sqrt{n}$ vertices in their local graph. Otherwise thin.

Sampling [BGJRW'09, FKN09, DK11]

- Pick $\sqrt{n \ln n}$ seed vertices at random
- Add in- and out- shortest path trees for each

- Handles all **thick** edges ($\geq \sqrt{n}$ vertices in their local graph) w.h.p.
- # of edges $\leq 2(n-1)\sqrt{n}\ln n \leq OPT \cdot \tilde{O}(\sqrt{n}).$

Key Idea: Antispanners

• Antispanner – subset of edges, which destroys all paths from **a** to **b** of stretch at most k.

- Spanner <=> hit all antispanners
- Enough to hit all minimal antispanners for all thin edges
- Minimal antispanners can be found efficiently

Linear Program (dual to [DK'11])

- # of minimal antispanners may be exponential in $\sqrt{n} \Rightarrow$ Ellipsoid + Separation oracle
- Good news: $\leq \sqrt{n}^{\sqrt{n}} = e^{\frac{1}{2}\sqrt{n} \ln n}$ minimal antispanners for a fixed thin edge
- Assume, that we guessed the size of the sparsest k-spanner OPT (at most *n*² values)

Oracle

 We use a randomized oracle => in both cases oracle can fail with some probability.

- Rounding: Take **e** w.p. $p_e = \min(\sqrt{n \ln n} \cdot x_e, 1)$
- **SMALL SPANNER**: We have a spanner of size $\leq \sum_{e} x_{e} \cdot \tilde{O}(\sqrt{n}) \leq OPT \cdot \tilde{O}(\sqrt{n})$ w.h.p.
- $\Pr[LARGE SPANNER \text{ or } CONSTRAINT \text{ NOT}$ $VIOLATED] \leq e^{-\Omega(\sqrt{n})}$

Unit-length 3-spanner

- $\tilde{O}(n^{1/3})$ -approximation algorithm
- Sampling: $\tilde{O}(n^{1/3})$ times
- Dual LP + Different randomized rounding (simplified version of [DK'11])
- For each vertex $u \in V$: sample a real $r_u \in [0,1]$
- Take all edges (u, v): $\min(r_u, r_v) \le \tilde{O}(n^{1/3})x_{(u,v)}$
- Feasible solution => 3-spanner w.h.p.

Conclusion

- Sampling + LP with randomized rounding
- Improvement for **Directed Steiner Forest**:
 - Cheapest set of edges, connecting pairs (s_i, t_i)
 - Previous: Sampling + similar LP [Feldman, Kortsarz, Nutov, SODA '09]
 - Deterministic rounding gives $\tilde{O}(n^{4/5+\epsilon})$ approximation
 - -We give $\tilde{O}(n^{2/3+\epsilon})$ -approximation via randomized rounding

Conclusion

- $\tilde{O}(\sqrt{n})$ -approximation for Directed Spanner
- Small local graphs => better approximation
- Can we do better?
- Hardness: only excludes polylog(n)approximation
- Integrality gap: $\Omega(n^{1/3-\epsilon})$
- Our algorithms are **simple**, can more powerful techniques do better?

Thank you!

• Slides: <u>http://grigory.us</u>