Improved Approximation for the Directed Spanner Problem

Grigory Yaroslavtsev
Penn State + AT\&T Labs - Research (intern)

Joint work with

Berman (PSU), Bhattacharyya (MIT), Makarychev (IBM), Raskhodnikova (PSU)

Directed Spanner Problem

- k-Spanner [Awerbuch '85, Peleg, Shäffer '89]

Subset of edges, preserving distances up to a factor $\mathrm{k}>1$ (stretch k).

- Graph $\mathrm{G}(\mathrm{V}, \mathrm{E}) \rightarrow$ k-spanner $\mathrm{H}\left(\mathrm{V}, E_{H} \subseteq E\right)$:

$$
\forall u, v \in V \quad \operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)
$$

- Problem: Find the sparsest k-spanner of a directed graph (edges have lengths).

Directed Spanners and Their Friends

Unit lengths

Minimum cost spanner

Steiner spanner

Applications of spanners

- First application: simulating synchronized protocols in unsynchronized networks [Peleg, Ullman '89]
- Efficient routing [PU'89, Cowen '01, Thorup, Zwick '01, Roditty, Thorup, Zwick '02, Cowen, Wagner '04]
- Parallel/Distributed/Streaming approximation algorithms for shortest paths [Cohen '98, Cohen '00, Elkin'01, Feigenbaum, Kannan, McGregor, Suri, Zhang '08]
- Algorithms for approximate distance oracles [Thorup, Zwick '01, Baswana, Sen '06]

Applications of directed spanners

- Access control hierarchies
- Previous work: [Atallah, Frikken, Blanton, CCCS '05; De Santis, Ferrara, Masucci, MFCS'07]
- Solution: [Bhattacharyya, Grigorescu, Jung, Raskhodnikova, Woodruff, SODÁ09]
- Steiner spanners for access control: [Berman, Bhattacharyya, Grigorescu, Raskhodnikova, Woodruff, Y' ICALP'11 (more on Friday)]
- Property testing and property reconstruction [BGJRW'09; Raskhodnikova '10 (survey)]

Plan

- Undirected vs Directed
- Previous work
- Framework = Sampling + LP
- Sampling
- LP + Randomized rounding
-Directed Spanner
-Unit-length 3-spanner
-Directed Steiner Forest

Undirected vs Directed

- Every undirected graph has a (2t-1)-spanner with $\leq n^{1+1 / t}$ edges. [Althofer, Das, Dobkin, Joseph, Soares ' 93]
-Simple greedy + girth argument $-n^{\frac{1}{t}}$-approximation
- Time/space-efficient constructions of undirected approximate distance oracles [Thorup, Zwick, STOC '01]

Undirected vs Directed

- For some directed graphs $\Omega\left(n^{2}\right)$ edges needed for a k-spanner:

- No space-efficient directed distance oracles: some graphs require $\Omega\left(n^{2}\right)$ space. [TZ '01]

Unit-Length Directed k-Spanner

- $\mathrm{O}(\mathrm{n})$-approximation: trivial (whole graph)

Stretch	$k=2$	$k=3$	$k \geq 4$
Previous work	$\begin{aligned} & O(\log n) \\ & {[K P 94]} \end{aligned}$	$\begin{aligned} & \tilde{O}\left(n^{2 / 3}\right)[\text { EPO0] } \\ & \tilde{O}\left(n^{2 / 3}\right) \text { [BGJRW09] } \\ & \tilde{O}(\sqrt{n})[\text { BRR10 }] \\ & \tilde{O}(\sqrt{n})[\text { DK11] } \end{aligned}$	$\begin{aligned} & \tilde{O}\left(n^{1-\frac{1}{k}}\right) \text { [BGJRW09] } \\ & \tilde{O}\left(n^{1-\frac{1}{\mid k / 2\rceil}}\right) \text { [BRR10] } \\ & \tilde{O}\left(n^{2 / 3}\right)[\text { DK11] } \end{aligned}$
Our work		$\tilde{O}\left(n^{1 / 3}\right)+$ undirected!	$\tilde{O}(\sqrt{n})$
Integrality gap	$\begin{aligned} & \Omega(\log n) \\ & {[\mathrm{DK} 11]} \end{aligned}$	$\begin{gathered} \Omega\left(\frac{1}{k} n^{1 / 3-\epsilon}\right) \\ {[\text { DK11] }} \end{gathered}$	
Hardness	$\Omega(\log n)$ NP-hard [K01]	$2^{\log ^{1-\epsilon} n}$ quasi-NP-hard [EP00]	

Overview of the algorithm

- Paths of stretch k for all edges \Rightarrow paths of stretch k for all pairs of vertices
- Classify edges: thick and thin
- Take union of spanners for them -Thick edges: Sampling -Thin edges: LP + randomized rounding
- Choose thickness parameter to balance approximation

Local Graph

- Local graph for an edge (a,b): Induced by vertices on paths of stretch $\leq k$ from a to b

- Paths of stretch k only use edges in local graphs
- Thick edges: $\geq \sqrt{n}$ vertices in their local graph. Otherwise thin.

Sampling [BGJRW'09, FKN09, DK11]

- Pick $\sqrt{n} \ln n$ seed vertices at random
- Add in- and out- shortest path trees for each

- Handles all thick edges ($\geq \sqrt{n}$ vertices in their local graph) w.h.p.
- \# of edges $\leq 2(n-1) \sqrt{n} \ln n \leq O P T \cdot \tilde{0}(\sqrt{n})$.

Key Idea: Antispanners

- Antispanner - subset of edges, which destroys all paths from a to b of stretch at most k.

- Spanner <=> hit all antispanners
- Enough to hit all minimal antispanners for all thin edges
- Minimal antispanners can be found efficiently

Linear Program (dual to [DK'11])

Hitting-set LP: $\sum_{e \in E} x_{e} \rightarrow \min$

$$
\sum_{e \in \mathbf{A}} x_{e} \geq 1
$$

for all minimal antispanners \mathbf{A} for all thin edges.

- \# of minimal antispanners may be exponential in $\sqrt{n}=>$ Ellipsoid + Separation oracle
- Good news: $\leq \sqrt{n}^{\sqrt{n}}=e^{\frac{1}{2} \sqrt{n} \ln n}$ minimal antispanners for a fixed thin edge
- Assume, that we guessed the size of the sparsest k-spanner OPT (at most n^{2} values)

Oracle

Hitting-set LP: $\sum_{e \in E} x_{e} \leq O P T$

$$
\sum_{e \in \mathbf{A}} x_{e} \geq 1
$$

for all minimal antispanners \mathbf{A} for all thin edges.

- We use a randomized oracle $=>$ in both cases oracle can fail with some probability.

Randomized Oracle = Rounding

- Rounding: Take e w.p. $p_{e}=\min \left(\sqrt{n} \ln n \cdot x_{e}, 1\right)$
- SMALL SPANNER: We have a spanner of size $\leq \sum_{e} x_{e} \cdot \tilde{O}(\sqrt{n}) \leq O P T \cdot \tilde{O}(\sqrt{n})$ w.h.p.
- $\operatorname{Pr}[$ LARGE SPANNER or CONSTRAINT NOT VIOLATED] $\leq \mathrm{e}^{-\Omega(\sqrt{n)}}$

Unit-length 3-spanner

- $\tilde{O}\left(n^{1 / 3}\right)$-approximation algorithm
- Sampling: $\tilde{O}\left(n^{1 / 3}\right)$ times
- Dual LP + Different randomized rounding (simplified version of [DK'11])
- For each vertex $u \in V$: sample a real $r_{u} \in[0,1]$
- Take all edges (u, v) :

$$
\min \left(r_{u}, r_{v}\right) \leq \tilde{O}\left(n^{1 / 3}\right) x_{(u, v)}
$$

- Feasible solution => 3-spanner w.h.p.

Conclusion

- Sampling + LP with randomized rounding
- Improvement for Directed Steiner Forest:
- Cheapest set of edges, connecting pairs (s_{i}, t_{i})
- Previous: Sampling + similar LP [Feldman, Kortsarz, Nutov, SODA ‘09]
- Deterministic rounding gives $\tilde{O}\left(n^{4 / 5+\epsilon}\right)$ approximation
- We give $\widetilde{O}\left(n^{2 / 3+\epsilon}\right)$-approximation via randomized rounding

Conclusion

- Õ (\sqrt{n})-approximation for Directed Spanner
- Small local graphs => better approximation
- Can we do better?
- Hardness: only excludes polylog(n)approximation
- Integrality gap: $\Omega\left(n^{1 / 3-\epsilon}\right)$
- Our algorithms are simple, can more powerful techniques do better?

Thank you!

- Slides: http://grigory.us

