Written by: Edo Liberty Presented by: Ryan Rogers With Some Slides from: Edo Liberty

SIMPLE AND DETERMINISTIC MATRIX SKETCHING

Set up

- A is an n x m matrix
- We want to compute the $m \times m$ matrix: $A^T A$
- Problem: n > machine memory.
- Goal: Find 'good' approximate d x m matrix B for any ||x|| =1

$||A^TA - B^TB|| \leq Small$

Set up

- A is an n x m matrix
- We want to compute the $m \times m$ matrix: $A^T A$
- Problem: n > machine memory.
- Goal: Find 'good' approximate d x m matrix B for any ||x|| =1

$||A^T A - B^T B|| \leq \varepsilon ||A||_f^2$

Sketches

Sketches

- A sketch of a matrix A is another matrix
 B, that is significantly smaller than A but still approximates A well.
- We need this if:
 - Rows of matrix can be processed only once
 - Storage is limited

• Universe $U = \{a_1, ..., a_m\}$ and a stream $A_1, A_2, ..., A_n$

Frequency *f_i* of item *a_i* in the stream
 Use only *O(d)* space to produce approximate counts *g_i*, such that

$$|f_i - g_i| < n/d$$

Frequent Items – Observations

We always get an undercount $g_i \leq f_i$ If we let δ_t be the amount we decrease counter at time *t* then $g_i \geq f_i - \sum \delta_t$

Sum up the undercounts

 $0 \leq \sum g_i \leq \sum^n$

Frequent Items – Observations

• Thus, we get $\sum_{t} \delta_{t} \leq 2n / d$ • Set $d = 2 / \varepsilon$: $\left| f_{i} - g_{i} \right| \leq \varepsilon n$

d x m

We now need to zero out some rows to make room for more!

 $B = \Sigma V^T$

Algorithm 1 Frequent-directions

Input: ℓ , $A \in \mathbb{R}^{n \times m}$ $B \leftarrow \text{all zeros matrix} \in \mathbb{R}^{\ell \times m}$ for $i \in [n]$ do Insert A_i into a zero valued row of Bif B has no zero valued rows then $[U, \Sigma, V] \leftarrow \text{SVD}(B)$ $C \leftarrow \Sigma V^T$ # Only needed for proof notation $\delta \leftarrow \sigma_{\ell/2}^2$ $\check{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_\ell \delta, 0)}$ $B \leftarrow \check{\Sigma} V^T \ \#$ At least half the rows of B are all zero end if end for **Return:** B

Analysis – Claim 1

B^TB, A^TA, A^TA-B^TB are all P.S.D.
Proof: Check

$||Ax||_2^2 - ||Bx||_2^2 \ge 0$

Analysis – Claim 2

 With sketch B of size d from Frequent Directions we have

$||A^{T}A - B^{T}B|| \le 2||A||_{f}^{2}/d$

Proof: First prove that for any unit vector x

 $||Ax||^{2} - ||Bx||^{2} \le 2/d(||A||_{f}^{2} - ||B||_{f}^{2})$

Analysis – Proof Continued

Now we must show that for the largest e-vector x that

$||A^{T}A - B^{T}B|| = ||Ax||^{2} - ||Bx||^{2}$

Run Time

SVD of an *d x m* matrix of rank *r* takes O(*dmr*) = O(*d*²*m*) SVD is done once every *d*/2 rows When SVD is not done, it takes time

Total run time:

O(dnm)

O(m)

Parallelization

• Let there be μ machines and each takes n / μ many rows

Parallelization

• Each B_i has dimension $d \times m$.

• Each M_i took time $O(dmn / \mu)$

To then combine the others, can take µ more machines, and total run time

 $O(dmn/\mu + \log(\mu)d^2m)$

• Set $\mu = \Theta\left(\frac{n}{d}\right) = \Theta(\varepsilon n) =>$ run time $O\left(\frac{m\log(n)}{e^2}\right)$

Results – Accuracy

Results – Run Time vs. Others

Results – Run Time for FD

