Written by: Edo Liberty
Presented by: Ryan Rogers
With Some Slides from: Edo Liberty

SIMPLE AND DETERMINISTIC MATRIX SKETCHING

Set up

o A is an $n \times m$ matrix
o We want to compute the $m \times m$ matrix: $A^{T} A$
o Problem: $n>$ machine memory.
o Goal: Find 'good' approximate $d \times m$ matrix B for any $\|x\|=1$

$$
\left\|A^{T} A-B^{T} B\right\| \leq \text { small }
$$

Set up

o A is an $n \times m$ matrix
o We want to compute the $m \times m$ matrix: $A^{T} A$
o Problem: $n>$ machine memory.
o Goal: Find 'good' approximate $d \times$ m matrix B for any $\|x\|=1$

$$
\left|\left|A^{T} A-B^{T} B\right|\right| \leq \varepsilon\|A\|_{f}^{2}
$$

Sketches

Sketches

- A of a matrix A is another matrix B, that is significantly smaller than A but still approximates A well.
- We need this if:
- Rows of matrix can be processed only once
- Storage is limited

Frequent Items

- Universe $U=\left\{a_{1}, \ldots, a_{m}\right\}$ and a stream $A_{1}, A_{2}, \ldots, A_{n}$
o Frequency f_{i} of item a_{i} in the stream
- Use only $O(d)$ space to produce approximate counts g_{i}, such that

$$
\left|f_{i}-g_{i}\right|<n / d
$$

Frequent Items

Frequent Items

Frequent Items

Frequent Items

Frequent Items

Frequent Items

Frequent Items

Frequent Items

g_{i}

Frequent Items - Observations

- We always get an undercount $g_{i} \leq f_{i}$
- If we let δ be the amount we decrease counter at time t then

o Sum up the undercounts

Frequent Items - Observations

- Thus, we get $\sum \delta_{t} \leq 2 n / d$
- $\boldsymbol{\operatorname { S e t }} d=2 / \varepsilon$:

$$
\left|f_{i}-g_{i}\right| \leq \varepsilon n
$$

Frequent Directions

Frequent Directions

We now need to zero out some rows to make room for more!

d x m

Frequent Directions

$=C$

- Find SVD of B: $\quad U_{d \times 2}\left(\Sigma_{d \times m} V_{m \times m}^{T}=B\right.$

Frequent Directions

$d \times m$

Frequent Directions

Frequent Directions

$B=\widehat{\Sigma} V^{T}$

Frequent Directions

Algorithm 1 Frequent-directions
Input: $\ell, A \in \mathbb{R}^{n \times m}$
$B \leftarrow$ all zeros matrix $\in \mathbb{R}^{\ell \times m}$
for $i \in[n]$ do
Insert A_{i} into a zero valued row of B
if B has no zero valued rows then

$$
[U, \Sigma, V] \leftarrow \operatorname{SVD}(B)
$$

$C \leftarrow \Sigma V^{T} \quad$ \# Only needed for proof notation
$\delta \leftarrow \sigma_{\ell / 2}^{2}$
$\check{\Sigma} \leftarrow \sqrt{\max \left(\Sigma^{2}-I_{\ell} \delta, 0\right)}$
$B \leftarrow \Sigma \Sigma V^{T}$ \# At least half the rows of B are all zero end if
end for
Return: B

Analysis - Claim 1

- $B^{\top} B, A^{\top} A, A^{\top} A-B^{\top} B$ are all P.S.D.
o Proof: Check

$$
\|A x\|_{2}^{2}-\|B x\|_{2}^{2} \geq 0
$$

Analysis - Claim 2

- With sketch B of size d from Frequent Directions we have

$$
\left\|A^{T} A-B^{T} B\right\| \leq 2\|A\|_{f}^{2} / d
$$

- Proof: First prove that for any unit vector x

$$
\|A x\|^{2}-\|B x\|^{2} \leq 2 / d\left(\|A\|_{f}^{2}-\|B\|_{f}^{2}\right)
$$

Analysis - Proof Continued

- Now we must show that for the largest e-vector x that

$$
\left\|A^{T} A-B^{T} B\right\|=\|A x\|^{2}-\|B x\|^{2}
$$

Run Time

o SVD of an $d x$ m matrix of rank r takes

$$
O(d m r)=O\left(d^{2} m\right)
$$

o SVD is done once every $\mathrm{d} / 2$ rows
o When SVD is not done, it takes time $O(m)$
o Total run time:
$O(d n m)$

Parallelization

If we have
 and $B_{i}=F D\left(A_{i}\right)$
then

$$
\left\|A^{T} A-D^{T} D\right\| \leq 2\|A\|_{f}^{2} / d
$$

where

$D=F D$

B

Parallelization

o Let there be μ machines and each takes n / μ many rows

Parallelization

- Each B_{i} has dimension $d \times m$.
- Each M_{i} took time $O(d m n / \mu)$
- To then combine the others, can take μ more machines, and total run time
$O\left(d m n / \mu+\log (\mu) d^{2} m\right)$
- Set $\mu=\Theta\left(\frac{n}{d}\right)=\Theta(\varepsilon n)=>$ run time $O\left(\frac{m \log (n)}{\varepsilon^{2}}\right)$

Results - Accuracy

Results - Run Time vs. Others

Results - Run Time for FD

othe

