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Abstract

We give new sublinear and parallel algorithms for the extensively studied problem of approximating
n-variable r-CSPs (constraint satisfaction problems with constraints of arity r) up to an additive error

O(ǫnr). The running time of our algorithms is O
(

n
ǫ2

)

+ 2
O
(

1
ǫ2

)

for Boolean r-CSPs and O
(

k4n
ǫ2

)

+

2
O
(

log k

ǫ2

)

for r-CSPs with constraints on variables over an alphabet of size k. For any constant k this
gives optimal dependence on n in the running time unconditionally, while the exponent in the dependence
on 1/ǫ is polynomially close to the lower bound under the exponential-time hypothesis, which is 2Ω(1/

√
ǫ).

For Max-Cut this gives an exponential improvement in dependence on 1/ǫ compared to the sublinear
algorithms of Goldreich, Goldwasser and Ron (JACM’98) and a linear speedup in n compared to the
algorithms of Mathieu and Schudy (SODA’08). For the maximization version of k-Correlation Clus-

tering problem our running time is O(k4n/ǫ2) + kO(1/ǫ2), improving the previously best nk
O
(

1
ǫ3

log k
ǫ

)

by Guruswami and Giotis (SODA’06).

1 Introduction

Approximation algorithms for constraint satisfaction problems have received a lot of attention in the recent
years. In particular, polynomial-time approximation schemes for dense instances have been developed using
several different approaches [dlV96, GGR98, AKK99, FK99, AdlVKK03, dlVKKV05, dlVKM07, MS08,
AFNS09, BHHS11, YZ14], including combinatorial sampling methods, subsampling from linear programming
and semidefinite programming relaxations and rounding of hierarchies of linear programming relaxations.
Notably, some of these algorithms run in sublinear time in the input size (e.g. [GGR98, AdlVKK03]). In
particular, for Max-Cut, probably the most commonly studied CSP, a partition which gives a cut of size
within ǫn2 of the optimum can be constrained in linear in n time for fixed ǫ [GGR98].

In this paper we revisit the problem of constructing approximate solutions for instances of r-CSPs with
additive error ǫnr, focusing on algorithms which run in sublinear time. To the best of our knowledge, even
for Max-Cut, the most basic 2-CSP, among all algorithms considered in the previous work only those
of [GGR98] can be used to reconstruct the solution in sublinear time. We are not aware of any algorithms
for general r-CSPs over large alphabets which achieve sublinear running time. Note that multiple algorithms
exist (e.g. [AdlVKK03, MS08]) for approximating the cost of the optimum solution in sublinear (and even
constant) time, however all these approaches take at least linear time to reconstruct the solution itself (see
Table 1). The motivation for fast algorithms comes from applications of r-CSPs to areas such as clustering
and graph partitioning. For example, the results of [GG06] can be interpreted as showing (implicitly) that
Correlation Clustering into k clusters can be expressed as a 2-CSP problem over an alphabet of size k
and hence algorithms for approximating CSPs can be directly applied to this problem.

∗This work was done while the author was supported by a postdoctoral fellowship at the Warren Center for Network and
Data Sciences at the University of Pennsylvania and the Institute Postdoctoral Fellowship at the Brown University, ICERM.
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1.1 Previous work

In Table 1 we compare the running times of our algorithms against those achieved prior to this work via three
different approaches to designing PTASes for dense r-CSPs: combinatorial algorithms based on sampling,
subsampling of mathematical relaxations and rounding of linear programming hierarchies. For any fixed k
our algorithms give the best running time.

Combinatorial algorithms with sampling. Historically this is the first framework which led to de-
velopment of PTASes for dense problems. For Max-Cut and some other graph problems sampling-based
combinatorial algorithms were developed by de la Vega [dlV96], Goldreich, Goldwasser and Ron [GGR98]
and Arora, Karger and Karpinski [AKK99]. Prior to our work, which falls into this category, fastest algo-
rithms for dense problems were also obtained via this framework. Fastest of such algorithms were [GGR98]
and [MS08], which have incomparable running times. Former work achieves sublinear dependence on the
input size, while its dependence on ǫ is worse. Latter work gives algorithms with linear running time in the
input size, while achieving better dependence on ǫ.

Efficiency of combinatorial algorithms based on sampling makes them appealing for applications to clus-
tering and graph partitioning [GGR98, GG06]. Some of these algorithms [GGR98] are extremely easy to
parallelize, while others [MS08] are inherently sequential. Our work falls in between these two extremes
— the basic versions of our algorithms are sequential but we show how to transform them into parallel
algorithms. We discuss parallel versions of our algorithms in Section 4.

Subsampling of mathematical relaxations. This approach was first suggested by [AdlVKK03], who
studied the effect of subsampling on the value of the objective function of mathematical relaxations of dense
NP-hard problems. It was further extended to more general settings by [BHHS11]. To the best of our
knowledge, all algorithms obtained in this line of work run either in linear or polynomial time in the input
size.

Rounding linear programming hierarchies. The most recent approach is based on rounding linear
programming hierarchies. De la Vega and Kenyon-Matheiu [dlVKM07] showed that O(1/ǫ2) rounds of
Sherali-Adams hierarchy suffice to bring the integrality gap for dense instances of Max-Cut down to (1+ǫ).
More generally, Yoshida and Zhou [YZ14] showed that 2O(r) log k/ǫ2 rounds of Sherali-Adams suffice for
general r-CSPs over an alphabet of size k.

1.2 Related work in streaming algorithms

We would like to highlight the connection between the line of work on sublinear time algorithms and related
area of sublinear space streaming algorithms. Recently it has been shown that (1 ± ǫ)-approximate cut
sparsifiers and spectral sparsifiers can be constructed in the streaming model in Õ(n/ǫ2) space [AGM12,
GKP12, KL13, KTM+14]. This is almost optimal (see [BK96, ST11, SS11, BSS14]) and in particular implies
that dense Max-Cut problem that we consider can be solved in almost optimal sublinear space in the
streaming model, if there are no restrictions on the running time. The dependence on n in our algorithms
for Max-Cut is sublinear and optimal, as is space in the streaming algorithms. It remains open whether
both of these sublinear time and space bounds can be achieved by the same algorithm.

1.3 Our results and techniques

In order to introduce the main ideas we first develop a simpler version of our algorithm for Max-Cut in
Section 2. Our main algorithm for Max-Cut follows uses a more general approach that we take in Section 3
and has the following guarantee.

Theorem 1.1. There is an algorithm which approximates Max-Cut with additive error O(ǫn2) and runs

in time O(n/ǫ2) + 2O(1/ǫ2).
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Running times of approximation schemes for dense r-CSPs

Max-Cut Binary r-CSP (r > 2) k-ary 2-CSP k-ary r-CSP (r > 2)
Combinatorial algorithms with sampling

[AKK99] nO(1/ǫ2) — — —

[dlV96] O
(

n2 · 21/ǫ2+o(1)
)

— — —

[GGR98] O
(

n log 1/ǫ
ǫ2

)

+ 2O(
log 1/ǫ

ǫ3
) — O

(

n log k/ǫ
ǫ2

)

+ 2
O

(

log2 k/ǫ

ǫ3

)

—

[MS08] O(n2) + 2O(1/ǫ2) O(nr) + 2O(1/ǫ2) O(n2) + 2O(
log k

ǫ2
) O(nr) + 2O(

log k

ǫ2
)

Our work O
(

n
ǫ2

)

+ 2O(
1
ǫ2
) O

(

n
ǫ2

)

+ 2O(
1
ǫ2
) O

(

nk4

ǫ2

)

+ 2O(
log k

ǫ2
) O

(

nk4

ǫ2

)

+ 2O(
log k

ǫ2
)

Subsampling of mathematical relaxations

[AdlVKK03] O(n2) · 2Õ(1/ǫ2) O(nr) · 2Õ(1/ǫ2) — —
Rounding linear programming hierarchies

[dlVKM07] nO(1/ǫ2) — — —

[YZ14] nO(1/ǫ2) n2O(r)/ǫ2 nO(log k/ǫ2) n2O(r) log k/ǫ2

Table 1: Approximation algorithms with additive error ǫnr.

The intuition behind our algorithms comes from [GGR98] and [MS08]. In particular, our algorithm for
Max-Cut is inspired by [GGR98], who introduced a sampling-based technique for approximating dense in-
stances of Max-Cut with sublinear running time. However, we depart from their approach, which partitions
the graph into Θ(1/ǫ) parts and then partitions each part based on an optimum partition of a sample of size
Θ(1/ǫ2) drawn from the rest of the graph. Such an approach seems to inherently require the complexity to be

2Ω(1/ǫ3) due to the partitioning step. Instead, we use a bootstrapping scheme from the linear time algorithm
of [MS08]. In a nutshell, an optimum solution on a primary sample of size O(1/ǫ2) suffices to partition a
large secondary sample of size O(1/ǫ4) within an additive error O(1/ǫ7) and then this approximate solution
on the secondary sample can be further used to construct an approximate solution for the entire graph. The
original algorithm of [MS08] takes O(n2) time, i.e. linear in the input size to convert the approximately
optimal solution for the secondary sample into an approximately optimal solution for the entire graph. We
show how to choose sampling rate at each step of the algorithm in order to maintain the same approximation
guarantee in optimal sublinear time.

We introduce the main ideas in Section 2, where we describe a simplified version of our algorithm for
Max-Cut, Algorithm 1. If the greedy step in this algorithm is performed using exact degrees then the
analysis of this algorithm is given in [MS08]. While the idea of using sampling in the greedy step might
seem natural, the details are quite involved. Indeed, a single greedy step can be easily seen to introduce
only small error even if it is made based on approximate degrees. However, Algorithm 1 executes the greedy
steps sequentially and degrees used to place the current vertex depend on the placement of the previous
vertices. This may allow the errors the algorithm makes when placing vertices to affect degrees used when
placing subsequent vertices and thus lead to amplification of errors. We use martingale-based analysis based
on [MS08] to break down the error analysis in such a way that it can be done independently for every step
(Lemma 2.2). It is crucial that this analysis still applies to the new martingale that we use, which tracks
performance of an approximate greedy algorithm instead of an exact one. Given this, there are two sources
of error in every step: the fact that we are using a greedy choice and the approximation used in this choice.
In Lemma 2.3 we show that these two sources can be treated independently and analyze the error introduced
by sampling in Proposition 2.4. To analyze the error introduced by the greedy choice we use the martingale-
based argument of [MS08] adapted to our new martingale (Lemma 2.5). It is crucial that the argument is
robust to the change in the definition of the martingale – we show this by reproducing the analysis. Finally,
we give the overall analysis of the approximation given by Algorithm 1 in Lemma 2.6. In order to achieve
the desired additive bound together with linear running time of the greedy step we choose the sample size
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to be time-dependent. Selection of the sampling rate is one of the most challenging parts of the analysis.
In Section 3 we give the analysis of our main algorithm, Algoirthm 2, which is a faster version of

Algorithm 1 and also works for general r-CSPs. It introduces the bootstrapping step in order to reduce the
running time. This proof follows a similar structure and hence all observations above apply. Again, we are
able to break the analysis into steps and separate the error introduced by the greedy selection process and
the approximation involved in it. Even though the details are more delicate since we now have to deal with
the more general case of r-CSPs we are still able to adapt some of the technical lemmas of [MS08] under the
new definitions that we use. This leaves us two main technical challenges to address: selection of the sample
space and choice of the sampling rate sufficient to achieve the desired approximation. For Max-Cut the
sampling space is easily determined to be the set of already placed neighbors of the vertex, which is currently
being placed greedily. For general r-CSPs we show that an appropriate generalization is the set of all critical
constraints (see Definition 3.1) containing currently processed variable. This choice is crucial for the analysis
to be extendable to this case because it allows to bound the size of the sampling space at time t by tr−1. It is
important that the sampling space can be shown to be much smaller than the set of all constraints involving
current variable, which may have size nr−1. Together with a careful choice of time-dependent sampling rate,
which generalizes the one we use in Algorithm 1, the bound on the size of the sampling space allows to
achieve both the optimal bound on the running time and the additive approximation guarantee.

For general r-CSPs over an alphabet of size k we obtain the following results, which follow from the
analysis of Algorithm 2.

Theorem 1.2. There is an algorithm which approximates any r-CSP problem over alphabet of size k within

additive error O(ǫnr) and runs in time O
(

nk4

ǫ2

)

+ 2O(
log k

ǫ2
).

Theorem 1.2 immediately implies algorithms with the same running time for the k-Correlation Clus-

tering problem by taking r = 2.
Our last result is a lower bound, which is proved in Section A and complements the performance guaran-

tees of our algorithms, implying a lower bound of Ω(n/ǫ2) + 2Ω(1/
√
ǫ) on the running time of any algorithm

for Max-Cut, assuming ETH.

Theorem 1.3. Any algorithm A, which approximates Max-Cut within error ǫn2 in the adjacency list
model has to make at least Ω(n/ǫ2) queries to the edges of the graph. Every such algorithm also has to have
at least 2Ω(1/

√
ǫ) running time assuming the exponential time hypothesis.

This theorem justifies the fact that the running time of sublinear algorithms for r-CSPs is naturally
divided into terms, the first one corresponding to the query complexity and the second one corresponding to
the computational complexity of the problem. While the first term in our work is provably unconditionally
almost tight by Theorem 1.3, we can only lower bound the second term conditionally since it corresponds to
the computational complexity of the problem.

The computational lower bound in Theorem 1.3 is easy to show. Consider Max-Cut on instances of
size 1/

√
ǫ. Assuming ETH, such instances can’t be solved exactly in time 2o(1/

√
ǫ). However, an additive

error guarantee of ǫn2 requires that such instances have to be solved exactly by our algorithm. The query
complexity lower bound comes from the intuition that any PTAS for dense instances of Max-Cut has to
estimate the degrees of at least a constant fraction of vertices up to an additive error ǫn, which requires a
sample of size Ω(1/ǫ2) per vertex and yields the overall lower bound. However, the technical details of this
proof are more involved and are given in Section A. We use Yao’s principle and construct a random family
of hard instances as follows. Let V = V0 ∪ V1 ∪ V2, where |V0| = |V1| = 4n/9 and |V2| = n/9. The vertex
set V0 ∪ V1 induces a complete bipartite graph K4n/9,4n/9 with parts V0 and V1, which corresponds to a
planted dense solution for Max-Cut. For each vertex v ∈ V2 we randomly pick a side of this cut rv ∈ {0, 1}
with probability 1/2 each and add edges with probability 1/2 + ǫ to each vertex on the side rv and with
probability 1/2 to each vertex on the other side 1− rv. Thus, in the optimum solution each vertex in v ∈ V2

has to be placed on the side 1 − rv of the cut. The intuition behind the lower bound is that even if the
algorithm guesses the planted solution on V0 ∪ V1 without any queries then in order to get an additive error
cǫn2 for some sufficiently small c it still has to guess 1 − rv with probability greater than 1/2 for vertices

4



v ∈ V2. This is impossible without sampling at least Ω(1/ǫ2) edges by a Chernoff-type lower bound against
sampling algorithms [CEG95]. However, the technical details are more complicated for two reasons. First, an
approximation algorithm can partition V0 ∪ V1 differently than the optimum planted solution, which might
simplify the task of guessing the optimal side for vertices in V2. We show that unless the partitioning of
V0 ∪ V1 is sufficiently close to optimum the algorithm incurs an error of Ω(ǫn2) on edges induced by these
vertices alone. Second and more subtle issue is the way V0∪V1 is partitioned by the algorithm might depend
on the edges adjacent to vertices in V2. To address this we use a probabilistic argument, arguing by a union
bound that for every partition of V0 ∪ V1, which is sufficiently close to the optimum, placing vertices in V2

optimally still requires Ω(n/ǫ2) queries.

2 Max-Cut

To illustrate the main ideas we first present Algorithm 1, which demonstrates how sampling can be used to
speed up an approximate greedy algorithm.

Algorithm 1: Greedy PTAS with subsampling.

input : Graph G(V,E), where |V | = n, parameter ǫ.

1 Pick a sample S of t0 = 1/ǫ2 vertices uniformly at random without replacement
2 for each of the 2t0 possible partitions of S into two parts do

3 St0 = S, t = t0 + 1
4 for each vertex v ∈ V \ S in random order do

5 Pick a sample V t of st = O
(

n2/3

t2/3ǫ2

)

vertices uniformly at random without replacement from

St−1.
6 Assign v to the side of the cut, which maximizes the number of cut edges with respect to the

current partition of V t

7 St = St−1 ∪ {v}, t = t+ 1

8 Output the best cut over all iterations

Theorem 2.1. Algorithm 1 gives an additive O(ǫn2)-approximation for Max-Cut in time O(n) · 2O(1/ǫ2)

First, note that the total size of all samples is
∑n

τ=t0
sτ = n2/3

ǫ2

∑n
τ=t0

τ−2/3 = O
(

n
ǫ2

)

. Thus, the overall

running time of the algorithm is O
(

n
ǫ2 2

1/ǫ2
)

for all iterations of the loop1.

The sides of the cut are indexed by i ∈ {1, 2}. A cut is represented by a vector x ∈ {0, 1}2n, where
xui = 1 iff the vertex u is assigned a label i. Let A to denote a matrix with entries Ai,u1,j,u2 defined as
follows: Ai,u1,j,u2 = 1/2 if u1 = u2 and (i, j) ∈ E and Ai,u1,j,u2 = 0 otherwise. Then we can express the
objective function as minimization of a bilinear form xTAx. For a fixed iteration t of the algorithm we use
At to denote the matrix sampled from A with columns corresponding to vertices in V t being the same as
the columns of A, while all other columns replaced be zeros. Formally At

i,u1,j,u2
= Ai,u1,j,u2 if j ∈ V t and

At
i,u1,j,u2

= 0 otherwise.
We will track the solution obtained at time t using variables xt

ui such that xt
ui = 1 if at time t the vertex

u is assigned label i and xt
ui = 0 otherwise (either u is assigned a different label or not assigned a label at

all). Let rt denote the t-th vertex considered by the algorithm. Let St denote the set of vertices assigned by
time t. Let x∗ be the optimum cut. We denote the exact and approximate greedy choices at time t for each

1For this analysis of the running time as well as for the analysis of the approximation below (Lemma 2.6) any choice of

sample size st =
nδ

tδǫ2
would suffice. The choice of δ = 2/3 allows to minimize the constant factor in the running time.
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vertex u as g̃tui and gtui, which are given as:

g̃tui =











x∗
ui, if t ≤ t0,

1, if t > t0, i = argminj Aujx
t−1

0, otherwise.

gtui =











x∗
ui, if t ≤ t0,

1, if t > t0, i = argminj A
t
ujx

t−1

0, otherwise.

By the definition of the greedy step we can write gtrt = xt
rt − xt−1

rt .
A fictitious cut is defined using a set of auxiliary variables x̂t

v such that x̂t
v = xt

v if v ∈ {r1, . . . , rt} and
x̂t
v = 1

t

∑t
τ=1 g

τ
v otherwise.

Lemma 2.2. For every t it holds that:

(x̂t)TAx̂t − (x̂t−1)TAx̂t−1 ≤ 2(x̂t − x̂t−1)TAx̂t−1 +
4n2

t2
.

Proof. Observe that (x̂t)TAx̂t − (x̂t−1)TAx̂t−1 = 2(x̂t − x̂t−1)TAx̂t−1 + (x̂t − x̂t−1)TA(x̂t − x̂t−1).
In order to bound the second term let’s express the components of x̂t − x̂t−1. There are three cases:

1. Case 1. u ∈ St, u /∈ St−1. In this case we have x̂t
u = xt

u = gtu by the definition of greedy. Also,
xt−1
u = 0 because u hasn’t been assigned yet at time t− 1. Thus, x̂t

u − x̂t−1
u = gtu − x̂t−1

u .

2. Case 2. u /∈ St. In this case we have x̂t
u = 1

t

∑t
τ=1 g

τ
u and x̂t−1

u = 1
t−1

∑t−1
τ=1 g

τ
u We have x̂t

u − x̂t−1
u =

1
t g

t
u − 1

t(t−1)

∑t−1
τ=1 g

τ
u = 1

t · (gtu − x̂t−1
u ).

3. Case 3. u ∈ St−1. In this case x̂t
u − x̂t−1

u = 0 because x̂t
u = x̂t−1

u = xt−1
u .

Thus, we have that |x̂t− x̂t−1|1 =
∑

u |x̂t
u− x̂t−1

u |1 ≤ 2+ 2
t (n− t) = 2n

t . This implies that (x̂t− x̂t−1)TA(x̂t−
x̂t−1) ≤ maxij Aij · |x̂t − x̂t−1|21 ≤ 4n2

t2 , completing the proof.

We denote qt = x̂t − n
t x

t.

Lemma 2.3. For all t ≥ t0 it holds that:

E
[

(x̂t)TAx̂t − (x̂t−1)TAx̂t−1
]

≤ 4n2

t2
+

4n2

(t− 1)
√
st

+
2n

t(n− t+ 1)
E
[∣

∣Aqt−1
∣

∣

1

]

Proof. We first show the following auxiliary statement.

Proposition 2.4. For every u /∈ St−1 it holds that E
[

(gtui − x̂t−1
ui )TAxt−1

]

≤ 2t√
st
.

Proof. We have

(gtui − x̂t−1
ui )TAxt−1 = (gtui − g̃tui)Ax

t−1 + (g̃tui − x̂t−1
ui )TAxt−1 ≤ (gtui − g̃tui)Ax

t−1

where the inequality follows from the fact that the optimal greedy choice g̃t at step t minimizes g̃tuiAx
t−1 for

every u over the choice of i and thus (g̃tui − x̂t−1
ui )TAxt−1 ≤ 0. W.l.o.g we assume that the optimal greedy

choice is g̃tu1 = 1, i.e. the the vertex u is assigned label i = 1. Then for the term (gtui − g̃tui)Ax
t−1 we have:

(gtui − g̃tui)Ax
t−1 =

{

Ñ t
u1 − Ñ t

u2, if N t
u1 < N t

u2

0, if N t
u1 ≥ N t

u2,

where Ñ t
ui and N t

ui denote the number of neighbors of u with label i in St−1 and V t−1 respectively. By a
union bound, we have:

Pr[N t
u1 < N t

u2] ≤ Pr

[

N t
u1 <

st
t− 1

Ñ t
u1 + Ñ t

u2

2

]

+ Pr

[

N t
u2 >

st
t− 1

Ñ t
u1 + Ñ t

u2

2

]

6



We introduce notation α =
Ñt

u1−Ñt
u2

2 . Since E [N t
u1] =

st
t−1Ñ

t
u1 by an additive Hoeffding bound we have:

Pr

[

N t
u1 <

st
t− 1

Ñ t
u1 − α

st
t− 1

]

≤ e−
2α2st
(t−1) .

Bounding the second term similarly we get that Pr[N t
u1 < N t

u2] ≤ 2e
− 2α2st

(t−1)2 . Thus, E[(gtui − g̃tui)Ax
t−1] ≤

4αe
− 2α2st

(t−1)2 . Taking the derivative of the latter expression with respect to α we observe that its maximum is

achieved if α2 = (t−1)2

4st
. This implies that E[(gtui − g̃tui)Ax

t−1] ≤ 2(t−1)√
st

e−1/2 ≤ 2t√
st
.

By Lemma 2.2 it suffices to bound E
[

(x̂t − x̂t−1)TAx̂t−1
]

. We have:

(x̂t − x̂t−1)TAx̂t−1 =
n

t− 1
(x̂t − x̂t−1)TAxt−1 + (x̂t − x̂t−1)TAqt−1.

We bound the first term using Proposition 2.4. If u /∈ St−1, but u ∈ St then x̂t
u−x̂t−1

u = gtu−x̂t−1
u . Hence,

E[(x̂t
ui − x̂t−1

ui )Axt−1] = 2t√
st
. If u /∈ St then x̂t

u − x̂t−1
u = 1

t

(

gtu − x̂t−1
u

)

and E[(x̂t
ui − x̂t−1

ui )Axt−1] = 2√
st
.

Since the total number of such vertices is n− t we have:

E
[

(x̂t − x̂t−1)TAxt−1
]

=
4t√
st

+
4(n− t)√

st
=

4n√
st
.

Thus, the first term is bounded by 4n2

(t−1)
√
st

as desired.

Now we bound the second term. Taking expectation we have:

E
[

(x̂t − x̂t−1)TAqt−1
]

= ESt−1

[

Ert

[

(x̂t − x̂t−1)TAqt−1|St−1
]]

= ESt−1

[

∑

v

Ert

[

(x̂t
v − x̂t−1

v )Avq
t−1|St−1

]

]

= ESt−1





∑

v,i

Av,iq
t−1

Ert

[

(x̂t
v,i − x̂t−1

v,i )|St−1
]





≥ ESt−1

[

−
∑

v

∣

∣Avq
t−1
∣

∣

1
Ert

[∣

∣x̂t
v − x̂t−1

v

∣

∣

1
|St−1

]

]

≥ ESt−1

[

− 2n

t(n− t+ 1)

∑

v

∣

∣Avq
t−1
∣

∣

1

]

= − 2n

t(n− t+ 1)
E
[∣

∣Aqt−1
∣

∣

1

]

where in the second inequality we bound Ert

[∣

∣x̂t
v − x̂t−1

v

∣

∣ |1St−1
]

as follows:

Ert

[∣

∣x̂t
v − x̂t−1

v

∣

∣

1
|St−1

]

= Pr[rt = v|St−1] · |gtv − x̂t−1
v |1 + Pr[rt 6= v|St−1] · |gtv − x̂t−1

v |1/t

= ·|gtv − x̂t−1
v |1

(

1

n− t+ 1
+

1

t

(

1− 1

n− t+ 1

))

=
n

t(n− t+ 1)
|gtv − x̂t−1

v |1 ≤ 2n

t(n− t+ 1)
.

The following lemma is proved in Appendix B.1.

Lemma 2.5. For all t ≥ t0 it holds that E [|Aqt|1] = O
(

n(n− t)
(

1√
t
+ 1

ǫt

))

= O
(

n(n−t)√
t

)

Lemma 2.6. For all t ≥ t0 it holds that E
[

(x̂t)TAx̂t
]

− E
[

(x̂t0)TAx̂t0
]

≤ O(ǫn2).

Proof. The proof follows from Lemma 2.3 and Lemma 2.5. Using Lemma 2.3 applied for τ from t0 to t:

E
[

(x̂t)TAx̂t − (x̂t0)TAx̂t0
]

≤
t
∑

τ=t0+1

4n2

τ2
+

t
∑

τ=t0+1

4n2

(τ − 1)
√
sτ

+

t
∑

τ=t0+1

2n

τ(n− τ + 1)
E
[∣

∣Aqτ−1
∣

∣

1

]

≤ O(ǫ2n2) +

t
∑

τ=t0+1

4n2

(τ − 1)
√
sτ

+

t
∑

τ=t0+1

O

(

n2

τ3/2

)

≤ O(ǫ2n2) +O(ǫn2) +

t
∑

τ=t0+1

O

(

n2

τ3/2

)

≤ O(ǫn2) +O

(

n2

√
t0

)

≤ O(ǫn2),

7



where the second inequality is by Lemma 2.5, the third is because
∑t

τ=t0+1
4n2

(τ−1)
√
sτ

≤ ǫ
n1/3

∑n
τ=t0

τ−2/3 =

O(ǫn) and the fourth is by
∑n

τ=t0+1
1

τ3/2 ≤
∫∞
τ=t0

1
τ3/2dτ = O

(

1√
t0

)

.

Finally, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Follows from Lemma 2.6 applied to t = n since x̂t0 = x∗ is the optimal cut.

3 Fast algorithm for r-CSPs

In order to generalize our algorithms to general r-CSPs we need to introduce a notion of a critical constraint.

Definition 3.1 (Critical r-tuples and constraints). For a given partial assignment S and a variable vt an
r-tuple (i1, . . . , ir) is critical, if i1 = t and i2, . . . , ir ∈ S. A constraint is critical if it is defined on a set of
variables, whose indices form a critical r-tuple, and is not satisfied by S.

Algorithm 2: Fast Greedy PTAS with subsampling.

input : A k-ary r-CSP instance over n variables, parameter ǫ.

1 Pick a sample S1 of t1 = O(log2 k/ǫ4) variables uniformly at random without replacement
2 Pick a sample S0 ⊆ S1 of t0 = 1/ǫ2 variables uniformly at random without replacement
3 for each of the kt0 possible assignments of values to variables in S0 do

4 St0
0 = S0, t = t0 + 1, st = O

(

n2/3k4

t2/3ǫ2

)

.

5 for each variable v ∈ S1 \ S0 in random order do

6 Pick a sample V t of st critical r-tuples uniformly without replacement from the set of all
critical r-tuples for v and assignment St−1.

7 Assign variable v the value maximizing the number of satisfied critical constraints in V t.

8 St
0 = St−1

0 ∪ {v}, t = t+ 1

9 Assign values to variables in S1 according to the best assignment w found over all iterations in line 3
10 for each variable v ∈ V \ S1 in random order do

11 St1
1 = S1, t = t1 + 1, st = O

(

n2/3k4

t2/3ǫ2

)

.

12 Pick a sample V t of st critical r-tuples uniformly without replacement from the set of all critical
r-tuples for v and assignment St−1.

13 Assign variable v the value maximizing the number of satisfied critical constraints in V t.

14 St
1 = St−1

1 ∪ {v}, t = t+ 1

15 Output the assignment constructed in the loop on line 10

The assignment of values to the variables is represented by a vector x ∈ {0, 1}nk, where xui = 1 iff the
variable u is assigned value i. The objective function can be written as a multilinear function:

A(x(1), . . . , x(r)) =
∑

1≤u1,...,ur≤n
1≤i1,...,ir≤k

Au1,i1,...,ur ,irx
(1)
u1,i1

. . . , x
(r)
ur ,ir

,

where A is an nk-dimensional array symmetric under permutation of the r indices (uj , ij). The variables
xt
ui and x̂t

ui, are defined as in Section 2, except that we now call them assignments instead of cuts as before.
Random variable rt corresponds to the variable chosen at random at step t. Random variable gt denote the
optimum greedy choice of the assignment for this variable with respect to all its critical constraints in St−1.
Random variable g̃t denotes the optimum such greedy choice but only with respect to constraints in V t. We
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also define an array At sampled from A at iteration t of the algorithm as follows:

At
u1,i1,u2,i2,...,ur ,ir =

{

Au1,i1,u2,i2,...,ur,ir , if(u1 = rt, u2, u3, . . . , ur) ∈ Vt, i.e. the constraint is critical.

0, otherwise.

We also introduce notation an nk-dimensional vectorA(·, x, . . . , x) with components defined asA(·, x, . . . , x)ui =
A(eui, x, . . . , x).

Recall that qt = x̂t − n
t x

t. We use notation St
1 to denote the set of variables, which are assigned values

after iteration t of the loop on line 10 of Algorithm 2.

Lemma 3.1. (Analog of Lemma 2.3) For every t ≥ t1 it holds that:

E
[

A(x̂t, . . . , x̂t)−A(x̂t−1, . . . , x̂t−1)
]

≤ 2r+2nr

tr
+

2k2nr

t
√
st

+
2n

t(n− t+ 1)
E
[

|A(·, qt−1, . . . , qt−1)|1
]

Proof. First we prove the following proposition, which generalizes Proposition 2.4.

Proposition 3.2. For every u /∈ St−1
1 it holds that E

[

A(gtui − x̂t−1
ui , xt−1, . . . , xt−1)

]

≤ 2ktr−1
√
st

Proof. The proof generalizes the proof of Proposition 2.4. There are two differences: we now work with an
alphabet of size k > 2 and have an instance of an r-CSP instead of an instance of Max-Cut. The size of
the alphabet can be taken care of by a union bound, which introduces an extra factor of k in the result.
To handle larger arity of the CSP recall the definition of a critical constraint (Definition 3.1). It captures
the intuition that the hardest type of r-CSP predicates for us are predicates r-LIN, i.e. parities on at most
r variables which can’t be satisfied until all variables are assigned values (a special case 2-LIN corresponds
to Max-Cut). The key observation is that at time t there can be at most tr−1 critical constraints, which
have rt as the unassigned variable since there are at most that many cricical r-tuples. Using these two
observations the proof follows the lines of the proof of Proposition 2.4 with t replaced by tr−1, which is used
as a new bound on the size of the set we sample from.

The rest of the proof of Lemma 3.1 is given in Appendix B.3.

Lemma 3.3. (Analog of Lemma 2.5) For every t and σ = O
(

nr
√
t

√

n−t
n

)

it holds that:

E
[

|A(·, qt, . . . , qt)|1
]

= O(σ).

Proof.

Lemma 3.4. For every t ≥ t0 it holds that:

E
[

A(xt, . . . , xt)−A(x̂t0 , . . . , x̂t0)
]

≤ O(ǫnr).

Proof. By Lemma 3.1 and Lemma 3.3 we have:

E
[

A(xt, . . . , xt)−A(x̂t0 , . . . , x̂t0)
]

≤ O

(

t
∑

τ=t0

2r+2nr

τr
+

t
∑

τ=t0

2k2nr

τ
√
sτ

+

t
∑

τ=t0

2n

τ(n − τ + 1)

nr

√
τ

√

n− τ

n

)

= O



ǫnr + 2k2nr

∫ t

t0

1

τ
√
sτ

dτ + nr

n/2
∑

τ=t0

1

τ3/2
+ nr+1/2

n
∑

n/2

√
n− τ

τ3/2(n− τ + 1)





= O

(

ǫnr + ǫnr +
nr

√
t0

+ nr−1

∫ n/2

1

1√
z
dz

)

= O(ǫnr),

where the first equality follows by direct calculations, the third inequality uses the definition sτ = O
(

n2/3k4

τ2/3ǫ2

)

and the last two equalities follow by direct calculations .
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We use notation xt
(y), x̂

t
(y) and qt(y) to denote the corresponding variables at time t in the greedy process

starting from the assignment y instead of the optimum assignment x∗ as before. Let Y be the set of all
kt

0

= 2O(log k/ǫ2) possible assignments of variables the set S0 that the Algorithm 2 tries in the line 3.
The proof of the following lemma is given in Appendix B.2.

Lemma 3.5. For every t ≥ t0 and σ = O
(

nr−1
√
t

√

n−t
n

)

it holds that:

E

[

max
y∈Y

∣

∣

∣A(·, qt(y), . . . , qt(y))
∣

∣

∣

1

]

= O

(

σ log k

ǫ

)

,

E

[

max
y∈Y

∣

∣

∣A(qt(y), q
t
(y), . . . , q

t
(y))
∣

∣

∣

]

= O

(

σ log k

ǫ

)

Now we are ready to complete the analysis of Algorithm 2, giving the proof of Theorem 1.2

Proof of Theorem 1.2. Let w denote the best assignment found over all iterations of the loop in line 3, which
is used as a seed assignment to the vertices in S1 for the second loop in line 10. We have:

E [A (x̂n
w, x̂

n
w , . . . , x̂

n
w)] =

E

[

A
(

x̂t1
(w), x̂

t1
(w), . . . , x̂

t1
(w)

)]

+
∑

t1≤t≤n

E

[

A
(

x̂t
(w), x̂

t
(w), . . . , x̂

t
(w)

)

−A
(

x̂t−1
(w) , x̂

t−1
(w) , . . . , x̂

t−1
(w)

)]

(1)

By Lemma 3.1 for each term in the sum in (1) we have:

E

[

A
(

x̂t
(w), x̂

t
(w), . . . , x̂

t
(w)

)

−A
(

x̂t−1
(w) , x̂

t−1
(w) , . . . , x̂

t−1
(w)

)]

≤ 2r+2nr

tr
+

4kn2tr−3

√
s

+
2n

t(n− t+ 1)
E

[

|A
(

·, qt−1
(w) , . . . , q

t−1
(w)

)

|1
]

We have that
∣

∣

∣A
(

·, qt−1
(w) , . . . , q

t−1
(w)

)∣

∣

∣

1
≤ maxy∈Y

∣

∣

∣A
(

·, qt−1
(y) , . . . , q

t−1
(y)

)∣

∣

∣

1
. Thus, by Lemma 3.5 the last term

in the expression above can be bounded by O
(

n
t(n−t+1)

nr−1
√
t

√

n−t
n

log k
ǫ

)

. Bounding the sum by integral as

in the proof of Lemma 3.4 we get that the sum in the second term of 1 is bounded as O
(

nr
√
t1

log k
ǫ + ǫnr

)

.

This is where we use the fact that t1 = Θ
(

log2 k
ǫ4

)

to conclude that the sum is bounded by O(ǫnr).

For the first term E

[

A
(

x̂t1
(w), x̂

t1
(w), . . . , x̂

t1
(w)

)]

of (1) we have:

E

[

A
(

x̂t1
(w), x̂

t1
(w), . . . , x̂

t1
(w)

)]

≤ E

[

A

(

n

t1
x̂t1
(w),

n

t1
x̂t1
(w), . . . ,

n

t1
x̂t1
(w)

)]

+ E

[∣

∣

∣A
(

qt1(w), q
t1
(w), . . . , q

t1
(w)

)∣

∣

∣

]

≤ E

[

A

(

n

t1
x̂t1
(w),

n

t1
x̂t1
(w), . . . ,

n

t1
x̂t1
(w)

)]

+ E

[

max
y∈Y

∣

∣

∣A
(

qt1(y), q
t1
(y), . . . , q

t1
(y)

)∣

∣

∣

]

≤ E

[

A

(

n

t1
xt1
(w),

n

t1
xt1
(w), . . . ,

n

t1
xt1
(w)

)]

+O(ǫnr−1)

≤ E

[

A

(

n

t1
xt1
(x∗),

n

t1
xt1
(x∗), . . . ,

n

t1
xt1
(x∗)

)]

+O(ǫnr−1)

≤ E

[

A
(

x̂t1
(x∗), x̂

t1
(x∗), . . . , x̂

t1
(x∗)

)]

+ E

[∣

∣

∣A
(

qt1(x∗), q
t1
(x∗), . . . , q

t1
(x∗)

)∣

∣

∣

]

+O(ǫnr−1)

≤ E

[

A
(

x̂t1
(x∗), x̂

t1
(x∗), . . . , x̂

t1
(x∗)

)]

+ E

[

max
y∈Y

∣

∣

∣A
(

qt1(y), q
t1
(y), . . . , q

t1
(y)

)∣

∣

∣

]

+O(ǫnr−1)

≤ E

[

A
(

x̂t1
(x∗), x̂

t1
(x∗), . . . , x̂

t1
(x∗)

)]

+O

(

nr−1

√
t1

√

n− t1
n

log k

ǫ

)

+O(ǫnr−1)

≤ E

[

A
(

x̂t0
(x∗), x̂

t0
(x∗), . . . , x̂

t0
(x∗)

)]

+O (ǫnr)

= OPT +O(ǫnr),
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where the first inequality is by the triangle inequality and the definition of qt1(1), the second inequality

is by a union bound, the third inequality is by Lemma 3.5, using the fact that O
(

nr−1
√
t1

√

n−t1
n

log k
ǫ

)

=

O
(

nr−1
√
t1

log k
ǫ

)

= O(ǫnr−1), the fourth inequality follows since x∗ ∈ Y , the fifth inequality holds by the

triangle inequality and the definition of qt1x∗ , the sixth inequality is by a union bound, the seventh inequality
is by Lemma 3.5, the eighth inequality is by Lemma 3.4 and uses the fact that t1 = Θ(log2 k/ǫ4) and the

last equality holds since by definition A
(

x̂t0
(x∗), x̂

t0
(x∗), . . . , x̂

t0
(x∗)

)

= OPT .

Finally, the analysis of the running time follows from computing the overall size of all samples as done for
Algorithm 1. In order to implement random sampling from the set of all critical r-tuples we assume that the
instance is given the input is given as the r-dimensional matrix A. Then we can check whether a randomly
sampled critical r-tuple corresponds to a critical constraint in constant time.

4 Conclusion

In this section we briefly explain how to use our algorithms in a parallel setting, when we have m identical
machines available as in modern massive parallel computational models [FMS+10, KSV10, GSZ11, BKS13,
ANOY14]. This allows to reduce the total computational time of our algorithms by a factor of m. The
loop in the line 3 is very easy to parallelize since different iterations can be done independently on different
machines. The greedy pass in the line 5, however, is executed only once and because the decisions made in
the previous iterations affect the greedy choices in the subsequent steps we have to modify the algorithm in
order to make it parallel. We can do this by partitioning the work into O(log1+ǫ n) supersteps. Instead of
processing one vertex at a time in the loop in the line 5 in every superstep we increase the size of the current
set of processed vertices by a (1+ǫ) multiplicative factor. Consider one such superstep τ when we increase the
set of vertices from Sτ − 1 to Sτ . In this superstep we process all new vertices in Sτ \ Sτ−1 independently
in random order, dividing the work uniformly between m machines. Crucially, when processing a vertex
rt ∈ Sτ \ Sτ−1 we can no longer take the random sample Vt from the entire set of vertices r1, . . . , rt−1

processed before it. However, we can take a random sample from Sτ−1, which was computed in the previous
superstep and differs from {r1, . . . , rt−1} on at most an ǫ-fraction of points. This suffices for the analysis in
Section 3 to still yield a PTAS.

It remains open whether our results can be reproduced in the streaming model, i.e. whether there exist
both sublinear time and space algorithms for dense r-CSPs.
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A Lower bound

Theorem A.1. There exist constants c1, c2 > 0 such that any algorithm that queries less than c1n/ǫ
2 edges

has to incur additive error at least c2ǫn
2 for Max-Cut.

Proof. Consider the following random family of graphs. Let V = V0 ∪ V1 ∪ V2, where |V0| = |V1| = 4n/9
and |V2| = n/9. The subgraph induced by V0 ∪ V1 is a complete bipartite graph K4n/9,4n/9. For every
vertex v ∈ V2 we construct the set of edges adjacent to v by picking a random value rv ∈ {0, 1} uniformly at
random and choosing drawing edges from v to vertices in Vrv independently with probability 1/2 + ǫ each
and edges to vertices in V1−rv independently with probability 1/2 each. With high probability this gives us
two random sets of neighbors Srv ⊆ Vrv of size 2n/9± o(n) and S1−rv ⊆ V1−rv of size (1+ ǫ)2n/9± o(n). In
the presentation below we will often omit the o(n) terms since they don’t matter for the analysis.

First, we give a high-probability bound on the cost of the optimum solution for such instances.

Proposition A.2. With high probability the cost of the optimum solution for the class of instances con-
structed as described above is equal to 18n2/81 + 2ǫn2/81 + o(n2).

Proof. We use sets C0 and C1 for the two sides of the cut. First, we show that the optimum solution for this
family of instances always places V0 in C0, V1 in C1 and every vertex v ∈ V2 in Crv and thus has the size of
the cut equal to OPT = |V0||V1|+ |V2||Srv | = 4n/9 · 4n/9+ n/9 · (1 + ǫ)2n/9 = 18n2/81 + 2ǫn2/81. Indeed,
we can choose C0 so that the majority of vertices from V0 are placed in C0. We denote this majority as
V 0
0 = V0 ∩C0 and define analogously V i

j = Vj ∩Ci for i, j ∈ {0, 1}. Note that the total number of cut edges

in the subgraph induced by V0∪V1 is |V 0
0 | · |V 1

1 |+ |V 1
0 | · |V 0

1 |, which is maximized if |V 1
1 | = |V1| = 4n/9. Thus,

the number of such edges is at most |V 0
0 |4n/9. The number of cut edges adjacent to the vertices in V2 is at

most |V2| · (|Srv |+ |S1−rv |) = |V2| · (4n/9+2ǫn/9) = 4n2/81+ 2ǫn2/81. Thus, the total number of cut edges
is at most |V 0

0 |4n/9 + 4n2/81 + 2ǫn2/81. This implies that |V 0
0 | ≥ (OPT − 4n2/81 − 2ǫn2/81)/(4n/9) =

7n/18 > n/3. Now assume that V 0
1 is non-empty and consider any vertex in v ∈ V 0

1 . The number of edges
from v to vertices in C0 is at least |V 0

0 | > n/3, while the number of edges from v to vertices in C1 is at
most |V 1

0 | + |V2| < n/9 + n/9 = 2n/9. By moving v to C1 we can improve the solution, which means that
V 0
1 is empty. Similarly, V 1

0 is empty and hence V 0
0 = V0 and V 1

1 = V1. Given this the optimum solution
places every vertex v ∈ V2 greedily on the side rv, which completes the analysis of the cost of the optimum
solution.

Using Yao’s principle it suffices to consider performance of deterministic algorithms under the hard
distribution that we have constructed.
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Definition A.1 (Bad vertices). A vertex v ∈ V2 is bad if there exists a cut (C0, C1) of V0 ∪ V1 such that the
degree of v in on of the parts V i

j the partition deviates from the expectation by more than (4n/9)3/4.

Proposition A.3. With high probability there are at most n3/4 vertices.

Proof. We denote m = 4n/9. Fix a vertex v ∈ V2. W.l.o.g rv = 0. For a set S let nv(S) denote the
number of neighbors of v in S. We have E[nv(V

0
0 ∪ V 0

1 )] = E[nv(V
0
0 )] + E[nv(V

0
1 )] = |V 0

0 |(1 + ǫ)1/2 +
|V 0

1 |1/2 = 1/2(|V 0
0 ∪ V 0

1 |) + ǫ/2|V 0
0 |. By a union bound Pr[nv(V

0
0 ∪ V 0

1 ) − E[nv(V
0
0 ∪ V 0

1 )] > 2m3/4] ≤
Pr[nv(V

0
0 )−E[nv(V

0
0 )] > m3/4]+Pr[nv(V

0
1 )−E[nv(V

0
1 )] > m3/4]. By Hoeffding bound we have Pr[nv(V

0
0 )−

E[nv(V
0
0 )] > m3/4] ≤ e

− 2m3/2

|V 0
0

| ≤ e−2
√
m and similarly Pr[nv(V

0
1 ) − E[nv(V

0
1 )] > m3/4] ≤ e−2

√
m. Thus

Pr[nv(V
0
0 ∪V 0

1 )−E[nv(V
0
0 ∪V 0

1 )] > 2m3/4] ≤ 2e−2
√
m. The probability that for a fixed cut there are at least

n3/4 bad vertices is thus
∑|V2|

t=n3/4

(|V2|
t

)

pt(1−p)|V2|−t ≤∑|V2|
t=n3/4

(|V2|
t

)

pt ≤ pn
3/4 ∑|V2|

t=n3/4

(|V2|
t

)

≤ pn
3/4

2|V2| ≤
(2e−2

√
4n/9)n

3/4

2n/9. Finally, taking a union bound over all 22m = 28n/9 possible cuts induced on V0 ∪ V1

we get that the probability that there exists at least one such cut for which at least n3/4 vertices are bad is

at most 2n+n3/4 · e−4/3n5/4

= 2−Ω(n1/4), which is exponentially small in n.

The previous lemma essentially allows us to assume that there are no bad vertices, becuase their total
contribution to the cut is at most o(n2), which is negligible. Now we define biased vertices, which intuitively
are vertices in V2 which are easy for an algorithm to detect since they have a much larger than expected bias
towards one of the sides of the planted solution on the vertices V0 ∪ V1. Most importantly, bad vertices are
defined with respect to an arbitrary cut on V0 ∪ V1 since we don’t know which of these cuts was selected by
the algorithm.

Definition A.2 (Biased vertices). We say that a vertex v ∈ V2 has a bias towards the side C0 of the cut,
if nv(V

0
0 ∪ V 0

1 )− nv(V
1
0 ∪ V 1

1 ) > ǫn. Vertices biased towards the side C1 of the cut are defined analogously.

Proposition A.4. There no vertices in V2, which a bias towards one of the sides of the cut induced by the
algorithm on V0 ∪ V1.

Proof. Suppose that there exists a vertex v with rv = 0 (the case rv = 1 is symmetric) such that nv(V
0
0 ∪

V 0
1 ) − nv(V

1
0 ∪ V 1

1 ) > ǫn. Because we assume that there are no bad vertices this implies that E[nv(V
0
0 ∪

V 0
1 )]−E[nv(V

1
0 ∪V 1

1 )] > ǫn− 2m3/4 > 3ǫn/4, where the last inequality holds for large enough n. Expanding
the expectations we have (1 + ǫ)1/2|V 0

0 | + 1/2|V 0
1 | − (1 + ǫ)1/2|V 1

0 | − 1/2|V 1
1 | > 3ǫn/4 or equivalently

|V 0
0 | + |V 0

1 | − |V 1
0 | − |V 1

1 | > (3ǫn/2 − ǫ|V 0
0 | + ǫ|V 1

0 |) > 3ǫn/2 − 4ǫn/9 > ǫn. This implies that all vertices
with rv = 0 are optimally placed on the side C1 of the cut. Similarly for vertices with rv = 1 we have
that E[nv(V

0
0 ∪ V 0

1 )] − E[nv(V
1
0 ∪ V 1

1 )] ≥ 1/2|V 0
0 | + (1 + ǫ)1/2|V 0

1 | − 1/2|V 1
0 | − (1 + ǫ)1/2|V 1

1 | − 2m3/4 ≥
1/2(|V 0

0 |+ |V 0
1 | − |V 1

0 | − |V 1
1 |)− ǫ/2|V 1

1 | − 2m3/4 ≥ ǫn/2− 2ǫn/9− 2m3/4 > 0 and thus all such vertices are
also optimally placed on the C1 side of the cut.

Consider now the number of cut edges in a solution, which is given as |V 0
0 ||V 1

1 |+ |V 1
0 ||V 0

1 |+ |E2|, where
by E2 we denote the set of cut edges adjacent to vertices in E2. With high probability the number of vertices
v ∈ V2 such that rv = 0 is at most n/18 + n3/4 and the number of vertices such that rv = 1 is also at most
n/18 + n3/4. Because there are no bad vertices |E2| ≤ (n/18 + n3/4)

(

(1 + ǫ)1/2|V 0
0 |+ 1/2|V 0

1 |+m3/4
)

+

(n/18 + n3/4)
(

1/2|V 0
0 |+ (1 + ǫ)1/2|V 0

1 |+m3/4
)

= (1 + ǫ/2)n/18(|V 0
0 | + |V 0

1 |) + o(n2). In the optimum
solution vertices in V2 contribute (roughly) 2n2/9+ 2ǫn2/9 edges. Thus, the overall gain from vertices in V2

compared to the optimum solution is at most (1 + ǫ/2)n/18(|V 0
0 | + |V 0

1 |) − 2n2/9 − 2ǫn2/9 + o(n2) edges.
This can be written as n/9((1/2 + ǫ/4)(|V 0

0 | + |V 0
1 |)− 2n/9− 2ǫn/9) + o(n2). On the other hand, we have

m2 − |V 0
0 ||V 1

1 | − |V 1
0 ||V 0

1 | = |V 0
0 ||V 0

1 |+ |V 1
0 ||V 1

1 | ≥ (|V 0
0 |+ |V 0

1 | − |V 1
0 | − |V 1

1 |)/2 · |V0| = 2n/9(|V 0
0 |+ |V 0

1 | −
|V 1

0 | − |V 1
1 |). Putting this together, the overall gain compared to the optimum solution is at most:

n/9(((1/2 + ǫ/4)(|V 0
0 |+ |V 0

1 |)− 2n/9− 2ǫn/9)− 2(|V 0
0 |+ |V 0

1 | − |V 1
0 | − |V 1

1 |)) + o(n2)

= n/9(((1/2 + ǫ/4)(4n/9 + (|V 0
0 |+ |V 0

1 | − |V 1
0 | − |V 1

1 |)/2)− 2n/9− 2ǫn/9)− 2(|V 0
0 |+ |V 0

1 | − |V 1
0 | − |V 1

1 |)) + o(n2)

= n/9((ǫ/8− 7/4)(|V 0
0 |+ |V 0

1 | − |V 1
0 | − |V 1

1 |)− ǫn/9) + o(n2) < 0.
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Using the fact that there are no biased vertices the rest of the proof follows. If there are at least n/100
vertices with bias at most ǫn/100 then since the bias of these vertices is so small each of them loses Ω(ǫn)
cut edges compared to the optimum solution which places these vertices on the side 1− rv and thus achieves
2n/9+2ǫn/9 cut edges for each such vertex compared to at most 2n/9+ ǫn/9+ ǫn/100 edges for each vertex
with a small bias. Otherwise there are at least n/9− n/100 vertices with bias at least ǫn/100 and at most
ǫn (recall that there are no biased vertices). Thus, the algorithm has to achieve a non-trivial advantage over
probability 1/2 in guessing the value of rv for vertices in V2 if it places these vertices on the correct side. By
a Chernoff-type sampling lower bound of [CEG95] this implies that for a constant fraction of vertices in V2

it has to sample at least Ω(1/ǫ2) edges, which gives the Ω(n/ǫ2) lower bound, completing the proof.

B Omitted proofs

The key difference between our work and [MS08, Sch12] is that we use sampling in the greedy step of our
algorithms. However, some of their lemmas aren’t affected by this difference. For completeness we present
proofs for the lemmas that we used black-box from [Sch12], which contains an extended version of [MS08].

B.1 Proof of Lemma 2.5

First, we prove the following two lemmas:

Lemma B.1. t
n−tq

t
vi is a martingale.

Lemma B.2. t
n−tAvkq

t is a martingale with step size bounded by 4n
n−t .

Proof of Lemma B.1. We consider two cases:
Case 1: v ∈ St−1. Then we have x̂t−1

vi = xt−1
vi = x̂t

vi = xt
vi. Let’s denote this common value as x. Then

we have t
n−tq

t
vi =

t
n−t

(

x− n
t x
)

= −x. Also, t−1
n−t+1q

t−1
vi = t−1

n−t+1

(

x− n
t−1x

)

= −x, as desired.

Case 2: v /∈ St−1. We have x̂t−1
vi = 1

t−1

∑t−1
j=1 g

j
vi and xt−1

vi = 0. This gives t−1
n−t+1q

t−1
vi = 1

n−t+1

∑t−1
j=1 g

j
vi.

On the other hand we have xt
vi = gtvi with probability 1

n−t+1 and xt
vi = 0 with probability 1− 1

n−t+1 . Thus,

x̂t
vi = gtvi with probability 1

n−t+1 and x̂t
vi =

1
t

∑t
j=1 g

j
vi with probability 1− 1

n−t+1 . This gives us:

E

[

t

n− t
qtvi

]

=
t

n− t





1

n− t+ 1

(

gtvi −
n

t
gtvi

)

+

(

1− 1

n− t+ 1

)

1

t

t
∑

j=1

gjvi



 =
1

n− t+ 1

t−1
∑

j=1

gjvi =
t− 1

n− t+ 1
qt−1
vi .

Proof of Lemma B.2. The martingale property follows from Lemma B.1. The components qtu fall into three
cases:

Case 1: u ∈ St−1. In this case qtu = qt−1
u so Avk,ui(q

t
ui − qt−1

ui ) = 0.

Case 2: u = rt. In this case xt
ui = x̂t

ui = gtui, x
t−1
ui = 0 and x̂t−1

ui = 1
t−1

∑t−1
j=1 g

j
ui. This gives us:

t

n− t
Avk,uiq

t
ui −

t− 1

n− t+ 1
Avk,uiq

t−1
ui =

t

n− t
gtui

(

1− n

t

)

− t− 1

n− t+ 1

1

t− 1

t−1
∑

j=1

gjui. ≥ −1− t− 1

n− t+ 1
= − n

n− t+ 1

This gives the overall contribution of at most 2n
n−t+1 .
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Case 3: u /∈ St. In this case we have xt
ui = xt−1

ui = 0, x̂t
ui =

1
t

∑t
j=1 g

j
ui and x̂t−1

ui = 1
t−1

∑t−1
j=1 g

j
ui. This

gives us:

t

n− t
Avk,uiq

t
ui −

t− 1

n− t+ 1
Avk,uiq

t−1
ui ≤ t

n− t

1

t

t
∑

j=1

gjui −
t− 1

n− t+ 1

1

t− 1

t−1
∑

j=1

gjui

=
gtui
n− t

+
1

(n− t)(n− t+ 1)

t−1
∑

j=1

gjui ≤
n

(n− t)(n− t+ 1)
.

The number of vertices u /∈ St is n− t, hence their overall contribution is at most 2n
n−t+1 .

Putting all together, the step size is bounded by 4n
n−t+1 ≤ 4n

n−t .

We will use the following version of the Azuma-Hoeffding inequality:

Theorem B.3 (Azuma-Hoeffding). Let X0, X1, . . . , Xt be a martingale such that |Xk −Xk−1| ≤ ck for all
k. Then for all λ > 0 it holds that:

Pr[|Xt −X0| ≥ λ] ≤ 2e
− λ2

2
∑t

k=1
c2
k

Now we are ready to complete the proof of Lemma 2.5.

Proof of Lemma 2.5. From Azuma-Hoeffding, using a union bound we have:

Pr

[∣

∣

∣

∣

t

n− t
Aqt − t0

n− t0
Aqt0

∣

∣

∣

∣

1

≥ λ

]

≤ 4ne
− λ2

2
∑t

i=1
16n2

(n−i)2 ≤ 4ne−
λ2

32t ,

where the bound on the step size of the martingale at time t follows from Lemma B.2. Let w = λ(n−t)
t .

Then Pr
[∣

∣

∣Aqt − t0(n−t)
t(n−t0)

Aqt0
∣

∣

∣

1
≥ w

]

≤ 4ne
− w2t

32(n−t)2 . Thus:

E

[∣

∣

∣

∣

Aqt − t0(n− t)

t(n− t0)
Aqt0

∣

∣

∣

∣

1

]

=

∫ ∞

0

Pr

[∣

∣

∣

∣

Aqt − t0(n− t)

t(n− t0)
Aqt0

∣

∣

∣

∣

1

≥ w

]

dw

≤ 4n

∫ ∞

0

e
− w2t

32(n−t)2 = 16n(n− t)

√

π

t
= O

(

n(n− t)√
t

)

In order to bound E[|Aqt|1] note that E[|Aqt|1] ≤ E

[∣

∣

∣Aqt − t0(n−t)
t(n−t0)

Aqt0
∣

∣

∣

1

]

+ E

[∣

∣

∣

t0(n−t)
t(n−t0)

Aqt0
∣

∣

∣

1

]

. Bounding

the second term we have:

E

[∣

∣

∣

∣

t0(n− t)

t(n− t0)
Aqt0

∣

∣

∣

∣

1

]

= O

(

n− t

ǫ2tn

)

E
[∣

∣Aqt0
∣

∣

1

]

.

It suffices to show that E [|Aqt0 |1] = O(ǫn2). Indeed, consider |Aviq
t0 |1 =

∣

∣

∣
Avi

(

x̂t0 − n
t0
xt0
)∣

∣

∣

1
=
∣

∣

∣
Avi

(

x∗ − n
t0
xt0
)∣

∣

∣

1
.

Recall that xt0 is defined as:

xt0
i =

{

x∗
i if i ∈ St0

0, otherwise.

Random variable n
t0
Avix

t0 has expectation Avix
∗, by the Chernoff bound E

[∣

∣

∣Avi

(

x∗ − n
t0
xt0
)∣

∣

∣

1

]

= O(ǫn).
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B.2 Proof of Lemma 3.5

Proof of Lemma 3.5. To simplify presentation we observe that the following proposition (Lemma 2.20 in [Sch12])
can be used black-box here since it doesn’t rely on the specific way the greedy choice is made in the definition
of xt and x̂t and only uses the fact that the variables at every step are chosen randomly together with the
definition of a fictitious assignment.

Proposition B.4 (Adapted from Lemma 2.20 in[Sch12]). For every t and a q-dimensional array A with
|A|∞ ≤ 1 we have:

Pr
[∣

∣A
(

qt, qt, . . . , qt
)∣

∣ ≥ σ + λ
]

≤ e−
λ2

σ2 ,

where σ = O(nq
√

n−t
nt ).

Using Lemma 2.20 from [Sch12] we have for every y ∈ Y :

Pr
[∣

∣

∣A
(

·, qt(y), . . . , qt(y)
)∣

∣

∣ ≥ λ
]

≤ e−
λ2

σ2 .

The set Y has size 2
log k

ǫ2 , so by taking a union bound we have:

Pr

[

max
y∈Y

|A
(

·, qt(y), . . . , qt(y)
)

|1 ≥ λ

]

≤ eO(
log k

ǫ2
)−λ2/σ2

The bound follows by integration over λ. This completes the proof of the first part of the lemma, the second
part is identical.

B.3 Proof of Lemma 3.1

Proof. We use the following analog of Lemma 2.2 for r-CSPs, whose proof can be adapted from [Sch12].

Lemma B.5. (Analogous to Lemma 2.13 in [Sch12], analog of Lemma 2.2) For every t it holds that:

A(x̂t, . . . , x̂t)−A(x̂t−1, . . . , x̂t−1) ≤ 2r+2nr

tr
+ rA(x̂t − x̂t−1, x̂t−1, . . . , x̂t−1).

By Lemma B.5 it suffices to bound E
[

A(x̂t − x̂t−1, x̂t−1, . . . , x̂t−1)
]

. We have:

A(x̂t − x̂t−1, x̂t−1, . . . , x̂t−1) =
nr−1

tr−1
A(x̂t − x̂t−1, xt−1, . . . , xt−1) +A(x̂t − x̂t−1, qt−1, . . . , qt−1),

using linearity of A in each of its arguments and the definition qt−1 = x̂t−1− n
t−1x

t−1. We bound the first term

using Proposition 3.2. If u = rt then x̂t
u−x̂t−1

u = gtu−x̂t−1
u . Hence E

[

A(x̂t
ui − x̂t−1

ui , xt−1. . . . , xt−1)
]

≤ 2ktr−1
√
st

.

Because there are k different values of i we have overall E
[

A(x̂t
u − x̂t−1

u , xt−1. . . . , xt−1)
]

≤ 2k2tr−1
√
st

. If u /∈ St

then we have x̂t− x̂t−1 = 1
t (g

t
u− x̂t−1

u ). For such vertices we have E
[

A(x̂t
u − x̂t−1

u , xt−1, . . . , xt−1)
]

≤ 2k2tr−1
√
st

.

The total number of such vertices is n− t, so overall we have:

E
[

A(x̂t − x̂t−1, xt−1, . . . , xt−1)
]

≤ 2k2tt−1

√
st

+
2(n− t)k2tr−2

√
st

=
2k2ntr−2

√
st

.

Thus, the first term is at most 2k2nr

t
√
st

.
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The second term can be bounded using the same reasoning as in Lemma 2.3. We give a proof for
completeness. Conditioning on the choices of St−1 we have:

E
[

A(x̂t − x̂t−1
u , qt−1, . . . , qt−1)|St−1

]

=
∑

v

E
[

A(x̂t
v − x̂t−1

v , qt−1, . . . , qt−1)|St−1
]

=
∑

v

E[x̂t
v − x̂t−1

v |St−1] ·A(eu, qt−1, . . . , qt−1)

≤
∑

v

|E[x̂t
v − x̂t−1

v ]|1 · |A(eu, qt−1, . . . , qt−1)|1

≤ 2n

t(n− t+ 1)
· |A(·, qt−1, . . . , qt−1)|1,

where the last inequality follows from the analysis given below. For fixed St−1 and u, if u ∈ St−1 then
x̂t
u − x̂t−1

u = 0. Otherwise, as shown in the proof of Lemma 2.2 it holds that
∑

u |x̂t
u − x̂t−1

u | ≤ 2n
t and hence:

E
[

|x̂t
u − x̂t−1

u |1|St−1
]

= E

[ |x̂t − x̂t−1|1
n− t+ 1

|St−1

]

≤ 2n

t(n− t+ 1)
.
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