
New Upper Bounds on the Boolean Circuit Complexity
of Symmetric Functions

E. Demenkova,1, A. Kojevnikovb,1, A. Kulikovb,1,∗, G. Yaroslavtsevc,1

aSt. Petersburg State University
bSteklov Institute of Mathematics at St. Petersburg

cAcademic University

Abstract

In this note, we present improved upper bounds on the circuit complexity of
symmetric Boolean functions. In particular, we describe circuits of size 4.5n +
o(n) for any symmetric function of n variables, as well as circuits of size 3n for
MODn

3 function.

Keywords: Computational complexity, Boolean circuit complexity; Upper
bounds; Symmetric functions; Modular functions

1. Introduction

By Bn we denote the set of all Boolean functions f : {0, 1}n → {0, 1}. A
function f ∈ Bn is called symmetric if its value depends only on the sum of
the input bits. That is, there must exist the vector v ∈ {0, 1}n+1 such that
f(x1, . . . , xn) = vs where s =

∑n
i=1 xi. The set of all symmetric functions

from Bn is denoted by Sn. A typical symmetric function is a modular function
MODn

m,k defined as follows:

MODn
m,r(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ r (mod m) .

A circuit over the basis Ω ⊆ B2 is a directed acyclic graph with nodes of
in-degree 0 or 2. Nodes of in-degree 0 are marked by variables from {x1, . . . , xn}
and are called inputs. Nodes of in-degree 2 are marked by functions from Ω and
are called gates. There are also special output gates. The size of a circuit is its

∗Corresponding author
Email addresses: jack239@gmail.com (E. Demenkov), arist@logic.pdmi.ras.ru

(A. Kojevnikov), kulikov@logic.pdmi.ras.ru (A. Kulikov), grigory@logic.pdmi.ras.ru
(G. Yaroslavtsev)

1Research partially supported by Federal Target Program “Scientific and scientific-
pedagogical personnel of the innovative Russia”, RFBR (grants 08-01-00640 and 09-01-12137),
RAS Program for Fundamental Research, Grant of the President of Russian Federation (MK-
3912.2009.1), and Yandex.

Preprint submitted to Elsevier February 9, 2010



number of gates. For a function f ∈ Bn, by CΩ(f) we denote the minimal size
of a circuit over Ω computing f . The two commonly studied bases are B2 and
U2 = B2 \ {⊕,≡}. In this note, we consider circuits over B2 and denote CB2(f)
by just C(f).

While it is known that the circuit complexity of almost all Boolean functions
from Bn is Ω(2n/n) [1], the best lower bound for an explicit function is 3n−o(n)
[2]. The situation is better for symmetric Boolean functions: any symmetric
function can be computed by circuits of size 5n + o(n) (see Sect. 2) and this is
still the best known upper bound, the best lower bound is 2.5n− c [3]. For the
basis U2, the best known lower bound is 5n− o(n) by Iwama and Morizumi [4],
the best lower bound for symmetric functions is 4n− c due to Zwick [5].

In this note, we present improved circuits of size 4.5n+o(n) for all symmetric
functions. We also show that C(MODn

3 ) ≤ 3n + c and present the sizes of
optimal circuits for MODn

3 for small values of n that were found with the help
of SAT-solvers.

On all the figures showing circuits we use only gates {∧,∨,⊕} as there is no
standard notation for other functions from B2. To draw a gate computing x∧ ȳ,
we draw an ∧-gate with a negation sign on the corresponding incoming edge.

2. Circuits of Size 4.5n + o(n) for All Symmetric Functions

The fact that any f ∈ Sn depends on the sum of input bits only allows to
compute f in the following way:

1. Compute the binary representation (dlog ne bits) of the sum of input bits.
2. Compute the function itself using the binary representation.

Since any g ∈ Bn can be computed by a circuit of size O(2n/n) [6] the second
stage requires O(2log n/ log n) = o(n) gates. Below we first describe the standard
circuit of size 5n for computing the binary representation of the sum of n input
bits and then present an improved circuit of size 4.5n. For simplicity, throughout
this section we assume that n is a power of 2, if n is not, the presented bounds
are increased by O(log n) only.

The main building block of the well-known circuit for computing the binary
representation is the binary Full Adder (FA) shown in Fig. 1(a,b). More pre-
cisely, FA(x, y, z) = (carry, sum), s.t. x + y + z = 2 · carry + sum. Note that
sum = x⊕ y ⊕ z, carry = maj(x, y, z) = xy ⊕ yz ⊕ zx. Thus, two output bits
of FA are the binary representation of the sum of three input bits. It is easy
to verify that FA cannot be implemented by less than five gates. The sum of n
bits can be computed by a circuit containing n FA’s and log n layers as shown
in Fig. 2. Its size is 5n and this is the best known upper bound.

The presented circuit can be easily adapted to compute MODn
2k . For ex-

ample, to compute MODn
4 we need to compute y1 and y2 only. This can be

done by using the n/2 FA’s from the top of the circuit above to compute y1

and then taking the XOR of their carry bits to compute y2. This gives a cir-
cuit of size 5 · n/2 + n/2 = 3n for MODn

4 . In [3], Stockmeyer proved that
C(MODn

4 ) = 2.5n + c. He noticed that FA is an optimal block computing the

2



x y

z carry

sum

FA

x y

z ⊕ ∧

⊕ ∧

∨

carry

sum

x y z

⊕ ⊕

∨ ⊕

u1 u0

(a) (b) (c)

Figure 1: Full Adder (a,b) and Stockmeyer’s block (c).

x1x2 x3x4 x5x6 x7x8 xn

y1

y2

ylog n

FA FA FA FA FA

FA FA

FA

· · ·

· · ·

· · ·

Figure 2: The well-known way of computing the binary representation of the sum of n bits
using 5n gates.

binary representation of three bits, but it is not an optimal block that encodes
the sum of three bits by two bits. Stockmeyer used the block that for three input
bits x, y, z outputs two bits u1, u0 such that x+y + z = 2 · (u1⊕u0) +u0. Thus,
in this case u0 = sum, while u1 = sum⊕ carry. This block can be implemented
using 4 gates, see Fig. 1(c).

Using this idea we construct a circuit of size 4.5n for computing the binary
representation of the sum of n input bits. Fig. 3 shows the main building block
of the construction that we call MDFA (for Modified Double Full Adder). This
block does the same as two FA’s, but for a slightly different encoding of input
and output bits. This allows to use 8 gates instead of 10 for implementing
MDFA. It can be easily shown that for any x1, y1, x2, y2, z ∈ {0, 1},

MDFA(x1, x1 ⊕ y1, x2, x2 ⊕ y2, z) = (carry1, carry1 ⊕ carry2, sum) ,

where sum = x1⊕ y1⊕x2⊕ y2⊕ z, carry1 = maj(x1, y1, z) = x1y1⊕ y1z⊕ zx1,
carry2 = maj(x2, y2, x1 ⊕ y1 ⊕ z) = x2y2 ⊕ x2(x1 ⊕ y1 ⊕ z)⊕ y2(x1 ⊕ y1 ⊕ z).

To compute the binary representation of n input bits one first computes
n/2 XOR’s of variables and then uses n/2 MDFA’s, see Fig. 4. The size of the

3



x1

x2

z

x1 ⊕ y1

x2 ⊕ y2

⊕g1

∨g2 ⊕g3

⊕g4

⊕g5

⊕g6

∧g7

¬

⊕g8

carry1 carry1 ⊕ carry2 sum

z

carry1 ⊕ carry2carry1

MDFA

x1 x1 ⊕ y1 x2 x2 ⊕ y2

sum

x1 y1 x2 y2

sumz

carry1 carry2

FA FA
x1 ⊕ y1 ⊕ z

Figure 3: MDFA as a block and its implementation using 8 gates.

resulting construction is n/2 + 8n/2 = 4.5n. A logarithmic number of gates can
be saved by noticing that the leftmost MDFA at each layer has only four inputs.

x1 x2 x3 x4 x5 x6 x7 x8 xn−1 xn

⊕ ⊕ ⊕ ⊕ ⊕

y1

y2

ylog n

MDFA MDFA MDFA

MDFA

MDFA

· · ·

· · ·

· · ·

Figure 4: A circuit of size 4.5n for computing the binary representation of n bits.

3. Improved Upper Bounds for MOD-functions

The exact circuit complexity (over the basis B2) is known for MODn
2 and

MODn
4 only. For all the remaining MOD-functions we only know the lower

bound 2.5n − c [3] and the upper bound 4.5n + o(n). The circuit presented in
the previous section implies a (4.5−23−k)n+O(k) upper bound for C(MODn

2k)

4



(for k ≥ 2). Indeed, to compute MODn
2k we need to compute y1, y2, . . . , yk.

The first k − 1 y’s are computed by k − 1 layers of MDFA’s. However, at the
(k − 1)-th layer we do not need the gates computing carry1 (i.e., g4 in Fig. 3).
At the k-th layer we just compute the XOR of n/2k carry1 ⊕ carry2 bits from
the (k − 1)-th layer. The overall size is

n

2
+

k−2∑
i=1

8 · n

2i+1
+ 7 · n

2k
+
( n

2k
− 1
)

= (4.5− 23−k)n− 1 .

A circuit computing MODn
3 can be built of inductive blocks shown in Fig. 5.

This block takes as input the value of a remainder r modulo 3 encoded by a pair
of bits (u0, u1) and outputs a pair of bits (u′0, u

′
1) encoding (r+x+y+z) mod 3.

Since the block is implemented by 9 gates the upper bound 3n + c for MODn
3

follows. The residue number encoding is the following:

r =

 0, if (u0, u1) = (0, 0),
1, if (u0, u1) = (0, 1),
2, if u0 = 1.

To help the reader to verify the construction we note that

g3 = ((x⊕ u1)(u0 ⊕ 1))⊕ y ⊕ 1, g6 = (((x⊕ u1)(u0 ⊕ 1))⊕ 1)(x⊕ y ⊕ u0 ⊕ 1).

It can be easily checked that

(r + x + y) mod 3 =

 1, if (g3, g6) = (0, 0),
2, if (g3, g6) = (1, 0),
0, if g6 = 1.

To see this, note that if u0 = 0 (in this case r = u1), then

g3 = x⊕ y ⊕ u1 ⊕ 1, g6 = (x⊕ u1 ⊕ 1)(x⊕ y ⊕ 1),

while if u0 = 1 (in this case r = 2), then

g3 = y ⊕ 1, g6 = x⊕ y.

Finally, it is not difficult to verify that

u′0 = (g3 ⊕ z)(1⊕ g6), u′1 = g6 ⊕ z ⊕ 1

and that (u′0, u
′
1) indeed encode (r + x + y + z) mod 3.

This block was found using SAT-solvers after a long sequence of experiments.
The fact that a circuit computing a MOD-function can be built of blocks of small
constant size makes it possible to find such blocks automatically. We encoded
the fact of existence of a block of size 9 computing the function described above
as a CNF formula and used SAT-solvers to solve such formula, see [7] for details.
The residue number encoding is essential here, as we were not able to find such a

5



block of size 9 for the standard encoding (binary representation). On the other
hand, we also failed to prove that this block is optimal (for this, it is needed to
prove that the corresponding formula is unsatisfiable), so an 8n/3 upper bound
for MODn

3 is not excluded. The exact values of C(MODn
3,k) for n ≤ 5 can be

found in [7]. Modern SAT-solvers were not able to improve upper bounds for
other MODk functions: for k ≥ 5, the corresponding CNF formulas are too
large.

x y zu0u1

⊕g1
¬

∨g2

⊕g3

⊕g4

⊕g5

∧g6

⊕g7

¬

⊕g8
¬

∧g9

¬

u′1u′0

x1

x2

x3

xn−2

xn−1

xn

IB

IB

0 0

...

∨

MODn
3,0

¬

x

y

z

u0 u1

u′0 u′1

IB

Figure 5: An inductive block for MOD3, its implementation using 9 gates, and a circuit for
MODn

3 built of n/3 such blocks.

4. Further Directions

A natural further direction is to improve lower and upper bounds on the cir-
cuit complexity of symmetric Boolean functions. An (apparently) easier problem
is to close one of the following gaps (see [3], [7], [5]):

2.5n− c ≤ CB2(MODn
3 ) ≤ 3n + c, 4n− c ≤ CU2(MODn

4 ) ≤ 5n + c .

Acknowledgments

We would like to thank Edward A. Hirsch and the anonymous referees for
valuable comments.

References

[1] C. E. Shannon, The synthesis of two-terminal switching circuits, Bell System
Technical Journal 28 (1949) 59–98.

6



[2] N. Blum, A Boolean function requiring 3n network size, Theoretical Com-
puter Science 28 (1984) 337–345.

[3] L. J. Stockmeyer, On the combinational complexity of certain symmetric
Boolean functions, Mathematical Systems Theory 10 (1977) 323–336.

[4] K. Iwama, H. Morizumi, An explicit lower bound of 5n − o(n) for Boolean
circuits, in: Proceedings of 27th MFCS, Lecture Notes in Computer Science,
Springer, 2002, pp. 353–364.

[5] U. Zwick, A 4n lower bound on the combinational complexity of certain sym-
metric boolean functions over the basis of unate dyadic Boolean functions,
SIAM Journal on Computing 20 (1991) 499–505.

[6] O. Lupanov, A method of circuit synthesis, Izvestiya VUZov, Radiofizika 1
(1959) 120–140, in Russian.

[7] A. Kojevnikov, A. S. Kulikov, G. Yaroslavtsev, Finding efficient circuits
using SAT-solvers, in: Proceedings of 12th SAT, Vol. 5584 of Lecture Notes
in Computer Science, Springer, 2009, pp. 139–157.

7


