Improved Approximation for the Directed Spanner Problem
 Grigory Yaroslavtsev, Pennsylavania State Univeristy
 http://grigory,us
 ICALP'11, joint work with P. Berman, A. Bhattacharyya, K. Makarychev, S. Paskhodnikova.

Directed Spanners and Their Friends

K-Spanner -- subset of edges, preserving distances up to a factor k. Challenge: Find a sparse spanner.

Our result: $\tilde{O}(\sqrt{n})$-approximation randomized algorithm.

Applications of Spanners

- Efficient routing
- Simulating synchronized protocols in unsynchronized networks
- Parallel, distributed and streaming algorithms for approximating shortest paths
- Algorithms for distance oracles
- Property testing and property reconstruction

Previous Work

- Related work (approximation): [DK99, BGJRW09, BRR10, DK11]
- $\tilde{O}\left(n^{2 / 3}\right)$ Approximation by Dinitz and Krauthgamer, STOC 11 [DK11].
- $2^{\log ^{1-\epsilon}} \mathrm{n}$ Quasi-NP-hardness, [EP00].
- $\Omega\left(n^{1 / 3-\epsilon}\right)$ Integrality gap, [DK11].

Local Graph and Sampling [BGJRW 09, FKN 09]

Local graph for (A, B) is induced by short enough paths.

Sampling: for edges with large local graphs ($\geq \sqrt{n}$ vertices). In/Out-Shortest Path Trees Successful Sampling

Repeated $\tilde{O}(\sqrt{n})$ times, produces $2(n-1) \tilde{O}(\sqrt{n})$ edges.
Handles all thick edges (with $\geq \sqrt{n}$ edges in their local graph) w.h.p.

Antispanners and LP

Antispanner destroys all paths from A to B with stretch at most k . Antispanner

Linear programming relaxation:

$$
\sum_{e \in E} x_{e} \rightarrow \min
$$

Subject to:

$$
\sum_{e \in \in} x_{e} \geq 1
$$

for all minimal antispanners A for all thin edges.

Oracle

Oracle: Randomized rounding with a boosting factor $\tilde{\mathrm{O}}(\sqrt{n})$.

VIOLATED CONSTRAINT: Number bounded by poly(n).
LARGE SPANNER: Probability is $\mathrm{e}^{-\Omega(n \sqrt{n)}}$ by Chernoff bound.
FAIL!: One minimal antispanner fails w. p. $\leq e^{-\sqrt{n} \ln n}$
There are $\leq \sqrt{n}^{\sqrt{n}}=e^{\frac{1}{2} \sqrt{n} \ln n}$ different minimial antispanners.
SMALL SPANNER: Success! (Assuming we've guessed OPT.)

Other Improvements

Randomized rounding + similar analysis = improved approximation:

- $\tilde{O}\left(n^{2 / 3}\right)$ for Directed Steiner Forest (previous $\tilde{O}\left(n^{3 / 4}\right),[$ FKN09] $)$.
- $\tilde{O}\left(n^{2 / 3}\right)$ for unit-length Minimum Cost Spanner for constant k . (previous $\tilde{O}(n)$ for a more general problem, [DK99])
- $\tilde{O}\left(n^{1 / 3}\right)$ for unit-length Undirected 3-Spanner (previous $\tilde{O}(\sqrt{n}),[A D D J S 93])$.
- $\tilde{O}\left(n^{1 / 3}\right)$ for unit-length Directed 3-Spanner (previous $\tilde{O}(\sqrt{n}),[B R R 11])$.

Bibliography

[^0]
[^0]: - [ADDJS93] Althofer, Das, Dobkin, Joseph, Soares. "On Sparse Spanners of Weighted Graphs", Discrete and Computational Geometery, 1993.
 [BGJRW] Bhattacharyya, Grigorescu, Jung, Raskhodnikova, Woodruff, "Transitive-closure Spanners", SODA 2009, [BRR10] Berman, Raskhodnikova, Ruan, "Finding Sparser Directed Spanners", FSTTCS 2010 [DK99] Dodis, Khanna. "Designing networks with bounded pairwise distance", STOC 1999. [DK11] Dinitz, Krauthgamer. "Directed Spanners via Flow-based Linear Programs", STOC 2011. [FKN09] Feldman, Kortsarz, Nutov "Improved approximating algorithms for Directed Steiner Forest", SODA 2009.

