

We next describe the nonprivate version of our search algo-
rithm Targetðk, f Þ. Our motivation in choosing this particular
algorithm is simplicity: it is the most straightforward type of
contact chaining algorithm that ignores privacy entirely, and
simply uses the given SoP to prioritize investigations.
For any fixed SoP f, Target proceeds in k rounds, each cor-

responding to the identification of a new connected component
in the subgraph induced by T . The algorithm must be started
with a seed vertex—a preidentified member of the targeted
population. Each round of the algorithm consists of two steps:

i) Statistic-first search: Given a seed targeted vertex, the algo-
rithm iteratively grows a discovered component of targeted
vertices, by examining, in order of their SoP values (com-
puted with respect to the set S of individuals already identi-
fied as being members of the targeted population), the ver-
tices that neighbor the previously discovered targeted vertices.

This continues until every neighbor of the discovered mem-
bers of the targeted population has been examined, and all of
them have been found to be members of the protected pop-
ulation. We note that this procedure discovers every member
of the targeted population that is part of the same connected
component as the seed vertex, in the subgraph induced by
only the members of the targeted population.

ii) Search for a new component: Following the completion of
statistic-first search, the algorithm must find a new vertex in
the targeted population to serve as an initial vertex to begin a
new round of statistic-first search. To do this, the algorithm
computes the value of the SoP for all vertices whose status bit
has not already been examined, using as the input set S the
set of already discovered members of the targeted popula-
tion. It then sorts all of the vertices in decreasing order of
their SoP value, and begins examining their status bits in this
order. The first vertex that is found to be a member of the

Fig. 1. Visual comparison of the nonprivate algorithm Target (Left) and the private algorithm PTarget (Right) on a small portion of the IMDB network (see
Experimental Evaluation for more details). For each algorithm, blue indicates protected vertices that have been examined, red indicates targets that have
been examined, and gray vertices have not been examined yet. Both algorithms begin with the same seed target vertex, and by directed statistic-first search
discover a subnetwork of targeted individuals (central red edges). As a consequence, many protected vertices are discovered and examined as well. Due to the
added noise, PTarget explores the network in a more diffuse fashion, which in this case permits it to find an additional subnetwork of targets toward the right
side of the network. The primary purpose of the noise, however, is for the privacy of protected vertices.

Fig. 2. Performance for the case in which there is a dominant component in the targeted subpopulation. In Left, we show the number of targeted vertices
found as a function of the budget used for both the (deterministic) nonprivate algorithm Target (blue), and for several representative runs of the randomized
private algorithm PTarget (red). Colored circles indicate points at which the corresponding algorithm has first discovered a new targeted component. In Right,
we show average performance over 200 trials for the private algorithm with 1-SD error bars. We also show the private algorithm risk multiplier with error
bars. In this regime, after a brief initial flurry of small component discovery, both algorithms find the dominant component, so the private performance
closely tracks nonprivate, and the private algorithm’s risk multiplier quickly levels off at around only 1.17.

916 | www.pnas.org/cgi/doi/10.1073/pnas.1510612113 Kearns et al.

targeted population is then used as the seed vertex in the next
round. In the SI Appendix, we present a slight variant of this
procedure that instead of running for a fixed number of rounds,
allows the search algorithm to halt if it is unable to find any new
targeted vertices after some number of examinations.

The algorithm outputs discovered targeted individuals as they are
found, and so its output can be viewed as being an ordered list of
individuals who are confirmed to be from the targeted population.
The private version of the targeting algorithm PTargetðk, f , «Þ,

is a simple variant of the nonprivate version. The statistic-first
search stage remains unchanged, and only the search for a new
component is modified via randomization. In the private variant,
when the algorithm computes the value of the SoP f on each
unexamined vertex, it then perturbs each of these values in-
dependently with noise sampled from the Laplace distribution
Lapð△ðf Þ=«Þ, where e is a parameter. [We use LapðbÞ to denote
the Laplace distribution centered at 0 with probability density
function: PrðxÞ= ð1=2bÞexpð−jxj=bÞ]. Finally, it examines the ver-
tices in sorted order of their perturbed SoP values.
We prove the following theorem, deferring details of the proof

and the algorithm to the SI Appendix:
Theorem 1. Given any k≥ 1 and «> 0 and a fixed SoP f, the al-

gorithm PTargetðk,   f , «Þ recovers k connected components of the sub-
graph induced by the targeted vertices and satisfies ððk− 1Þ · «Þ-protected
differential privacy.
There are two important things to note about this theorem.

First, we obtain a privacy guarantee despite the fact that the
statistic-first search portion of our algorithm is not randomized—
only the search for new components employs randomness. In-
tuitively, the reason that statistic-first search can remain un-
modified and deterministic is that as long as we remain with a
connected component of targeted vertices, we will eventually
output only those vertices, and thus we are not compromising
the privacy of protected vertices. It is only when we search for a
new targeted component via protected vertices and the SoP
that we must randomize—for instance to provide privacy to
protected “bridge” vertices between targeted components. See
the SI Appendix for the detailed technical argument.
Second, the privacy cost of the algorithm grows only with k,

the number of disjoint connected components of targeted indi-
viduals (disjoint in the subgraph defined on targeted individuals),
and not with the total number of individuals examined, or even
the total number of targeted individuals identified. Hence, the
privacy cost can be very small on graphs in which the targeted
individuals lie only in a small number of connected components
or “cells.” Both of these features are unusual compared with
typical guarantees that one can obtain under the standard notion
of differential privacy.

Because PTarget adds randomness for privacy, it results in ex-
amining a different set of vertices compared with Target. Fig. 1
provides a sample visualization of the contrasting behavior of the
two algorithms. Although theorems comparing the utility of Target
and PTarget are possible, they require assumptions ensuring that
the chosen SoP is sufficiently informative, in the sense of sepa-
rating the targeted from the protected by a wide enough margin.
In particular, one needs to rule out cases in which all unexplored
targeted vertices are deemed closer to the current set than all
protected vertices, but only by an infinitesimal amount, in which
case the noise added by PTarget eradicates all signal. In general
such scenarios are unrealistic, so instead of comparing utility
theoretically, we now provide an extensive empirical comparison.

Experimental Evaluation
In this section we empirically demonstrate the utility of our
private algorithm PTarget by comparing its performance to its
nonprivate counterpart Target. (No institutional approval was
required for the experiments described.) We report on compu-
tational experiments performed on real social network data
drawn from two sources—the paper coauthorship network of the
Digital Bibliography and Library Project (DBLP) (dblp.uni-trier.
de/xml/), and the coappearance network of film actors of the
Internet Movie Database (IMDB) (www3.ul.ie/gd2005/dataset.
html), whose macroscopic properties are described in Table 1.
These data sources provide us with naturally occurring networks,

but not a targeted subpopulation. Although one could attempt to
use communities within each network (e.g., all coauthors within a
particular scientific subtopic), our goal was to perform large-scale
experiments in which the component structure of targeted vertices
(which we shall see is the primary determinant of performance)
could be more precisely controlled. We thus used a simple para-
metric stochastic diffusion process (described in the SI Appendix)
to generate the targeted subpopulation in each network. We then
evaluate our private search algorithm PTarget on these networks,
and compare its performance to the nonprivate variant Target. For
brevity we shall describe our results only for the IMDB network;
results for the DBLP network are quite similar.
In our experiments, we fix a particular SoP between v and S: the

size of the union, across all w in S, of the common neighbors of v
and w. Here S is the subset of vertices representing the already
discovered members of the targeted population. This SoP has

Fig. 3. Same format as in Fig. 2, but now in a case where the component sizes are more evenly distributed, but still relatively large. The performance of both
algorithms is hampered by longer time spent investigating nontargeted vertices (note the smaller scale of the y axis compared with Fig. 2). Targeted
component discovery is now more diffuse. The private algorithm remains competitive but lags slightly, and as per Theorem 1 the risk multiplier grows (but
remains modest) as more targeted components are discovered.

Table 1. Social network datasets used in the experiments

Network No. vertices No. edges Edge relation

DBLP 956,043 3,738,044 Scientific paper coauthorship
IMDB 235,710 4,587,715 Movie coappearance

Kearns et al. PNAS | January 26, 2016 | vol. 113 | no. 4 | 917

CO
M
PU

TE
R
SC

IE
N
CE

S
SO

CI
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510612113/-/DCSupplemental/pnas.1510612113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510612113/-/DCSupplemental/pnas.1510612113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510612113/-/DCSupplemental/pnas.1510612113.sapp.pdf
http://dblp.uni-trier.de/xml/
http://dblp.uni-trier.de/xml/
http://www3.ul.ie/gd2005/dataset.html
http://www3.ul.ie/gd2005/dataset.html
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510612113/-/DCSupplemental/pnas.1510612113.sapp.pdf

sensitivity 1, and so can be used in our algorithm while adding only
a small amount of noise. In particular, the private algorithm
PTarget adds noise sampled from the Laplace distribution Lapð20Þ
to the SoP when performing new component search. By Theorem
1, such an instantiation of PTarget guarantees ððk− 1Þ=20Þ-
protected differential privacy if it finds k targeted components.
The main trade-off we explore is the number of members of the

targeted population that are discovered by the algorithms (the y axis
in the ensuing plots), as a function of the budget, or number of status
bits that have been investigated so far (the x axis in the ensuing plots).
In each plot, the parameters of the diffusion model described above
were fixed and used to stochastically generate targeted subpopula-
tions of the fixed networks given by our social network data. By
varying these parameters, we can investigate performance as a
function of the underlying component structure of the targeted sub-
network. As we shall see, in terms of relative performance, there are
effectively three different regimes of the diffusion model (i.e., tar-
geted subpopulation) parameter space. In all of them PTarget com-
pares favorably with Target, but to different extents and for different
reasons that we now discuss. We also plot the growth of the risk
multiplier for PTarget, which remains less than 2 in all three regimes.
On each plot, there is a single blue curve showing the per-

formance of the (deterministic) algorithm Target, and multiple
red curves showing the performance across 200 runs of our
(randomized) algorithm PTarget.
The first regime (Fig. 2) occurs when the largest connected

component of the targeted subnetwork is much larger than all of the
other components. In this regime, if both algorithms begin at a seed
vertex inside the largest component, there is effectively no differ-
ence in performance, as both algorithms remain inside this com-
ponent for the duration of their budget and find identical sets of
targeted individuals. More generally, if the algorithms begin at a
seed outside the largest component, relative performance is a race
to find this component; the private algorithm lags slightly due to the
added noise, but is generally quite competitive; see Fig. 2 for details.

The second regime (Fig. 3) occurs when the component sizes
are more evenly distributed, but there remain a few significantly
larger components. In this setting both algorithms spend more of
their budget outside the targeted subpopulation “searching” for
these components. Here the performance of the private algo-
rithm lags more significantly—because both algorithms behave
the same when inside of a component, the smaller the compo-
nents are, the more detrimental the noise is to the private al-
gorithm (though again we see particular runs in which the
randomness of the private algorithm permits it to actually out-
perform the nonprivate).
The third regime (Fig. 4) occurs when all of the targeted

components are small, and thus both algorithms suffer accord-
ingly, discovering only a few targeted individuals; but again the
private algorithm compares favorably with the nonprivate, find-
ing only a few less targeted vertices.

Conclusion
We view the work presented here as a proof of concept: despite
the fact that using network analysis to identify members of a
targeted population is intrinsically contrary to the privacy of the
targeted individuals, we have shown that there is no inherent
reason why informational privacy guarantees cannot be given to
individuals who are not members of the targeted population, and
that these privacy guarantees need not severely harm our ability
to find targeted individuals. Our work is of course not a complete
solution to the practical problem, which can differ from our simple
model in many ways. Here we highlight just one interesting mod-
eling question for future work: Is it possible to give rigorous privacy
guarantees to members of the protected population when mem-
bership in the targeted population is defined as a function of the
individuals’ private data? In our model, we avoid this question by
endowing the algorithm with a costly “investigation” operation,
which we assume can infallibly determine an individual’s targeted
status—but it would be interesting to extend our style of analysis to
situations in which this kind of investigation is not available.

1. Greenwald G (June 6, 2013) NSA collecting phone records of millions of Verizon

customers daily. The Guardian. Available at www.theguardian.com/world/2013/jun/

06/nsa-phone-records-verizon-court-order.
2. National Research Council (2015) Bulk Collection of Signals Intelligence: Technical

Options (The National Academies Press, Washington, DC).
3. Allen J (October 25, 2014) U.S. nurse quarantined over Ebola calls treatment “frenzy

of disorganization.” Reuters. Available at www.reuters.com/article/health-ebola-usa-

obama-idUSL6N0SK0IN20141026.
4. Dwork C, McSherry F, Nissim K, Smith A (2006) Calibrating noise to sensitivity in private

data analysis. Proceedings of Third Theory of Cryptography Conference (Springer, New

York), pp. 265–284.
5. Daniel J (2006) Solove. A taxonomy of privacy. Univ Pa Law Rev 154(3):477–564.
6. Dwork C, McSherry FD (2010) Selective privacy guarantees. US Patent 7,818,335.
7. He X, Machanavajjhala A, Ding B (2014) Blowfish privacy: Tuning privacy-utility trade-

offs using policies. Proceedings of the 2014 ACM SIGMOD International Conference

on Management of Data (ACM, New York), pp 1447–1458.

8. Hay M, Li C, Miklau G, Jensen D (2009) Accurate estimation of the degree distribution of
private networks. Ninth IEEE International Conference on Data Mining (IEEE, New York),
pp 169–178.

9. Kasiviswanathan SP, Nissim K, Raskhodnikova S, Smith A (2013) Analyzing graphs with node
differential privacy. Theory of Cryptography Conference (Springer, New York), pp 457–476.

10. Blocki J, Blum A, Datta A, Sheffet O (2013) Differentially private data analysis of social
networks via restricted sensitivity. Proceedings of the 4th Conference on Innovations
in Theoretical Computer Science (ACM, New York), pp 87–96.

11. Dwork C, Roth A (2014) The algorithmic foundations of differential privacy. Found
Trends Theor Comput Sci 9(3-4):211–407.

12. Bassily R, Groce A, Katz J, Smith A (2013) Coupled-worlds privacy: Exploiting adver-
sarial uncertainty in statistical data privacy. IEEE 54th Annual Symposium on Foun-
dations of Computer Science (IEEE, New York), pp 439–448.

13. Kearns M, Pai M M, Roth A, Ullman, J (2014) Mechanism design in large games: In-
centives and privacy. Am Econ Rev 104(5):431–435.

14. Alaggan M, Gambs S, Kermarrec A-M (2015) Heterogeneous differential privacy. arXiv:
1504.06998.

Fig. 4. A case with a highly fragmented targeted subpopulation. Both algorithms now spend most of their budget investigating nontargeted vertices and
suffer accordingly.

918 | www.pnas.org/cgi/doi/10.1073/pnas.1510612113 Kearns et al.

http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
http://www.reuters.com/article/health-ebola-usa-obama-idUSL6N0SK0IN20141026
http://www.reuters.com/article/health-ebola-usa-obama-idUSL6N0SK0IN20141026
www.pnas.org/cgi/doi/10.1073/pnas.1510612113

Supporting Information for “Privacy for the Protected (Only)”

Michael Kearns Aaron Roth Zhiwei Steven Wu Grigory Yaroslavtsev

October 13, 2015

1 Model & Preliminaries

We study graph search algorithms which operate on graphs G = (V,E) defined over a vertex set
V and edge set E ⊆ V × V . The vertex set V partitioned into two fixed subsets V = T ∪ P,
where T represents the targeted subpopulation, and P represents the protected subpopulation. The
algorithms we consider are initially given a single seed vertex s ∈ T (or several such vertices), and
the goal of the algorithm will be to find as many other members of the targeted subpopulation T
as possible.

The algorithm cannot directly observe which subpopulation a particular vertex v ∈ V belongs
to since otherwise the problem is trivial, but it has the ability to make a query on a vertex v ∈ V to
determine its subpopulation membership. We model this ability formally by giving the algorithm
access to an identity oracle I : V → {0, 1}, defined such that I(v) = 1 if and only if v ∈ T . A call to
this oracle is the abstraction we use to represent the possibly costly operation (instantiated in our
example applications by e.g. surveillance, or medical tests) which determines whether a particular
member of the population is protected or not. Because we view these operations as expensive,
we want our algorithm to operate by making as few calls to this oracle as possible. Hence, the
algorithm must use the network data represented by the graph G to guide its search for which
vertices to query. This creates a source of privacy tension since the edges in this network are what
we view as private information.

Thus our goal is to give algorithms which discover members of the targeted population using
the edges in the network to guide their search. We wish to protect the privacy of the protected
individuals: we do not want the outcome of the search to reveal too much about the edge set
incident to any protected individual. However, we want to exploit the edges incident to targeted
individuals in ways that will not necessarily be privacy preserving. The notion of privacy that
we employ is a variant of differential privacy. To formally define differential privacy, we consider
databases which are multisets of elements from an abstract domain X , representing the set of all
possible data records. (In our case, the data domain X can be identified with subsets of the vertex
set V – it represents the set of all possible neighbors that a vertex might be adjacent to in the
network).

Definition 1 (Differential Privacy [2]). Two databases D,D′ ⊂ X are neighbors if they differ in
at most one data record: that is, if there exists an index i such that for all indices j 6= i, Dj = D′j.
An algorithm A : X n → R satisfies (ε, δ)-differential privacy if for every set of outcomes S ⊆ R
and for all neighboring databases D,D′ ∈ X n, the following holds:

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S] + δ.

1

If δ = 0, we say A satisfies ε-differential privacy.

This notion of privacy is very strong — indeed, it is too strong for our purposes. It provides
a symmetric guarantee that does not allow the output of the algorithm to change substantially as
a function of any person’s data changing. However, in our case, in order to achieve good utility
guarantees we want our algorithm to be allowed to be highly sensitive in the data of the targeted
individuals. We will modify this definition in the following way: first, we will view the partition of
the vertices into protected and targeted individuals as a fixed, immutable characteristic, separate
from the private data of the individuals, and view the private data of individual v as being the
edges incident on v,1

Dv(G) = {(u, v) ∈ E | u ∈ V }. (1)

We then redefine the neighboring relation in the setting of networks: for any protected and targeted
subpopulations P and T , two networks G and G′ are neighboring if G′ can be obtained by only
changing a single protected node’s edges in G. Specifically, G = (V,E) and G′ = (V,E′) are
neighbors with respect to a partition V = P ∪ T if there exists a v ∈ P such that for all v′ 6= v:
Dv′(G) ∪ {(v, v′)} = Dv′(G

′) ∪ {(v, v′)}. Note that for neighboring graphs G and G′, the edge sets
in the subgraph induced on the vertices T must also be the same.

In the following, we denote the set of all possible networks over the vertices V by G, and denote
the set of all possible outcomes of an algorithm by O.

Definition 2 (Protected Differential Privacy). An algorithm A : G → O satisfies (ε, δ)-protected
differential privacy if for every partition of n vertices V into sets P and T , for every pair of graphs
G,G′ that are neighbors with respect to the partition (P, T), and for any set of outcomes S ⊆ O

Pr[A(G) ∈ S] ≤ exp(ε) Pr[A(G′) ∈ S] + δ.

If δ = 0, we say A satisfies ε-protected differential privacy.

When the partition (P, T) is clear from the context we will omit it to simplify the presentation.
In the context of graph search algorithms that we consider here the algorithm A is given an oracle
I which encodes the partition V into P and T . We denote such algorithms as AI . The output O
in the above definition of protected differential privacy in the context of graph search algorithms is
an ordered list of targeted individuals.

Remark 1. A careful reader may already have noticed that there is a trivial graph search algorithm
that achieves 0-protected differential privacy while outputting the entire set of targeted individuals T
— it simply queries I(v) for every v ∈ V , and outputs every v such that I(v) = 1. This algorithm
satisfies perfect (i.e. with ε = 0) protected differential-privacy because it operates independently of
the private network G. The problem with this approach is that it requires querying the status of
every vertex v ∈ V , which can be impractical both because of cost (the query might itself require
a substantial investment of resources) and because of societal norms (it may not be defensible to
subject every individual in a population to background checks). Hence, here we aim to design
algorithms that use the graph data G to effectively guide the search for which vertices v to query.
This is what leads to the tension with privacy, and our goal is to effectively trade off the privacy
parameter ε with the number of queries to I that the algorithm must make.

1We do not provide any privacy guarantees for what we can reveal about v’s membership in T . This is an inherent
characteristic of the problem that we consider since the goal of our algorithms is to identify the members of T .

2

One way to interpret protected differential privacy is differential privacy applied to an appropri-
ately defined input. Let the algorithm have two inputs: the set of edges incident to the protected
vertices in P, and the edges in E(T) = {(u, v) | u, v ∈ T } (i.e. all of the other edges)2. In this
view, protected differential privacy only requires the algorithm to be differentially private in its
first argument, and not in its second. This view, formalized in the following lemma, will allow us
to apply some of the basic tools of differential privacy in order to achieve protected differential
privacy.

Lemma 1. Given a graph G = (V,E) and a partition its edges into E2 = E(T) and E1 =
E \E2 an algorithm AI(G) := AI(E1, E2) satisfies (ε, δ)-protected differential privacy if it is (ε, δ)-
differentially private in its first argument.

1.1 Basic Privacy Tools

We include some basic privacy tools here to facilitate the discussion of our algorithm for the rest
of the paper. For simplicity, we will state these tools in the generic setting, in which we view
algorithms to be arbitrary randomized mappings from X n to R.

A basic, but extremely useful result is that differential privacy is robust to arbitrary post-
processing :

Lemma 2 (Post-Processing [2]). For any algorithm A : X n → R and any (possibly randomized)
function p : R → R′, if A(·) is (ε, δ)-differentially private then p(A(·)) is (ε, δ)-differentially private.

Another extremely useful property of differential privacy is that it is compositional — given two
differentially private algorithms, their combination remains differentially private, with parameters
that degrade gracefully. In fact, there are two such composition theorems. The first, simpler one
lets us simply add the privacy parameters when we compose mechanisms:

Lemma 3 (Basic Composition [2]). If M1 : X n → R1 is (ε1, δ1)-differentially private, and M2 :
X n × R1 → R2 is (ε2, δ2)-differentially private in its first argument, then M : X n → R2 is
(ε1 + ε2, δ1 + δ2) differentially private where

M(D) = M2(D,M1(D)).

We can of course apply the composition theorem repeatedly, and so the composition of m mech-
anisms, each of which is ε-differentially private is mε-differentially private. The second composition
theorem, due to [3], allows us to compose m mechanisms while letting the ε parameter degrade
sublinearly in m (at a rate of only O(

√
m)), at the cost of a small increase in the δ parameter.

Lemma 4 (Advanced Composition [3]). Fix δ > 0. The class of (ε′, δ′)-differentially private
mechanisms satisfies (ε,mδ′ + δ)-differential privacy under m-fold adaptive composition 3 for

ε′ =
ε√

8m log(1/δ)
.

2It is crucial here that such a simplification can only be made for the purposes of the analysis only. Since all our
algorithms are only given access to a membership oracle I there is no way for them to explicitly construct these two
inputs without incurring a cost associated with oracle queries.

3See [3] for a formal exposition of adaptive composition.

3

When designing private algorithms, we will work extensively with function sensitivity for func-
tions defined on data sets — which informally, measures how much the function value can change
when a single data entry in the input data set is altered.

Definition 3 (Sensitivity). The sensitivity ∆f of a function f : X n → R is defined as

∆(f) = max
D∼D′

|f(D)− f(D′)|,

where D ∼ D′ indicates that D and D′ are neighboring databases.

We will give different notions of sensitivity in the next section, which are more appropriate for
some tasks in our setting. Finally, we introduce two simple algorithms that provide differential
privacy by adding noise proportional to the sensitivity of a function.

For any function f : X n → R, the Laplace mechanism applied to function f is the algorithm
which on input D releases f̂(D) := f(D) + ν, where ν ∼ Lap(∆(f)/ε) and Lap(b) denotes the
Laplace distribution centered at 0 with probability density function

1

2b
exp

(
−|x|
b

)
.

Lemma 5 ([2]). The Laplace mechanism is ε-differentially private.

Another simple algorithm, useful for answering non-numeric queries, is the Report Noisy Max
mechanism: given a database D ∈ X n and a collection of k functions f1, f2, . . . , fk each with
sensitivity at most γ, Report Noisy Max performs the following computation:

• Compute the noisy estimate of each function evaluated on D: f̂i := fi(D) + ν where ν ∼
Lap(γ/ε);

• Output the index i∗ = arg maxi f̂i, and also the noisy value f̂i∗ .

Lemma 6 ([1]). The Report Noisy Max mechanism is 2ε-differentially private.

2 Statistics of Proximity (SoP)

Our family of graph search algorithms will rely on various network-centric statistics of proximity
(SoP) that ascribe a numerical measure of proximity of an individual vertex v based on its position
in the network relative to a set S of vertices from the targeted population (which will in our usage
always be the set of targeted individuals discovered so far by the search algorithm). Specifically, a
statistic of proximity is a function f that maps a network G, a node v, and a set of nodes S ⊆ T to
a real number. Since the value f(G, v, S) can reveal information about the links in the network, we
will often need to perturb the values of these statistics with noise, calibrated with scale proportional
to the targeted sensitivity — the maximum change in any targeted node’s SoP relative to any set
S when a protected node’s adjacency list is changed.

Definition 4 (Targeted Sensitivity). Let f : G × V × 2T → R be a statistic of proximity. The
targeted sensitivity of f is

∆(f) = max
G∼G′,t∈T ,S⊆T

∣∣f(G, t, S)− f(G′, t, S)
∣∣ ,

where G ∼ G′ indicates that G and G′ are neighboring graphs in G relative to a fixed partition of
V into P and T .

4

Note that when computing the targeted sensitivity we are not concerned with the effect that a
change in the edges incident on vertices in T has on the statistic, nor on the effect of any change
on the statistic computed on vertices v ∈ P.

Another quantity of interest is impact cardinality — the maximum number of nodes whose
SoP’s can change as the result of a change to the adjacency list of a single node v ∈ P:

Definition 5 (Impact Cardinality). Let f : G×V ×2T → R be a statistic of proximity. The impact
cardinality of f is

IC(f) = max
G∼G′,S⊆T

∣∣{v ∈ V | f(G, v, S) 6= f(G′, v, S)}
∣∣ .

We include some examples of candidate SoPs and their sensitivities. A desirable property for
good statistics is that they should have low sensitivity (relative to the scale of the statistic) and
small impact cardinality (relative to the target number of queries to the identity oracle), which
will allow us to achieve protected differential privacy by adding only small amounts of noise to the
various parts of our computations.

• Flowk(G, v, S): the value of the maximum flow that can be routed between node v and the
nodes in S using only paths of length at most k;

• Pathk(G, v, S): the number of paths from v to nodes in S with length at most k;

• Triangle(G, v, S) = |{{a, b} ⊆ S | a, b, v forms a triangle in G}|, the number of triangles formed
by the vertex v in G;

• CN(G, v, S) = |{u | (v, u) ∈ E and (u, v′) ∈ E for some v′ ∈ S}|, the number of common neigh-
bors v has with vertices in S.

In graphs with maximum degree d, the sensitivity of these SoPs are as follows:

• ∆(Flowk) ≤ d since a vertex of degree d can only affect the size of the flow by at most d.

• ∆ (Pathk) ≤ (k− 1)dk−1 since the total number of paths from v to S on which a vertex u ∈ P
might lie is at most

∑k−1
j=1 d

j−1dk−j = (k − 1)dk−1. Here we used the index j to denote the
index of u along the path starting from v together with the fact that the total number of
different paths of length ` from u is at most d`.

• ∆ (Triangle) ≤ d since each triangle is associated with an edge and the total number of edges
affected is at most d.

• ∆ (CN) ≤ 1 since a single vertex can change the count of common neighbors by at most 1.

Note that Path1(G, v, S), which simply counts the number of edges between v and S ⊆ T actually
has targeted sensitivity zero. This is because, since S ⊆ T , if v ∈ T is also a member of the
targeted population, then the statistic is a function only of E(T), the edge set of the subgraph
defined over the targeted sub-population T . Since E(T) is identical on all neighboring graphs, and
because targeted sensitivity only measures the sensitivity of the SoP evaluated on targeted nodes
to changes in protected nodes, we get zero sensitivity. This will be important to our analysis.

5

3 SoP Based Targeting Algorithms

Before we present the full algorithm, we will first present some useful subroutines together with
analysis of their privacy properties.

3.1 Statistic-First Search

First, we introduce statistic-first search (SFS), a search algorithm that explores the entire targeted
connected component given a seed targeted node. It is a search strategy that only inspects the
neighbors of verified targeted nodes. The formal description is presented in Algorithm 1.

Algorithm 1 SFS(G, t)

Input: known targeted t in a network G
Initialize:

T̃ = {t} I = {t} N = neighbors of t

while N \ I 6= ∅
Let

v′ = argmax
x∈N\I

Path1(G, x, T̃)

Query I(v′) to determine v′’s targeted status.
I = I ∪ {v′}
if I(v′) = 1 then T̃ = T̃ ∪ {v′} and N = neighbors of T̃

Output: list T̃

We now establish the simple but remarkable privacy guarantee of SFS — the algorithm can
often identify a targeted connected component free of privacy cost.

Lemma 7. The graph search algorithm SFS satisfies 0-protected differential privacy.

Proof. Let G and G′ be two neighboring networks in G with respect to the same partition (P, T).
We know that both networks have the same set of targeted nodes T and targeted links E(T). Since
we know that ∆(Path1) = 0, and SFS only branches on the evaluations of f on nodes v ∈ T , the
behavior of SFS depends only on T and E(T), and hence SFS(G, v, f) and SFS(G′, v, f) always
produce the same output.

3.2 Private Search for Targeted Component

With SFS, we can start with a seed node v ∈ T , and at no additional privacy cost, find the entire
connected component T ⊆ T in the subgraph defined on vertices in T that v belongs to. This is
a useful subroutine in a graph search algorithm: however, once we have exhausted our seed node’s
connected component T , we need a way to search for a new seed node v′ that is part of a new
connected component. This is what our subroutine SearchCom does:

1. Given a list of already identified members of the targeted subpopulation T̃ ⊆ T and a SoP,
we compute a noisy SoP value for each node f̂(v);

6

2. we sort the nodes in decreasing order of their noisy SoP value, and query each vertex v in
this order to determine whether v ∈ T or v ∈ P until we find a node such that v ∈ T .

3. If we query K nodes without having found any members of the targeted sub-population, we
halt the search. The stopping condition needs to be checked privately, so K is in fact a
randomly perturbed value.

We include a formal description of SearchCom in Algorithm 2.

Algorithm 2 SearchCom(G, T̃ , I, f, ε,K)

Input: identified members of the targeted population T̃ ⊆ T in a network G, the set of investi-
gated nodes I, SoP f , privacy parameter ε, and stopping threshold K
Initialize:

Set noisy stopping threshold K̂ = K + ν where ν ∼ Lap(2 IC(f)/ε) and count = 0

for each v ∈ V \ I:
let f̂(v) = f(G, v, T̃) + ζv where ζv ∼ Lap(4∆(f)/ε)

while (V \ I) 6= ∅ and count≤ K̂
Let

v′ = argmax
x∈V \I

f̂(v)

Query I(v′) to determine if v′ ∈ T .
Let I = I ∪ {v′} and count = count +1
if I(v′) = 1 then return {v′}

return ∅

Lemma 8. The targeting algorithm SearchCom instantiated with privacy parameter ε satisfies ε-
protected differential privacy.

Proof. Let G and G′ be neighboring networks in G. First suppose that T̃ = T . In this case,
SearchCom will output ∅ with probability 1 on both inputs G and G′, and hence satisfy 0-protected
differential privacy. Hence, for the remainder of the argument, we can assume that there exists a
vertex v ∈ T \ T̃ .

In this case, the algorithm can equivalently be viewed as the following 2-step procedure:

1. Use the Report Noisy Max algorithm to output the index of the targeted node t which
maximizes f̂(t) together with the perturbed value f̂(t);

2. Let b be the number of nodes i ∈ P such that f̂(i) ≥ f̂(t). If b − ν ≤ K, output node t.
Otherwise output ∅.

When the input to the algorithm G = (V,E) is viewed as the pair of edge sets (E \E(T), E(T)),
we show below that each of these two steps satisfies ε/2-differential privacy with respect to its first
argument. By the basic composition theorem Lemma 3 and Lemma 1 the algorithm SearchCom
satisfies ε-protected differential privacy.

7

The first step is an instantiation of the Report Noisy Max algorithm with privacy parameter
ε/2, so it is ε/2-differentially private by Lemma 6.

The second step is post-processing of b̂ = b − ν. We just need to show that releasing b̂ is ε/2
differentially private, and the result will follow by the post processing lemma: Lemma 2. For the
following analysis, we will fix the (arbitrary) values of {ζv} and compute probabilities as a function
of the randomness of ν.

Since the SoP f has impact cardinality IC(f), we know that there are at most IC(f) many
nodes v such that f(G, v, T̃) 6= f(G′, v, T̃). It follows that∣∣∣{v | f(G, v, T̃) + ζv 6= f(G′, v, T̃) + ζv}

∣∣∣ ≤ IC(f)

Let b(G) and b(G′) denote the number of nodes i ∈ P with f̂(v) ≥ f̂(t) in G and G′ respectively.
Then we know that,

|b(G)− b(G′)| ≤ IC(f).

Since we are releasing b̂ by adding noise ν sampled from the Laplace distribution Lap(2 IC(f)/ε),
b̂ is ε/2-differentially private from the property of Laplace mechanism Lemma 5.

3.3 The Full Algorithm: Putting the Pieces Together

Our graph search algorithm alternates between two phases. In the first phase, the algorithm starts
with a seed node v ∈ T , and uses SFS to find every other vertex v′ ∈ T that is part of the same
connected component as v in the subgraph defined on T . After this targeted component has been
fully identified, the second phase begins. In the second phase, the algorithm uses SearchCom to
search for a new vertex v ∈ T that will serve as a seed node for the next iteration of SFS. Once
such a seed node has been found, the algorithm reverts to phase 1, and this continues for a specified
number of iterations. The formal description of the algorithm in presented in Algorithm 3.

Algorithm 3 Private Search Algorithm: PTarget(G, s, f, k,N, ε)

Input: A network G, a seed node s ∈ T , a SoP f for SearchCom, a target number of components
k, a stopping threshold N for SearchCom, and privacy parameter ε
Initialize: Use set I to keep track of the set of investigated nodes. Initially I = {s}.
Let list T̃ = SFS(G, s)
For k − 1 rounds:

let a = SearchCom(G, T̃ , I, f, ε,N)
if a = ∅

Output T̃
else

let T̃ = T̃ ∪ SFS(G, a)
Output T̃

We now establish the following privacy guarantee of Algorithm 3. Recall that the parameter
k represents the maximum number of disjoint components of the subgraph defined on T that the
algorithm will identify.

8

Theorem 1. Fix any 0 < δ < 1. PTarget(·, ·, ·, ·, k, ·, ε) satisfies ε1-protected differential privacy
for

ε1 = (k − 1)ε,

and satisfies (ε2, δ)-protected differential privacy for

ε2 = 2
√

2(k − 1) ln(1/δ)ε.

Proof. The algorithm is a composition of at most k instantiations of SFS and (k−1) instantiations of
SearchCom with privacy parameter ε. Recall that each call to SFS is 0-differentially private, and each
call to SearchCom is ε-differentially private with respect to the edges incident on vertices in P. By
the composition theorem, we know that the algorithm is (k−1)ε-differentially private by Lemma 3,
and at the same time (

√
8k ln(1/δ), δ)-differentially private for any δ ∈ (0, 1) by Lemma 4. Our

result then easily follows from Lemma 1.

4 Experiments

4.1 Subpopulation Construction

Our experiments are conducted on two real social networks:

• the scientific collaboration network in DBLP (“Digital Bibliography and Library Project”),
where nodes represent authors and edges connect authors that have coauthored a paper;

• the movie costarring network in IMDB (“Internet Movie Database”), where nodes represent
actors and edges connect actors that have appeared in a movie together.

Pre-processing step on the networks: We sparsify the IMDB and DBLP networks by remov-
ing a subset of the edges. This will allow us to generate multiple targeted components more easily.
In both networks, there is a natural notion of weights for the edges. In the case of DBLP, the
edge weights correspond to the number of papers the individuals have co-written. In the case of
IMDB, the edge weights correspond to the number of movies two actors have co-starred in. In our
experiments, we only remove edges with weights less than 2.

However, the networks we use do not have an identified partition of the vertices into a targeted
and protected subpopulation. Instead, we generate the targeted subpopulation synthetically using
the following diffusion process. We use the language of “infection”, which is natural, but we
emphasize that this process is not specific to our motivating example of the targeted population
representing people infected with a dangerous disease. The goal of the infection process is to
generate a targeted subpopulation T such that:

1. The subnetwork restricted to T has multiple distinct connected components (so that the
search problem is algorithmically challenging, and isn’t solved by a single run of statistic-first
search), and

2. The connected components of T are close to one another in the underlying network G, so
that the network data is useful in identifying new members of T .

9

The process infect(G, s, p, q, k) takes as input a seed infected node s, two values p, q ∈ (0, 1),
and a number of rounds k, and proceeds with two phases:

1. Infection phase: Initially, only the node s is in the infected set Ĩ. Then in each of the
k rounds, each neighbor v of the infected nodes Ĩ becomes infected independently with
probability p.

2. Immune phase: After the infection process above, we will set some of the infected nodes as
immune. For each node i in the infected node set Ĩ, let i become “immune” (non-infected)
with probability q.

The infection phase above is common in the literature on contagion in networks; e.g. relatively
recently it was considered as the “independent cascades model” of [4]. The immune phase is
introduced in order to permit control of the component structure while still keeping targeted vertices
proximate to each other in the resulting network. We include a formal description of the algorithm
in Algorithm 4.

Algorithm 4 infect(G, s, p, q, k)

Input: a network G, a seed node s in G, infection probability p, and immune probability q
Initially the infected population contains only the seed node:

Ĩ = {s}

for t = 1, . . . , k:
for each node v that is neighbor to Ĩ:

Let ν be a uniformly random number from [0, 1]
if ν ≤ p then Ĩ = Ĩ ∪ {v}

let T = ∅
for each node v′ ∈ Ĩ:

let ν be a uniformly random number from [0, 1]
if ν > q then T = T ∪ {v}

Output: T as the targeted subpopulation

4.2 Non-Private Benchmark Target

We experimentally evaluate the performance of our algorithm Algorithm 3 on two social network
data-sets with a partition of vertices into P and T using the infection process described in the
previous section. We compare the performance of the private version of our algorithm with the
non-private version Algorithm 5 which uses the SoP directly, without adding noise. The metric we
are interested in is how many queries to the identify oracle I are needed by each algorithm to find
a given number of members of the protected sub-population T . We here give a formal description
of the non-private version of our graph search algorithm in Algorithm 5.

10

Algorithm 5 Non-Private Targeting Algorithm: Target(G, s, f, k,N)

Input: A network G, a seed node s ∈ T , a SoP f for SearchCom, a target number of components
to find k, and a stopping threshold N for SearchCom
Initialize: Use I to keep track of the set of investigated nodes. Initially I = {s}.
Let list T̃ = SFS(G, s)
For k − 1 rounds:

let count = 0 and a = ∅
while (V \ I) 6= ∅ and count≤ N

Let
v′ = argmax

x∈V \I
f2(G, v, T̃)

Query I(v′) to determine if v′ ∈ T .
Let I = I ∪ {v′} and count = count +1

if I(v′) = 1 then let a = v′ and break
if a = ∅ then Output T̃
else let T̃ = T̃ ∪ SFS(G, a, f1)

Output T̃

4.3 SoP Instantiations

In our experiments, we will use the SoP CN for the SearchCom subroutine, which is the number
of common neighbors between the node v and the subset of nodes S representing the already
discovered members of the targeted population. The targeted sensitivity of CN is bounded by 1.

Lemma 9. The SoP CN has targeted sensitivity 4(CN) bounded by 1.

Proof. Let G and G′ be two neighboring networks over the same protected and targeted populations
P and T . Let t ∈ T be a targeted node and S ⊆ V be a subset of nodes. Since G and G′ only
differ by the edges associated with a protected node i, we know that the neighbor sets of both
t and S can differ by at most one node between G and G′. Note that the CN(G, t, S) computes
the cardinality of the intersection between these two sets, and the intersection sets of these two
networks can differ by at most one node. It follows that 4(CN) ≤ 1.

References

[1] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Founda-
tions and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[2] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sen-
sitivity in private data analysis. In Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, pages 265–284,
2006.

[3] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential privacy.
In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, pages 51–60, 2010.

11

http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1109/FOCS.2010.12

[4] David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread of influence through a so-
cial network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 137–146, 2003.

12

http://dx.doi.org/10.1145/956750.956769
http://dx.doi.org/10.1145/956750.956769

