Counting Triangles and the Curse of the Last Reducer

A paper by: Siddharth Suri and Sergei Vassilvitskii
Presented by: Ryan Rogers (with some slides from Sergei’s Presentation)
Introduction

• Study Social Networks

• Main metric for analyzing Social Networks: Clustering Coefficient of each node

• Problem of finding the Clustering Coefficient of a node is basically the same as counting the number of ‘s incident to that node.
Clustering and Triangles

\[CC(\text{red}) = \frac{2}{\binom{4}{2}} = \frac{1}{3} \]
Clustering and Triangles

\[\text{CC} \left(\frac{4}{2} \right) = 2/\binom{4}{2} = 1/3 \]

OR...
Clustering and Triangles
Clustering and Triangles
Clustering and Triangles

Number of \(\triangle \)'s

\[= \left(\frac{d}{2} \right) \times CC(\bullet) \]
Past Work

- Coppersmith and Kumar (‘04) and Buriol et al. (‘04): Streaming algorithms to find total number of triangles with high accuracy.
- Becchetti et al. (‘08): Estimate the number of triangles incident on each node.
- Tsourakakis et al. (‘09): Randomized MapReduce procedure that gives the total number of triangles accurately in expectation.
Contributions

- Count the **exact** number of triangles
- Count the number of triangles incident on each node, exactly.
- Comparable speedup as the randomized MapReduce procedure.
Counting Triangles (Naïve)

• Let $T \leftarrow 0$

 – for $v \in V$

 • for each $u \in \Gamma(v)$

 – for each $w \in \Gamma(v)$

 » if $(u,w) \in E$

 $T \leftarrow T + 1/2$

• Output $T \leftarrow T / 3$

RUN TIME

$O\left(\sum_{u \in V} d_u^2\right)$
MapReduce (Naïve)

• Map 1:

\[G = (V,E) \]

\[<key, value> \]
MapReduce (Naïve)

- Map 1:

\[G = (V, E) \]

\[<v_1, \Gamma(v_1)> \quad <v_2, \Gamma(v_2)> \quad <v_3, \Gamma(v_3)> \quad <v_n, \Gamma(v_n)> \]
MapReduce (Naïve)

- Map 1: $G = (V, E)$

- Reduce 1:
 $<v, \Gamma(v)> \rightarrow \{(u_1, u_2), v) : u_1, u_2 \in \Gamma(v)\}$
MapReduce (Naïve)

• Map 2:
 \[(u, w), v > + (u, w), \text{Edge} \]

• Reduce 2:
 – If \text{Edge} then.
 • For \(v \in \{ v_1, \ldots, v_k \} \) emit \(< v, 1 > \)
What’s Wrong with this?

• Does this improve our running time?
• There still may be a very high degree vertex in the network
• Thus, one machine may be stuck with a lot of data!

STILL HAS RUN TIME

\[O\left(d_{\text{max}}^2\right) \]
Reality

• Social Networks are typically sparse
• However, there may be few nodes with very high degree.
Reality
Live Journal Data

Distribution of Reducer Completion Times

Number ofReducers

Runtime (minutes)

0 10 20 30 40 50 60 70

0 20 40 60 80 100 120 140 160 180
THE CURSE OF THE LAST REDUCER

• The idea that 99% of the computation finishes quickly, but the last 1% takes a HUGE amount of time.
Possible Fixes

• Generating 2-paths around high-degree nodes is expensive – concentrate on low degree.

• Divide the graph into overlapping subgraphs and somehow account for the overlap.
Counting Triangles (Optimal)

• NodeIterator++ \((V,E)\)
 – \(T \leftarrow 0\)
 – For \(v \in V\)
 • For \(u \in \Gamma(v)\) and \(u \succ v\)
 – for \(w \in \Gamma(v)\) and \(w \succ u\)
 » if \((u,w) \in E\)
 • \(T \leftarrow T + 1\)
 • Return \(T\)
Properties of NodelistIterator++

- Has running time $O(m^{3/2})$ and gives the exact number of triangles incident to each node [Schank ‘07]
- Best possible bound:

$$K_{\sqrt{n}} \leq n - \sqrt{n} n$$
MR-NodelIterator++

• Map 1’:
 – If \(v \succ u \)
 • Emit \(<u,v> \)

• Reduce 1’:
 \(<u,S \subseteq \Gamma(u)> \xrightarrow{\quad} \{<u,(v,w)>: v, w \in S\} \)

• Map 2, Reduce 2.
Memory Required per Machine

• Lemma: The input to any reduce instance in first round has \(O(\sqrt{m}) \) edges (Sublinear space)

• Proof:

\[
\mathcal{L} = \left\{ v \in V : d_v < \sqrt{m} \right\}
\]

\[
\mathcal{H} = \left\{ v \in V : d_v \geq \sqrt{m} \right\}
\]
Size of Output after Round 1

• Lemma: The total number of records output at the end of the first reduce is $O\left(m^{3/2}\right)$

• Proof:
 – There are at most $n = O\left(m^{1/2}\right)$ machines with low degree nodes, and each machine produces an output of size $O\left(m\right)$
 – There are at most $O\left(m^{1/2}\right)$ machines with high degree nodes and each machine must output pairs with other high degree nodes $\Rightarrow O\left(m\right)$ output size
Did it Help?

Distribution of Reducer Completion Times

Number of Reducers

Runtime (minutes)
Possible Fixes

- Generating 2-paths around high-degree nodes is expensive – concentrate on low degree.

- Divide the graph into overlapping subgraphs and somehow account for the overlap.
MR-GraphPartition

• Input: \((V,E,\rho)\)

• Partition vertices into \(\rho\) equal sized \(V_0,...,V_{\rho-1}\)

• Consider all triples \((V_i,V_j,V_k)\) and the induced graph \(G_{ijk} = G[V_i,V_j,V_k]\) for \(i < j < k\)

• Compute Triangles on each graph separately
 – You can use your favorite triangle counting algorithm on each!

• Map nodes to index \(i\) by using a universal hash
MR-GraphPartition

- Map 1": Input $<(u,v),1>$
 - for $a < b < c \leq \rho - 1$
 - if $\{h(u), h(v)\} \subseteq \{a, b, c\}$
 - emit $<(a,b,c),(u,v)>$
- Reduce 1": Input: $<(i,j,k),E_{ijk}>$
 - Count Triangles and weight accordingly.
May Over Count # of \triangle's

Can count exactly how many subgraphs each triangle will be in

- V_i in $p-2$ subgraphs
- V_j in 1 subgraph
- V_k in $\sim p^2$ subgraphs
Analysis

• The expected size of the input to any machine instance is $O(m/\rho^2)$

• The expected total space used at the end of map phase is $O(m\rho)$

• Proof: SEE BOARD
Analysis (continued)

• Theorem: For $\rho \leq \sqrt{m}$, the amount of work done by all the machines is $O(m^{3/2})$

• Proof:

 $O(1)$ time per edge $\Rightarrow O(m\rho) = O(m^{3/2})$ time for Map 2” phase.

 Partition input amongst $O(\rho^3)$ reducers.

 Running Time per Reducer:

 $$= O\left(\#Edges^{3/2}\right) = O\left(\left(\frac{m}{\rho^2}\right)^{3/2}\right)$$
Results for Partition

Distribution of Reducer Completion Times

Number ofReducers vs Runtime (minutes)
Comparison of Results

Naïve

++

Partition
THE CURSE OF THE LAST REDUCER
Questions???