Counting Triangles and the CURSE OF THE LAST REDUCER

A paper by: Siddharth Suri and Sergei Vassilvitskii

Presented by: Ryan Rogers (with some slides from Sergei's Presentation)

Introduction

• Study Social Networks

- Main metric for analyzing Social Networks: Clustering Coefficient of each node
- Problem of finding the Clustering Coefficient of a node is basically the same as counting the number of (s) incident to that node.

OR...

Number of \(\begin{aligned} 's \\ \exists \exists \\ \exitts \\ \e

$$= \binom{d}{2} \times CC()$$

Past Work

- Coppersmith and Kumar ('04) and Buriol et al. ('04): Streaming algorithms to find total number of triangles with high accuracy
- Becchetti et al. ('08): Estimate the number of triangles incident on each node.
- Tsourakakis et al. ('09): Randomized
 MapReduce procedure that gives the total number of triangles accurately in expectation.

Contributions

- Count the exact number of triangles
- Count the number of triangles incident on each node, exactly.
- Comparable speedup as the randomized MapReduce procedure.

Counting Triangles (Naïve)

- Let $T \leftarrow 0$ -for $v \in V$ • for each $u \in \Gamma(v)$ - for each $w \in \Gamma(v)$ »if $(u,w) \in E$ $T \leftarrow T+1/2$
- RUN TIME

$$O\left(\sum_{u\in V}d_u^2\right)$$

• Output $T \leftarrow T/3$

• Reduce 1:

$$< v, \Gamma(v) > \longrightarrow \{<(u_1, u_2), v) >: u_1, u_2 \in \Gamma(v)\}$$

 $\overline{<(u,w),v>}+<(u,w),Edge>$

• Map 2:

- Reduce 2:

 - $-\operatorname{If} \ Edge \ \operatorname{then}.$ $\bullet \ \operatorname{For} \ v \in \left\{v_1, ..., v_k\right\} \ \operatorname{emit} \ < v, 1 > 0$

What's Wrong with this?

- Does this improve our running time?
- There still may be a very high degree vertex in the network
- Thus, one machine may be stuck with a lot of data!

$$O(d_{\text{max}}^2)$$

Reality

- Social Networks are typically sparse
- However, there may be few nodes with very high degree.

Reality

Live Journal Data

THE CURSE OF THE LAST REDUCER

 The idea that 99% of the computation finishes quickly, but the last 1% takes a HUGE amount

of time.

Possible Fixes

 Generating 2-paths around high-degree nodes is expensive – concentrate on low degree.

 Divide the graph into overlapping subgraphs and somehow account for the overlap.

Counting Triangles (Optimal)

- Nodelterator++(V,E)
 - $-T \leftarrow 0$
 - -For $v \in V$
 - For $u \in \Gamma(v)$ and $u \succ v$
 - -for $w \in \Gamma(v)$ and $w \succ u$
 - \Rightarrow if $(u,w) \in E$
 - $T \leftarrow T + 1$
- Return T

 $d_{u} > d_{v}$

Properties of Nodelterator++

- Has running time $O(m^{3/2})$ and gives the exact number of triangles incident to each node [Schank '07]
- Best possible bound:

MR-Nodelterator++

• Map 1':

$$-If v > u$$

- Emit < *u*,*v* >
- Reduce 1':

$$< u, S \subseteq \Gamma(u) > \longrightarrow \{< u, (v, w) >: v, w \in S\}$$

Map 2, Reduce 2.

Memory Required per Machine

- Lemma: The input to any reduce instance in first round has $O(\sqrt{m})$ edges (Sublinear space)
- Proof:

$$\mathcal{L} = \left\{ v \in V : d_{v} < \sqrt{m} \right\}$$

$$\mathcal{H} = \left\{ v \in V : d_v \ge \sqrt{m} \right\}$$

Size of Output after Round 1

- Lemma: The total number of records output at the end of the first reduce is $O(m^{3/2})$
- Proof:
 - There are at most $n = O(m^{1/2})$ machines with low degree nodes, and each machine produces an output of size O(m)- There are at most $O(m^{1/2})$ machines with high
 - There are at most $O(m^{1/2})$ machines with high degree nodes and each machine must output pairs with other high degree nodes => O(m) output size

Did it Help?

Possible Fixes

 Generating 2-paths around high-degree nodes is expensive – concentrate on low degree.

• Divide the graph into overlapping subgraphs and somehow account for the overlap.

MR-GraphPartition

- Input: (V,E,ρ)
- Partition vertices into ho equal sized V_0 ,..., $V_{
 ho-1}$
- Consider all triples (V_i, V_j, V_k) and the induced graph $G_{ijk} = G[V_i, V_j, V_k]$ for i < j < k
- Compute Triangles on each graph separately
 - You can use your favorite triangle counting algorithm on each!
- Map nodes to index i by using a universal hash

MR-GraphPartition

- Map 1": Input <(u,v),1>
 - -for $a < b < c \le \rho 1$
 - if $\{h(u),h(v)\}\subseteq\{a,b,c\}$
 - -emit < (a,b,c),(u,v) >
- Reduce 1": Input: $\langle (i,j,k), E_{ijk} \rangle$
 - -Count Triangles and weight accordingly.

May Over Count # of (s

Can count exactly how many subgraphs each triangle will be in

Analysis

• The expected size of the input to any machine instance is $O(m/\rho^2)$

• The expected total space used at the end of map phase is $O(m\rho)$

Proof: SEE BOARD

Analysis (continued)

- Theorem: For $\rho \le \sqrt{m}$, the amount of work done by all the machines is $O(m^{3/2})$
- Proof:
 - O(1) time per edge => $O(m\rho) = O(m^{3/2})$ time for Map 2" phase.
 - Partition input amongst $O(\rho^3)$ reducers.

Running Time per Reducer:

$$= O(\#Edges^{3/2}) = O(\frac{m}{\rho^2})^{3/2}$$

Results for Partition

Comparison of Results

THE CURSE OF THE LAST REDUCER

Questions???