Counting Triangles and the

A paper by: Siddharth Suri and Sergei
VERSSIS
Presented by: Ryan Rogers (with some
slides from Sergei’s Presentation)

Introduction

r N

==
* Study Social Networks f Q 1<)

—mtl

* Main metric for analyzing Social Networks:
Clustering Coefficient of each node

* Problem of finding the Clustering Coefficient
of a node is basically the same as counting the
number of MA‘s incident to that node.

Clustering and Triangles

0\\‘\‘
f\Xf

Clustering and Triangles

0\\‘\‘
f\Xf

Clustering and Triangles

Q\@\‘\‘
f\@X‘“

Clustering and Triangles

Clustering and Triangles

CC(€) =2/(5)
=1/3

Clustering and Triangles

CC(€) =2/(5)
=1/3

OR...

Clustering and Triangles

Q\@\‘\‘
f\@X‘“

Clustering and Triangles

Clustering and Triangles

Number of A ‘s

= (9)xcc(@)

Past Work

e Coppersmith and Kumar (‘04) and Buriol et al.
(‘04): Streaming algorithms to find
number of triangles with

* Becchetti et al. (‘08): the number of
triangles incident on

* Tsourakakis et al. (‘09): Randomized
MapReduce procedure that gives the
number of triangles accurately in

Contributions

 Count the number of triangles

* Count the number of triangles incident on
, exactly.

 Comparable speedup as the randomized
MapReduce procedure.

Counting Triangles (Naive)

e let T<—0
—foryeVl/

 for each uel’(v) O(Zd 2)

— foreach wel'(v)
»if (u,w)ek
T«—T+1/2

uel/

 Output T«—T /3

MapReduce (Naive)

* Map 1: G=(V,E)

< key,value >

MapReduce (Naive)

* Map 1: G=(V,E)

<v,[(v))> <v,I[(v,)> <v,,I(v,)> <v,I(v)>

MapReduce (Naive)

* Map 1: G=(V,E)

<v,[(v))> <v,I[(v,)> <v,,I(v,)> <v,I(v)>
* Reduce 1:

<v,I'(v)> {<(u1,u2),v) > ,U, eF(v)}

MapReduce (Naive)

<(u,w),v>+<(u,w),Edge >
* Map 2:

< (u,w),{v1 ,...,vk,Edge?} >

e Reduce 2:

— If Edge then.
* For VE{V1""’VI<} emit <v,1>

What'’s Wrong with this?

* Does this improve our running time?

* There still may be a very high degree vertex in
the network

 Thus, one machine may be stuck with a lot of
data!

O(dmaxz)

Reality

* Social Networks are typically sparse

 However, there may be few nodes with very
high degree.

Reality

Last Name Expetiment
I

60 70 80

50
Degree of aNode

Live Journal Data

Distribution of Reducer Completion Times

—
N
o

100

(o)
o

o)l
o
1

)]
| -
Q
O
-
©
Q
oc
Y
o
-
Q
0
-
-
=

Py
o

N
o
T

—

20 30 40 50
Runtime (minutes)

* The idea that 99% of the computation finishes
quickly, but the last 1% takes a HUGE amount

of time. JUSTIONEIMORE

Possible Fixes

* Generating 2-paths around -degree nodes
IS expensive — concentrate on low degree.

2 B

* Divide the graph into subgraphs
and somehow account for the overlap.

Counting Triangles (Optimal)

 Nodelterator++(V/ E
(V.E) d >d
— T<+«—0 e

—For yeV/
*For uel'(v) and u>v

—for wel(v)and w>u
»if (UW)€EE
e T—T+1

e Return T

Properties of Nodelterator++

* Has running time and gives the
exact number of triangles incident to each
node [Schank ‘07]

e Best possible bound:

MR-Nodelterator++

* Map 1"
—If v>u
*Emit <u,v >

e Reduce 1’:
<u,Scl(u)> H{< u,(v,w)>v,we S}

 Map 2, Reduce 2.

Memory Required per Machine

Lemma: The input to any reduce instance in
first round has edges (Sublinear

space)
Proof:

L= {veV:dv<\/E}
H = {veV:dvzx/;}

Size of Output after Round 1

* Lemma: The total number of records output at
the end of the first reduce is

 Proof:

— There are at most n= machines with low

degree nodes, and each machine produces an
output of size

— There are at most machines with high
degree nodes and each machine must output pairs
with other high degree nodes => output size

Did it Help?

Distribution of Reducer Completion Times

o
o

w
o

N
o

n
-
)
O
S
T
0
o
R
o
-
O
Q
=
S
Z

[
o

1.05 1.10 1.15 1.20
Runtime (minutes)

Possible Fixes

* Generating 2-paths around -degree nodes
IS expensive — concentrate on degree.

-

* Divide the graph into subgraphs
and somehow account for the overlap.

MR-GraphPartition

Input: (V,E,p)

Partition vertices into P equal sized V.. ,V
Consider all triples (V. V V) and the mduced
graph G\ —G[VI,,V],,VJ for i<j<k
Compute Triangles on each graph separately

— You can use your favorite triangle counting
algorithm on each!

Map nodes to index i by using a universal hash

MR-GraphPartition

* Map 1”: Input <(u,v),1>
—for a<b<c<p-1
e if {h(u),h(v)}c={a,b,c}
—emit <(a,b,c),(u,v)>

IQH

S

— Count Triangles and weight accordi‘ngly.

* Reduce 17":Input: <(i,jk),E,, >

May Over Count # of A‘s

b in p-2 subgraphs
v in 1 subgraph
v in ~p2 subgraphs

Can count exactly how many subgraphs each triangle will be in

Analysis

 The expected size of the input to any machine
Instance is

 The expected total space used at the end of
map phase is

 Proof: SEE BOARD

Analysis (continued)

* Theorem: For pS\/; , the amount of work
done by all the machines is

 Proof:

time per edge => time
for Map 2” phase.

Partition input amongst reducers.
Running Time per Reducer:

Results for Partition

Distribution of Reducer Completion Times

Py
o

w
o

N
o

w0
-
Q
o
-}
©
Q
oc
Y
(@]
-
Q
L0
-
=
pd

[
o

4 5 6
Runtime (minutes)

Comparison of Results

Distribution of Reducer Completion Times Distribution of Reducer Completion Times

= - = T~
@ o N e o
o o o o o

3
Number of Reducers

Number of Reducers

N
o

110 115 1.20

20 30 40 50 . :
Runtime (minutes)

Runtime (minutes)

Distribution of Reducer Completion Times

N w Iy
o o o

Number of Reducers

=
o

4 5 6
Runtime (minutes)

Questions???

