A Model of Computation for MapReduce

Karloff, Suri and Vassilvitskii

\(o(n) \) Big Data Reading Group

presented by:
Babak Bagheri Hariri

Presentation is prepared based on a presentation by Xing Xie.

Sep 19, 2014
Map Reduce

- A new framework for parallel computing originally developed at Google (before 2004)
- Parallelization of data intensive computation
 - interleaves sequential and parallel computation
 - Tera- and petabytes data set (search engines, internet traffic, bioinformatics, etc)
What is MapReduce (cont.)

Three-stage operations:

- **Map-stage**: mapper operates on a single pair \(\langle \text{key}, \text{value} \rangle \), outputs any number of new pairs \(\langle \text{key}', \text{value}' \rangle \);
 - operation is stateless (parallel)

- **Shuffle-stage**: all values that are associated to an individual key are sent to a single machine (done by the system)

- **Reduce-stage**: reducer operates on the all the values and outputs a multiset of \(\langle \text{key}, \text{value} \rangle \).
 - stage can only start when all Map operations are done.
An example: k^{th} frequency moment of a large data set

- Input: a finite string of symbols $s = a_1, a_2, \ldots, a_n$;
- Let $f(x)$ be the frequency of the symbol x,
 - note: $\sum_{x \in s} f(x) = n$;
- Want to compute $\sum_{x \in s} f^k(x)$;

example:

$s = 1, 1, 2, 4, 1$

$f^1(x) = 3^1 + 1^1 + 1^1 = 5$;

$f^2(x) = 3^2 + 1^2 + 1^2 = 11$.
An example (cont.)

- **Input to each mapper:** \(\langle i, x_i \rangle \)
 - \(\mu_1(\langle i, x_i \rangle) = \langle x_i, i \rangle \) (\(i \) is the index).

- **Input to each reducer:** \(\langle x_i, \{i_1, i_2, \ldots, i_m\} \rangle \)
 - \(\rho_1(\langle x_i, \{i_1, i_2, \ldots, i_m\} \rangle) = \langle x_i, m^k \rangle \);

- **Map the values to a single reserved symbol '\$'**
 - \(\mu_2(\langle x_i, v \rangle) = \langle $, v \rangle \);

- **A single reducer for summing up the values:**
 - \(\rho_2(\langle $, \{v_1, \ldots, v_l\} \rangle) = \langle $, \sum v_i \rangle \).
Formal Definition

- The input is a finite sequence of pairs of binary strings \(\langle \text{key}, \text{value} \rangle \);
 - \(U_0 = \langle k_1, v_1 \rangle, \cdots \langle k_m, v_m \rangle \)

- A MapReduce program consists of a finite sequence of mappers and reducers;
 - \(\mu_1, \rho_1, \mu_2, \rho_2, \cdots, \mu_l, \rho_l \);

- Execution: For \(r = 1, 2, \ldots, l \)
 - (Map) feed each \(\langle k, v \rangle \) in \(U_{r-1} \) to mapper \(\mu_r \).
 - Let the output be \(U'_r \);
 - for each \(k \)
 - (Shuffle) \(V_{k,r} \) is the multiset of values \(v \), s.t., \(\langle k, v_i \rangle \in U_{r-1} \);
 - feed \(k \) and \(V_{k,r} \) to a separate instance of \(\rho_r \);
 - (Reduce) Let \(U_r \) be the multiset of \(\langle \text{key}, \text{value} \rangle \) generated by all instances of \(\rho_r \).
 - Output \(U_l \).
The MapReduce Class (\mathcal{MRC})

- On input I with size: $n = \sum_{(k,v) \in I} (|k| + |v|)$
 - Memory: Memory: each mapper/reducer uses $O(n^{1-\epsilon})$ space;
 - Machines: There are $O(n^{1-\epsilon})$ machines available;
 - Time: each machine runs in time polynomial in n, (not in the length of the input they receive);
 - Randomized algorithms for map and reduce;
 - The algorithm outputs the correct answer with probability at least $3/4$;
 - Rounds: Shuffle is expensive:
 - \mathcal{MRC}^i. number of rounds $= O(\log^i n)$

- \mathcal{DMRC}: the deterministic variant.

Lemma

For all rounds of an algorithm in \mathcal{MRC}, it is possible to partition the output of the mappers among reducers such that the memory restrictions of \mathcal{MRC} would not be violated.
Recall the Frequency Moments Algorithm

Does this algorithm fit in the restrictions of MRC?

- $\mu_1(\langle i, x_i \rangle) = \langle x_i, i \rangle$;
- $\rho_1(\langle x_i, \{i_1, i_2, \ldots, i_m\} \rangle) = \langle x_i, m^k \rangle$;
- $\mu_2(\langle x_i, v \rangle) = \langle $, $ v \rangle$;
- $\rho_2(\langle $, $ \{v_1, \ldots, v_l\} \rangle) = \langle $, $ \sum v_i \rangle$.

Consider the input $I = \langle 1, a \rangle, \langle 2, a \rangle, \ldots, \langle n, a \rangle$.
Comparing \mathcal{MRC} with other Complexity Classes

Easy relation: $\mathcal{MRC} \subseteq \mathcal{P}$;

Lemma

If $\mathcal{NC} \neq \mathcal{P}$, then $\mathcal{DMRC} \not\subseteq \mathcal{NC}$;

Proof idea: There exists a \mathcal{P}-complete problem solvable in \mathcal{DMRC}:

- Padded Circuite Value Problem (PCV) is a \mathcal{P}-complete problem;
- For a given PCV problem with input size n, append the input with $n^2 - n$ special character $\#$;
- The problem is in \mathcal{DMRC};
- But it cannot be in \mathcal{NC}; otherwise, we would have $\mathcal{NC} = \mathcal{P}$!

Open question: $\mathcal{P} \subseteq \mathcal{DMRC}$?
Example: Finding an MST

Problem:
Find the Minimum Spanning Tree (MST) of a dense graph.

The algorithm:
- Randomly partition the vertices of G into k parts;
- For each pair of vertex sets, find the MST of the subgraph induce by these two sets;
- Take the union H of all the edges in the MST of each pair;
- Compute an MST of H

Theorem
the MST tree of H is an MST of G

Proof idea: we did not discard any relevant edge when sparsifying the input graph G
Finding an MST (cont.)

Why the algorithm is in MRC?

• Let $N = |V|$ and $m = |E| = N^{1+c}$, for $0 < c \leq 1$;
• So input size n satisfies $n = N^{1+c}$;
• Pick $k = N^{c/2}$;

Lemma

With high probability, each subgraph has size $N^{1+c/2}$.

• so the input to any reducer is $n^{1-\epsilon}$;
• the size of H is also in $n^{1-\epsilon}$.
Functions Lemma

A very useful building block for designing MapReduce algorithms:

\[\text{\textbf{MRC}-parallelizable function} \]

Let \(S \) be a finite set. We say a function \(f \) on \(S \) is \(\text{MRC} \)-parallelizable if there are functions \(g \) and \(h \) so that the followings hold:

- For all partition of \(S \), \(S = T_1 \cup T_2 \cup \cdots \cup T_k \), \(f \) can be written as:
 \[
 f(S) = h(g(T_1), g(T_2), \ldots, g(T_k));
 \]
- \(g \) and \(h \) each can be represented in \(O(\log n) \) bits;
- \(g \) and \(h \) can be computed in time polynomial in \(|S| \);
- all possible outputs of \(g \) can be expressed in \(O(\log n) \) bits.
Application of Functions Lemma (1): the Frequency Moments Algorithm

Input $\mathcal{I} = \{\langle 1, l_1 \rangle, \ldots, \langle m, l_m \rangle \}$;

- define $f_{k,l}(\mathcal{I}) = |\text{occurrences of the element } l \text{ in the input } \mathcal{I}|^k$;
- k^{th}-frequency moment of \mathcal{I} is $\sum_{l} f_{k,l}(l)$;
- $f_{k,l}(l)$ is \mathcal{MRC}-parallelizable:
 - $g(t_1, \ldots, t_n) = n$;
 - $h(i_1, \ldots, i_r) = (i_1 + \ldots + i_r)^k$.
Application of the Functions Lemma (2): $s - t$ connectivity

$s - t$ Connectivity Problem:

Given a graph G and two nodes, are they connected in G?

- for dense graphs: easy, powering adjacency matrix;
- Sparse graphs?
A $\log n$-round MapReduce algorithm for $s-t$ connectivity

- Initially every node is active;
- For $i = 1, 2, \ldots, O(\log n)$ do
 - Each active node becomes a leader with probability $1/2$;
 - For each non-leader active node u, find a node v in the neighbor of u’s current connected component
 - If the connected component of v is non-empty, then u become passive and re-label each node in u’s connected component with v’s label.
- Output true if s and t have the same label, false otherwise.
Thanks!