Open Problems in L_p **-Testing**

See our joint work with P. Berman and S. Raskhodnikova (STOC'14).

Grigory Yaroslavtsev

Warren Center for Network and Data Sciences
<u>http://grigory.us</u>



Tolerant "L₁Property Testing"

- $\boldsymbol{f}: \{1, \dots, n\}^d \rightarrow [0, 1]$
- *P* = class of functions (monotone, convex, Lipschitz)

•
$$dist_1(\boldsymbol{f}, \boldsymbol{P}) = \frac{\min_{\boldsymbol{g} \in \boldsymbol{P}} |\boldsymbol{f} - \boldsymbol{g}|_1}{n^d}$$

- ϵ -close: $dist_1(f, P) \leq \epsilon$
- $\epsilon_1 = 0 \Rightarrow$ Non-tolerant
- $\epsilon_1 \neq 0 =>$ Tolerant

Tolerant "*L*₁ **Property Tester**" $\Rightarrow \frac{\text{Accept with}}{\text{probability} \ge \frac{2}{3}}$ YES **€**1-close (ϵ_1, ϵ_2) -close \Rightarrow Don't care $\Rightarrow \frac{\text{Reject with}}{\text{probability} \ge \frac{2}{3}}$ NO

Known non-tolerant L₁-Testers

• Monotonicity: $f: [n]^d \rightarrow [0,1]$:

 $O\left(\frac{d}{\epsilon}\log\frac{d}{\epsilon}\right)$ (see BRY'14 for lower bounds)

• Lipschitz property $f: [n]^d \rightarrow [0,1]$:

$$\Theta\left(\frac{\mathbf{d}}{\epsilon}\right)$$
 (tight)

• Convexity $f: [n]^d \rightarrow [0,1]$:

$$O\left(\epsilon^{-\frac{d}{2}}+\frac{1}{\epsilon}\right)$$
 (tight for $d \leq 2$)

• Submodularity $f: \{0,1\}^d \rightarrow [0,1]$

$$2^{\tilde{O}\left(\frac{1}{\epsilon}\right)} + poly\left(\frac{1}{\epsilon}\right)\log d$$
 [Feldman, Vondrak 13, ...]

Open Problem #1

- Complexity for non-tolerant L_1 -testing convexity grows exponentially with d
 - Is there an L_1 -testing algorithm for convexity with subexponential dependence on the dimension?
- Why is it hard?
 - Relevant reference: [Rademacher, Vempala'04]
 - Restrictions on 1-dimensional axis-parallel lines don't help (need exponentialy many)
 - Can 2-dimensional restrictions help?

L₁-Testing for Convex Optimization

- **Theory:** Convergence rates of gradient descent methods depends on:
 - Convexity / strong convexity constant
 - Lipschitz constant of the derivative
- Practice:
 - Q: How to pick learning rate in ML packages?

- A: Set 0.01 and hope it converges fast
- Even non-tolerant L_1 -testers can be used to sanity check convexity/Lipschitzness

Known tolerant L_1 -testers

• Monotonicity in 1D

$$O\left(\frac{\varepsilon_2}{(\varepsilon_2-\varepsilon_1)^2}\right)$$

• Monotonicity in 2D

$$\tilde{O}\left(\frac{1}{(\boldsymbol{\varepsilon}_2-\boldsymbol{\varepsilon}_1)^4}\right)$$

Open Problem #2

• Only have tolerant monotonicity for d = 1,2. Tolerant testers for higher dimensions?