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Clustering is very important!

Fundamental problem in data analysis and machine learning

“Frequently asked interview question by Big Data tech firms”
— Yaroslavtsev
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Problem

k-means Objective

Let X = {x1, . . . , xn} be a set of points in d-dimensional space, find a set
of centers C = {c1, . . . , ck} to minimize∑

x∈X
min
i∈[k]
‖x− ci‖2

NP-Hard Problem
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k-means algorithm

k-means (sometimes called Lloyd’s algorithm)

Initialization: Start with a set of randomly chosen initial centers

Repeat:
I Assign each point to its nearest center;
I Recompute the center given the point assignment

Until convergence
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In theory

k-means algorithm not very appealing

Efficiency: run time can be exponential in the worst case

Quality: final solution is locally optimal, but far away from global
optimum
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In practice
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Goal

A scalable k-means algorithm with

theoretical guarantee

good practical performance
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Focus: Initialization

A better way to initialize the clustering dramatically changes the
performance of the algorithm
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Potential Problem: Sensitive to Initialization
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Potential Problem: Sensitive to Initialization

Stuck in local optimum
Photo credited to David Arthur
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Intuition: Spread Out
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k-means++ Initialization

First center is selected uniformly at random from the data

Subsequent centers: each point is selected with probability

d2(x, C)∑
x d

2(x, C)

proportional to its contribution to the overall error given the previous
selections:
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Pros and Cons of k-means++

Advantage

The initialization step itself already obtains an 8 log k approximation to
OPT in expectation.

(The Lloyd iterations would only make it better)

Disadvantage

Not scalable!
Sequential nature: the choice of the next center depends on the current
set of centers. k passes over the data (think of k = 1 000 )
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Desiderata

Fewer number of iterations (sample more than 1 points each round)

Provable approximation guarantee
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k-means ‖

1 First center C: sample a point uniformly at random

2 Initial cost ψ =
∑

x d
2(x, C)

3 for O(logψ) times do
I C′ ← sample each point x ∈ X independently with probability

px =
` · d2(x, C)∑

x d
2(x, C)

I C ← C ∪ C′

4 For x ∈ C, let wx be the number of points belonging to this center

5 Recluster the weighted points in C into k clusters
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Number of points

Number of intermediate centers?

Oversampling factor ` = Θ(k).

Expected number of points in C: ` logψ

Steven Wu (Penn) K-Means++ Big Data Reading Group 15 / 25



Photo credited to Bahmani

Steven Wu (Penn) K-Means++ Big Data Reading Group 16 / 25



Theoretical Guarantee

Theorem

If an α-approximation is used in the last step, then k-means‖ obtains a
solution that is an O(α)-approximation to k-means.

For example, we could use k-means++ and get O(log k)-approximation.
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Sketch of the Analysis

Theorem

If Ψ and Ψ′ are the costs of the clustering at the beginning and end of an
iteration, and OPT is the cost of the optimum clustering

E[Ψ′] ≤ O(OPT) +
k

e`
Ψ.
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Consider a cluster A in OPT

A = {a1, . . . , aT }
Centroid cA = 1

|T |
∑
at

Increasing order of their distance to cA

Prior to our iteration, we have C and let

φ(C) =
∑
x

d2(x, C);φA(C) =
∑
a

d2(a, C)

Let pt = `d2(at, C)/φ(C) be the probability of selecting at
For any 1 ≤ t ≤ T ,

qt = pt

t−1∏
j=1

(1− pj)
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Continued

Either assign all points in some selected at, or stick with the original

st = min

{
φA,

∑
a∈A
‖a− at‖2

}

E
[
φA(C ∪ C′)

]
≤
∑
t

qtst + qT+1φA(C)

where qT+1 is the probability no point in A is selected.
Plug in pt = p (the case in which all points are far from C and they are
tightly clustered)
qt = p(1− p)t
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s′t =
∑
a∈A
‖a− at‖2

{s′t} is an increasing sequence.

∑
t

qtst ≤
∑
t

qts
′
t

≤ 1/T

(∑
t

qt ·
∑
t

s′t

)

=

(∑
t

qt · 1/T
∑
t

s′t

)

=

(∑
t

qt

)
2φ∗A
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Finally

E[φA(C ∪ C′)] ≤ (1− qT+1)2φ
∗
A + qT+1φA(C)
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Parellel Implementation

Lloyd’s iteration: easy to implement as long as we can store the set C
among all mappers

1 First center C: sample a point uniformly at random

2 Initial cost ψ =
∑

x d
2(x, C)(reducer simply adds)

3 for O(logψ) times do
I C′ ← sample each point x ∈ X independently with probability (mapper

independently sample)

px =
` · d2(x, C)∑

x d
2(x, C)

I C ← C ∪ C′

Steven Wu (Penn) K-Means++ Big Data Reading Group 23 / 25



Parellel Implementation

1 First center C: sample a point uniformly at random

2 Initial cost ψ =
∑

x d
2(x, C)(reducer simply adds)

3 for O(logψ) times do
I C′ ← sample each point x ∈ X independently with probability (mapper

independently sample)

px =
` · d2(x, C)∑

x d
2(x, C)

I C ← C ∪ C′

Steven Wu (Penn) K-Means++ Big Data Reading Group 23 / 25



Parellel Implementation

1 First center C: sample a point uniformly at random

2 Initial cost ψ =
∑

x d
2(x, C)(reducer simply adds)

3 for O(logψ) times do
I C′ ← sample each point x ∈ X independently with probability (mapper

independently sample)

px =
` · d2(x, C)∑

x d
2(x, C)

I C ← C ∪ C′

Steven Wu (Penn) K-Means++ Big Data Reading Group 23 / 25



Experimental Results

Photo credited to Bahmani
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