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Problem

k-means Objective
Let X = {x1,...,2,} be a set of points in d-dimensional space, find a set
of centers C = {c1, ..., ¢k} to minimize

Z mln lz — cil?
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Problem

k-means Objective
Let X = {x1,...,2,} be a set of points in d-dimensional space, find a set
of centers C = {c1, ..., ¢k} to minimize

Z mln lz — cil?

NP-Hard Problem
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k-means algorithm

k-means (sometimes called Lloyd's algorithm)

o Initialization: Start with a set of randomly chosen initial centers
@ Repeat:

» Assign each point to its nearest center;

» Recompute the center given the point assignment

@ Until convergence
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In theory

k-means algorithm not very appealing
o Efficiency: run time can be exponential in the worst case

@ Quality: final solution is locally optimal, but far away from global
optimum
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In practice

weWit
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Goal

A scalable k-means algorithm with
o theoretical guarantee

@ good practical performance
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Focus: Initialization

A better way to initialize the clustering dramatically changes the
performance of the algorithm

© CreasourceiCorbis
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Potential Problem: Sensitive to Initialization
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Potential Problem: Sensitive to Initialization

L

Stuck in local optimum
Photo credited to David Arthur
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Intuition: Spread Out
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k-means+- Initialization

o First center is selected uniformly at random from the data

@ Subsequent centers: each point is selected with probability

d*(z,C)
> d*(z,C)
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k-means+- Initialization

o First center is selected uniformly at random from the data

@ Subsequent centers: each point is selected with probability

d*(z,C)
20 @ (2,C)

proportional to its contribution to the overall error given the previous
selections:
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Pros and Cons of k-means+-+

Advantage
The initialization step itself already obtains an 8log k approximation to
OPT in expectation.
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Pros and Cons of k-means+-+

Advantage

The initialization step itself already obtains an 8log k approximation to
OPT in expectation.
(The Lloyd iterations would only make it better)

Disadvantage

Not scalable!

Sequential nature: the choice of the next center depends on the current
set of centers. k passes over the data (think of £ = 1000 )
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Desiderata

e Fewer number of iterations (sample more than 1 points each round)

@ Provable approximation guarantee
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k-means ||

@ First center C: sample a point uniformly at random
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@ First center C: sample a point uniformly at random

@ Initial cost ¢ = > d?*(x,C)
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k-means ||

@ First center C: sample a point uniformly at random
@ Initial cost ¢ = > d?*(x,C)
@ for O(log)) times do
» C’ + sample each point z € X independently with probability
¢-d*(z,C)
SR EN)

» C+—CuUCl
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k-means ||

@ First center C: sample a point uniformly at random
@ Initial cost ¢ = > d?*(x,C)
@ for O(log)) times do
» (' < sample each point z € X independently with probability
- (,0)
SRR
» C+Cucl
@ For z € C, let w, be the number of points belonging to this center

© Recluster the weighted points in C into k clusters
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Number of points

Number of intermediate centers?

e Oversampling factor ¢ = O(k).
@ Expected number of points in C: /log
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e An interpolation between Lloyd and K-means+-+
Number of

iterations (R) i ) ) _
R=k: Simulating K-means++ (I=1) = Strong guarantee

== Small R: K-means| | = Can it possibly give any guarantees?

a T R=0: Lloyd - No guarantees

Photo credited to Bahmani
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Theoretical Guarantee

Theorem

If an a-approximation is used in the last step, then k-means|| obtains a
solution that is an O(«a)-approximation to k-means.
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Theoretical Guarantee

Theorem

If an a-approximation is used in the last step, then k-means|| obtains a
solution that is an O(«a)-approximation to k-means.

For example, we could use k-means++ and get O(log k)-approximation.
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Sketch of the Analysis

Theorem

If U and O’ are the costs of the clustering at the beginning and end of an
iteration, and OPT is the cost of the optimum clustering

E[¥'] < O(OPT) + 2@
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Consider a cluster A in OPT

A= {al,...,aT}
Centroid cq = ﬁ > ag
Increasing order of their distance to ¢y
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Centroid ¢4 = ﬁ day
Increasing order of their distance to c4

Prior to our iteration, we have C and let

dec pA(C Zd2aC
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Continued

Either assign all points in some selected a;, or stick with the original

s =min? éa, y  fla—al?

acA

Steven Wu (Penn) K-Means++ Big Data Reading Group 20 / 25



Continued

Either assign all points in some selected a;, or stick with the original

s; = min {qﬁA, Z lla — at||2}

acA

E[pa(CUC)] < qsi+ ari164(C)
t

where g7 is the probability no point in A is selected.
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Continued

Either assign all points in some selected a;, or stick with the original

s; = min {(;SA, Z lla — at||2}

acA
E [¢a(CUC)] < qisi + qr4104(C)
t
where g7 is the probability no point in A is selected.

Plug in p; = p (the case in which all points are far from C and they are
tightly clustered)
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Continued

Either assign all points in some selected a;, or stick with the original

s; = min {(;SA, Z lla — at||2}

acA

E[pa(CUC)] < qsi+ ari164(C)
t

where g7 is the probability no point in A is selected.
Plug in p; = p (the case in which all points are far from C and they are
tightly clustered)

@ =p(1—p)
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{s}} is an increasing sequence.
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sp=>lla—a?
a€A

{s}} is an increasing sequence.

ey
(o)
()
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Finally

E[pa(CUC)] < (1= qr41)20% + ar+104(C)
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Parellel Implementation

Lloyd’s iteration: easy to implement as long as we can store the set C
among all mappers

@ First center C: sample a point uniformly at random
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Parellel Implementation

@ First center C: sample a point uniformly at random
@ Initial cost ¢ = > d?*(x,C)(reducer simply adds)
@ for O(log)) times do

» (' + sample each point x € X independently with probability (mapper
independently sample)

» C+—CUCl
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Experimental Results

Clustering Cost Right Clustering Cost After
After Initialization Lloyd Convergence

Random NA 22,000
K-means++ 430 65
K-means| | 16 14

GAUSSMIXTURE: 10,000 points in 15 dimensions
K=50
Costs scaled down by 10*

Photo credited to Bahmani
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