Approximation Algorithms Workshop June 13-17, 2011, Princeton
\section*{Open Problems Session}
Grigory Yaroslavtsev, http://grigory.us
Scribe: YOUR NAME

1 Directed k-Spanner Problem

Proposed by Grigory Yaroslavtsev, for more details see slides here and a paper here

Problem statement Let $G(V, E)$ be a weighted directed graph. A k-spanner is a subset of edges of G, which preserves distances in the original graph up to a factor k. Formally, a k-spanner is a graph $G_{H}\left(V, E_{H}\right)$, where $E_{H} \subseteq E$ and $\forall(u, v) \in E$ we have $d_{G_{H}}(u, v) \leq k \cdot d_{G}(u, v)$.

We want to find a directed k-spanner which minimizes the number of edges $\left|E_{H}\right|$. What is the best approximation factor that we can get?

Most recent previous work

- ...
- Dinitz and Krauthgamer (STOC 2011) gave a $\tilde{O}\left(n^{\frac{2}{3}}\right)$ approximation and showed an integrality gap of $\Omega\left(n^{\frac{1}{3}-\epsilon}\right)$.
- This was improved to $\tilde{O}(\sqrt{n})$ by Berman, Bhattacharya, Makarychev, Raskhodnikova and Yaroslavtsev (ICALP 2011).
- Hardness: Elkin and Peleg (STOC 2000) show that it is quasi-NP-hard to approximate with ratio better than $2^{\log ^{1-\epsilon} n}$.
- Integrality gap: $\Omega\left(n^{1 / 3-\epsilon}\right)$ (for constant k) by Dinitz and Krauthgamer.

Questions :

- Can we beat this ratio?
- Current method is randomized rounding of an LP relaxation, combined with sampling. What other techniques can we use?
- What is a natural online setting for this problem?

Some comments by the listeners

- Q: How about undirected spanners?

A: They are very different, because girth arguments work there.

- Q: How about directed spanners of minimum cost?

A: The best result is by Dodis and Khanna (STOC 1999), who give $\tilde{O}(n)$-approximation.

- In above problem we had fixed k and wanted to minimize $\left|E_{M}\right|$. We can also consider the problem where we have a bound on $\left|E_{M}\right|$ and then want to minimize k.
- Q:Is there an example, when there is a sparse directed spanner of a dense graph?

A: For every k it is easy to construct a graph with $\Omega\left(n^{2}\right)$

- How well can we approximate the size of the sparsest $2 k$-spanner, relative to the size of the sparsest k-spanner?

