
Fast Fourier Sparsity Testing

Grigory Yaroslavtsev∗ Samson Zhou†

October 4, 2019

Abstract

A function f : Fn
2 → R is s-sparse if it has at most s non-zero Fourier coefficients. Motivated

by applications to fast sparse Fourier transforms over Fn
2 , we study efficient algorithms for the

problem of approximating the `2-distance from a given function to the closest s-sparse function.
While previous works (e.g., Gopalan et al. SICOMP 2011) study the problem of distinguishing
s-sparse functions from those that are far from s-sparse under Hamming distance, to the best
of our knowledge no prior work has explicitly focused on the more general problem of distance
estimation in the `2 setting, which is particularly well-motivated for noisy Fourier spectra. Given
the focus on efficiency, our main result is an algorithm that solves this problem with query
complexity O (s) for constant accuracy and error parameters, which is only quadratically worse
than applicable lower bounds.

1 Introduction

The Fourier representation of the function f : Fn2 → R is the function f̂ : Fn2 → R defined by the
forward Fourier transform f̂(α) = Ex∈Fn2 [f(x)χα(x)] and its inverse f(x) =

∑
α∈Fn2

f̂(α)χα(x), where

for each α ∈ Fn2 , the function χα : Fn2 → R is defined by χα(x) = (−1)
∑n
i=1 αixi . The values f̂(α) are

the Fourier coefficients of f . When f has at most s non-zero Fourier coefficients, we say that it is
Fourier s-sparse, or just s-sparse for short. The Fourier sparsity of functions plays an important role
in many different areas of computer science, including error-correcting codes [GL89, AGS03], learning
theory [KM93, LMN93], communication complexity [ZS09, BC99, MO09, TWXZ13], property
testing [GOS+11, WY13], and parity decision tree complexity [ZS10, STlV14].

There has also been renewed interest in the Fourier sparsity of functions over various finite
abelian groups with the recent development of specialized Fourier transform algorithms for such
functions [HIKP12a, HIKP12b]. These algorithms improve on the efficiency of the standard Fast
Fourier Transform algorithms for functions with sparse Fourier transforms by taking advantage
of this sparsity itself. Since many functions (and/or signals) in practical applications do display
Fourier sparsity, this line of research has yielded many exciting applications as well as theoretical
contributions (see [HIK+13] for details). For example, much of the recent work on the sparse Fourier
transform has focused on functions over fundamental domains, such as the line or the hypergrid.
Meanwhile, a sparse Fourier transform for functions over Fn2 has been known for over twenty years
as the Goldreich–Levin [GL89] and Kushilevitz–Mansour [KM93] algorithm. This algorithm can

∗Indiana University, Bloomington & The Alan Turing Institute, London, UK. E-mail: gyarosla@iu.edu
†Indiana University, Bloomington. E-mail: samsonzhou@gmail.com

1

mailto:gyarosla@iu.edu
mailto:samsonzhou@gmail.com

learn functions that are (close to) s-sparse, using time and query complexity poly(n, s). Since many
classes of functions over Fn2 are known to be close to being s-sparse for a certain value of s (e.g.,
monotone functions, decision trees, r-DNF formulas, etc.), the sparse Fourier transform given by
the GL/KM-algorithm is one of the cornerstones of computational learning theory.

One of the main limitations of the sparse Fourier transform as a technique is the fact that its
efficiency is conditional on the assumption that the data of interest can be sparsely represented
in the Fourier domain. Hence in order to reliably use sparse Fourier transform algorithms it is
beneficial to have a way to test if a function is s-sparse or, more generally, to estimate the distance
of a function to the closest s-sparse function. For such tasks property testing algorithms often come
into play as a preprocessing step (see, e.g., [Ron08]) since they typically require a much smaller
number of samples and other resources such as time and space. An important consideration when
using property testing is the fact that presence of two kinds of noise in the data must be tolerated:
small fraction of errors/outliers [PRR06] (noise of small Hamming weight) as well as arbitrary noise
with small `p-norm [BRY14]. Since the performance of sparse FFT algorithms is conditioned on the
sparsity under `22-distance, the subject of our study is to what extent can sparsity under `22 distance
be tested. The fundamental reason why `22-distance plays a special role in the Fourier domain is
its relation to the energy of the signal that is proportional to the sum of squares of the Fourier
coefficients according to Parseval’s theorem.

Formally, we define the `22-distance between f and g as dist22(f, g) = ‖f−g‖22 = 1
2n
∑

x∈Fn2
(f(x)−

g(x))2 and the `22-distance between f and a class P of functions as dist22(f,P) = ming∈P dist22(f, g).
The distance to Fourier s-sparsity is the latter distance when P is the set of functions with Fourier
sparsity at most s. We denote the class of all Fourier s-sparse functions as Fs. Hence our main
goal is to estimate dist22(f,Fs) up to an additive error ±ε. We refer to it as `22-distance estimation
problem and to the closely related decision version as tolerant `22-testing.

We also reserve the name of non-tolerant `22-testing for an easier promise problem of distinguishing
functions with Fourier sparsity at most s from those that are ε-far from having such sparsity, i.e.,
dist22(f,Fs) ≥ ε. Note that when working with noisy Fourier spectra, where most of the Fourier
coefficients are non-zero, this decision can be trivial when s� 2n, as an `22-testing algorithm can just
always reject. Hence the distance estimation problem described above can be substantially harder
for such spectra. To simplify presentation, we call a class ε-testable with q queries if there exists
an algorithm which makes q queries and achieves the above guarantee with constant probability.
We will also use Hamming distance while keeping the rest of the definitions the same in order to
describe some of the previous work in the area of property testing. In this case the distance between
f and g is defined as Prx∼Fn2 [f(x) 6= g(x)] and all the definitions above are changed accordingly.

1.1 Previous work

The most direct approach for `22-distance estimation and `22-testing is to use the testing-by-learning
approach established by Goldreich, Goldwasser, and Ron [GGR98]. Using the Goldreich–Levin /
Kushilevitz–Mansour algorithm [GL89, KM93], we can learn an s-sparse function h that will be
essentially as close to f as possible. We can then estimate the distance between f and h to get a
good approximation of the distance from f to Fourier s-sparsity. This approach requires O (sn)
queries in order to achieve constant error ε (see, e.g., the textbook exposition in [Gol01, O’D14]).
An improvement to this approach would be to use hashing to reduce the dimension down to a
subspace of size O

(
s2
)

(thus introducing no collisions between the top s coefficients) and then run
GL/KM within the subspace. The complexity of this approach would be O (s log s) queries for

2

constant ε, where the log s factor results from using O
(
s2
)

buckets to avoid collisions among the
top s coefficients. Other related previous work (e.g. [BBG18] who study testing sparsity over known
and unknown bases, including the Fourier basis) also incurs extra factors in query complexity. 1

The first specialized algorithm for the problem of testing Fourier sparsity under Hamming
distance was developed by Gopalan et al. [GOS+11]. They give a non-tolerant tester for Fourier
s-sparsity under Hamming distance with a number of queries to f that is independent of n and
polynomial in s and 1/ε. More precisely, the focus of [GOS+11] was a slightly different problem
where the class P of interest is defined to contain only Boolean s-sparse functions. Below we will

refer to this class as F0/1
s .2 However, in fact [GOS+11] show that with some loss in parameters,

this problem can be reduced to estimating `22-distance from Fs, the problem that we study in this
paper. Thus an implicit ingredient of the [GOS+11] algorithm is a `22-distance estimation algorithm
for Fs with query complexity O (poly(s)) for any constant additive error.

An active line of previous work focuses on tolerant testing under Hamming distance. Wimmer
and Yoshida [WY13] showed that the general approach of [GOS+11] can be extended to yield
tolerant testers for Fourier s-sparsity of Boolean functions. Specifically, they give an algorithms that
distinguish between functions that are ε/3-close to Fourier s-sparse from those that are ε-far from
Fourier s-sparse under Hamming distance, using poly(s) queries. This allows one to approximate
the distance to Fourier s-sparsity up to some multiplicative factor. The polynomial dependence on
s is fairly large and the result does not extend to additive error. Algorithms for estimating the
Hamming distance to Fourier s-sparsity up to an additive error can be also derived through a general
framework of Hatami and Lovett [HL13]. However, the instantiation of the [HL13] framework results
in power tower dependency on s.

1.2 Our Contributions

We introduce two new algorithms for testing Fourier s-sparsity with respect to `22-distance. Our
first main result shows that one can approximate the distance to Fourier s-sparsity in `22-distance
with a number of non-adaptive queries that is in fact linear in s. This result is proved in Section 3.

Theorem 1.1 (Approximating `22-distance to s-sparsity) For any s ≥ 1 and ε > 0, there is an
algorithm that given non-adaptive query access to a function f : Fn2 → R with unit `2-norm takes
at most O

(
s
ε4

log 1
ε log 1

δ

)
queries and approximates dist22(f,Fs) up to an additive error ±ε with

probability 1− δ and running time Õ
(
s
ε4

)
(see Section 3.)

Here, the Õ notation suppresses polylogarithmic factors in s and 1
ε .

As mentioned before, the main challenge in testing Fourier s-sparsity with respect to `22-distance
instead of Hamming distance seems to be the accurate estimation of a large number of possibly
small nonzero Fourier coefficients using a small number of queries. Whereas a function can only be
ε-far from Fourier s-sparsity with respect to Hamming distance by having a large number of nonzero
Fourier coefficients, a function can be ε-far from Fourier s-sparsity with respect to `22-distance

1Also, since [BBG18] handles a much more general problem in order to handle arbitrary design matrices, the
running time of their algorithms translates to polynomial in 2n in our case, which can be prohibitively large for our
application.

2While F0/1
s ⊆ Fs in general there is no known relationship between testing and distance estimation query

complexities of classes and their subclasses.

3

by either having too many large Fourier coefficients or a large number of small nonzero Fourier
coefficients.

Instead of estimating these small Fourier coefficients, we randomly partition the set of Fourier
coefficients into a number of cosets by first picking a random subspace H and measuring the energy
(the sum of the squared Fourier coefficients) in each coset. If H has sufficiently large codimension,
then the top Fourier coefficients are partitioned into separate cosets, so the estimation of the energy
in the top cosets is a good estimation of the energy of the top Fourier coefficients. To estimate
the energy in each coset, we query the function at a number of random locations to obtain an
empirical estimate within an additive factor of ε2‖f‖22 with constant probability. We then bound
the probability of two sources of errors: the hashing error, which originates from drawing a subspace
in which large Fourier coefficients collide, and the estimation error, which results from inaccurate
empirical estimations. Putting things together, we show that our estimator approximately captures
the Fourier s-sparse function closest to f in `22-distance and hence gives a good approximation of
the distance from f to the closest Fourier s-sparse function.

We also show a lower bound of Ω(
√
s) for `22-testing of Fs for non-adaptive query algorithms.

Theorem 1.2 For any s ≤ 2n−1, there exists a constant c > 0 such that any non-adaptive algorithm
given query access to f : Fn2 → R such that ‖f‖22 = 1± ε that distinguishes whether f is s-sparse or
f is 1

3 -far from s-sparse in `22 with probability at least 2/3 has to make at least c
√
s queries to f

(see Section 4.1).

Our lower bound results from designing two distributions DY ES and DNO, where the distribution
DY ES is the set of Fourier s-sparse functions whose Fourier coefficients are scaled Gaussian random
variables whereas the DNO distribution is the set of functions with support on all Fourier coefficients.
The Fourier coefficients in the DNO distribution are Gaussian random variables with a different
scaling, such that the total variation distance between the DY ES and DNO distributions restricted
to a small query set is also small.

[GOS+11] gives an Ω(
√
s) property testing lower bound for F0/1

s . Their results can be extended
to Fs, provided that s ≤ 2cn for a specific constant c > 0, whereas our results covers the full range
of values of s. Thus our results in Theorem 1.1 above are at most a quadratic factor away from
optimal. We consider closing the quadratic gap in query complexity of `22-distance estimation for Fs
as the main open problem posed by our work.

2 Preliminaries

For a finite set S we denote the uniform distribution over S as U(S).

2.1 Fourier Analysis

We consider functions from Fn2 to R. For any fixed n ≥ 1, the space of these functions forms an
inner product space with the inner product 〈f, g〉 = Ex∈Fn2 [f(x)g(x)] = 1

2n
∑

x∈Fn2
f(x)g(x). The

`2-norm of f : Fn2 → R is ‖f‖2 =
√
〈f, f〉 =

√
Ex[f(x)2] and the `2-distance between two functions

f, g : Fn2 → R is the `2-norm of the function f − g. We write dist2(f, g) = ‖f − g‖2. It is, in other

words, ‖f − g‖2 =
√
〈f − g, f − g〉 = 1√

|Fn2 |

√∑
x∈Fn2

(f(x)− g(x))2.

For α ∈ Fn2 , the character χα : Fn2 → {−1, 1} is the function defined by χα(x) = (−1)α·x. The
Fourier coefficient of f : Fn2 → R corresponding to α is f̂(α) = Ex[f(x)χα(x)]. The Fourier transform

4

of f is the function f̂ : Fn2 → R that returns the value of each Fourier coefficient of f . The set of
Fourier transforms of functions mapping Fn2 → R forms an inner product space with inner product〈
f̂ , ĝ
〉

=
∑

α∈Fn2
f̂(α)ĝ(α). The corresponding `2-norm is ‖f̂‖2 =

√〈
f̂ , f̂

〉
=
√∑

α∈Fn2
f̂(α)2. Note

that the inner product and `2-norm are weighted differently for a function f : Fn2 → R and its
Fourier transform f̂ : Fn2 → R. We refer to the quantity f̂(α)2 as the energy of a Fourier coefficient
f̂(α).

Fact 2.1 (Parseval’s identity) For any f : Fn2 → R it holds that ‖f‖2 = ‖f̂‖2 =
√∑

α∈Fn2
f̂(α)2.

A function f : Fn2 → R is Fourier s-sparse for some sparsity s if the number of non-zero Fourier
coefficients of f is at most s. We let Fs denote the set of all Fourier s-sparse functions.

2.2 Property Testing

We study algorithms that make queries to a given function f . In this setting two different query
access models are typicaly considered. If all queries must be chosen in advance without access to the
values of f , we call the corresponding algorithm non-adaptive or equivalently, using non-adaptive
queries. Otherwise, the algorithm is adaptive, and uses adaptive queries, i.e. the queries made by
the algorithm might depend on all previously queried values of f . In this paper, both our upper
and lower bounds apply specifically to the non-adaptive query model.

We use the following standard definition of property testing under Hamming distance:

Definition 2.2 (Property testing [GGR98]) An algorithm A is a property tester with param-
eter ε > 0 for a class C of functions f : Fn2 → {−1, 1} if given query access to f it distinguishes
with probability at least 2/3 whether f ∈ C or ming∈C Prx∼Fn2 [f(x) 6= g(x)] ≥ ε. If neither of the two
conditions hold then A can output an arbitrary answer.

The notions of `22-tester and distance approximator are defined below. In order to make ε be
a scale-free parameter we assume that ‖f‖22 = 1 throughout this paper unless otherwise specified.
For example, for Boolean functions f : Fn2 → {−1, 1} this holds automatically and for real-valued
functions this can be achieved by an appropriate scaling. The `2-distance from a function f : Fn2 → R
to a class C of functions mapping Fn2 to R is dist2(f, C) = ming∈C ‖f − g‖2.

Definition 2.3 (`22-testing [BRY14]) An algorithm A is an `22-tester with parameter ε > 0 for a
class C of functions f : Fn2 → R if given query access to f with unit `2-norm it distinguishes with
probability at least 2/3 whether f ∈ C or dist22(f, C) ≥ ε.

In order to simplify presentation we say that a function f is ε-far from a class C in some distance
(e.g. Hamming or `22) if the closest function from C is at distance at least ε from f .

Generalizing the notion of `22-testing we define a notion of `22-distance approximation as follows:

Definition 2.4 (`22-distance approximator) An algorithm A is an `22-distance approximator
with parameter ε > 0 for a class C of functions f : Fn2 → R if given query access to f with unit `2-
norm it outputs an estimate ξ such that with probability at least 2/3 it holds that

∣∣ξ − dist22(f, C)
∣∣ ≤ ε.

5

2.3 Fourier Hashing

We use notation H ≤ Fn2 to denote a subspace H of Fn2 . For H ≤ Fn2 we use notation H⊥ for
the orthogonal subspace of H. Given a ∈ Fn2 , the coset a + H is defined by the set of points
a+H := {a+ h|h ∈ H}.

Definition 2.5 For a subspace H ≤ Fn2 , an element a ∈ H⊥, and a function f : Fn2 → R, define the
projected function f |a+H : Fn2 → R to be the function that satisfies f |a+H(z) = E

x∈H⊥

[
f(x+z)χa(x)

]
for each z ∈ Fn2 . Given a subset A ⊆ H⊥, we define f |A+H =

∑
a∈A f |a+H .

From this definition, we observe that the values f |a+H(z) can all be computed simultaneously

Proposition 2.6 The set of queries {f(x+ z)}x∈H⊥ can be used to compute f |a+H(z) for each of
the cosets a+H of H simultaneously.

We give more details about the number of queries required for computation of f |a+H in Lemma 3.8.
We note that the projection of f onto the cosets of a linear subspace H yields a partition of the
Fourier spectrum of f . Moreover, the projection of f to a coset a+H is a function that zeroes out
all Fourier coefficients not in a+H.

We now recall the following Poisson summation formula. For a reference, see Section 3.3 in
[O’D14]. We also give the proof of Proposition 2.7 in Appendix A.2, for completeness.

Proposition 2.7 (Poisson Summation Formula) Fix any subspace H ≤ Fn2 and element a ∈
Fn2 . Then for the projected function f |a+H :

(1) f |a+H(z) =
∑

β∈a+H f̂(β)χβ(z)

(2) f̂ |a+H(α) =

{
f̂(α) if α ∈ a+H

0 otherwise.

Proposition 2.7 allows the following definition.

Definition 2.8 The total energy of f |a+H is defined as
∑

α∈a+H f̂(α)2 = ‖f̂ |a+H‖22.

Fact 2.9 When H ≤ Fn2 is drawn uniformly at random from the set of subspaces of codimension d,
then for any distinct a, b ∈ Fn2 \ {0}, it holds that Pr[b ∈ a+H] = 2−d.

Fact 2.9 allows one to think of the projections {f |a+H}a∈H⊥ as a hashing process applied to the
Fourier coefficients of f . In fact, it is also known (for example, by Proposition 2.9 in [GOS+11])
that random projections correspond to a pairwise independent hashing process.

3 `2
2-Distance Approximation and Sparsity Testing

Recall that the property testing model, initiated by [GGR98], requires an algorithm to accept
objects that have some property P and reject objects that are at Hamming distance at least ε from
having property P for some input parameter ε > 0 . In particular, in the property testing problem
for s-sparsity, one would like to differentiate whether a given function f : Fn2 → R with ||f ||2 = 1 is
in the class Fs of Fourier s-sparse functions, or has distance at least ε from Fs.

6

Problem 3.1 (Property Testing for s-Sparsity) Let Fs be the class of s-sparse functions map-
ping from Fn2 to R. Given query access to a function f : Fn2 → R with ||f ||2 = 1 and parameter
ε > 0, we call an algorithm A a property tester with query complexity q if using at most q queries,
A accepts f if f ∈ Fs and rejects if min

g∈Fs
||f − g||22 ≥ ε.

We now define the problem of energy estimation for the top s Fourier coefficients, which also
allows to solve the property testing problem. Note that this energy estimation problem for functions
with unit `2-norm is equivalent to the `22-distance approximation problem in Definition 2.4 since
both are defined in terms of additive error approximation.

Problem 3.2 (Energy Estimation of top s Fourier Coefficients) Let Fs be the class of s-
sparse functions mapping from Fn2 to R. Given non-adaptive query access to a function f : Fn2 → R
with ||f ||2 = 1 and parameters s > 0 and 0 < ε ≤ 1, we call an algorithm A an ε-estimator
of the energy of the top s Fourier coefficients if using at most q queries, A outputs ξ such that∣∣∣ξ −max|S|=s

∑
α∈S f̂(α)2

∣∣∣ ≤ ε.
The energy estimation problem can be used to solve the property testing problem above easily

with roughly the same query complexity (see Fact A.1).
Our Algorithm 1 estimates the energy of the top s Fourier coefficients by first picking a random

subspace H of codimension d = log 2s
ε4

uniformly at random. The intuition is that by picking the
codimension to be large enough, the top s Fourier coefficients are partitioned into cosets with only
a few collisions, so the estimation of the energy in the top s cosets is a good estimation of the
energy of the top s Fourier coefficients. To estimate the energy in the top s cosets, Algorithm 1
samples γ = O

(
s
ε4
‖f‖22

)
pairs (x, x+ z) to obtain an empirical estimate of the energy in each coset

within an additive factor of ε2‖f‖22 with constant probability. This yields the proof of Theorem 1.1.
Similarly, Algorithm 2 gives a property tester for s-sparsity. The success probability for each of
these algorithms can be increased to 1− δ for any δ > 0 by taking the median of O

(
log 1

δ

)
parallel

repetitions.

Algorithm 1: Energy Estimation(ε, s)

Draw H ≤ Fn2 of codimension d = log 2s
ε4

uniformly at random;
for j = 1 to ` = O

(
log 1

ε

)
do

Ij ← set of pairs (x, x+ z) of size γ = O
(
s
ε4
‖f‖22

)
, where x ∼ U(Fn2), z ∼ U(H⊥);

for each a ∈ H⊥ do

y
(j)
a+H ← 0;

for each (x, x+ z) ∈ Ij do

y
(j)
a+H ← y

(j)
a+H + 1

|Ij |χa(z)f(x)f(x+ z)

end

end

end

Return: ξ := maxS⊆H⊥:|S|=s
∑

a∈S median
(
y
(1)
a+H , y

(2)
a+H , . . . , y

(`)
a+H

)
.

7

Algorithm 2: Fast Fourier Sparsity Test (FFST)(ε, s)

Let f be some function with known ||f ||2.
Let ξ be the output of Algorithm 1 on input ε

2 and sparsity s.

If ξ ≤
(
1− ε

2

)
||f ||22, reject.

Otherwise, accept.

Our analysis deals with two possible sources of error in the energy estimation. In Section 3.1,
we consider the error caused by collisions in the hashing scheme and in Section 3.2, we consider
the error caused by sampling variance in the energy estimates. Note that we perform worst-case
analysis (over all possible sets of size s) for the hashing error as in the last step of the algorithm we
adaptively select the largest subset.

3.1 Hashing Error

We first analyze the error introduced into our estimator by hashing the Fourier coefficients across
multiple cosets (assuming all estimates of energies in the cosets are exact). Thus the first technical
component of the analysis of the sparsity distance approximator shows that for a random choice of
subspace H of codimension log 2s

ε4
, the union of the top s cosets of H has total energy that is close

to the sum of the Fourier mass of the s coefficients largest in magnitude.
Let E1 ≥ · · · ≥ E2n be the true values of the energies of the 2n Fourier coefficients corresponding

to the function f : Fn2 → R. Let h be some pairwise independent hash function with domain [2n]
and range [2d], which can be viewed as partitioning the 2n Fourier coefficients across the 2d cosets,
which we refer to as buckets. We denote the overall energy in the i-th bucket as yi, where we assume
that the hash function is clear from the context. Let the buckets be indexed in the non-increasing
order by energy, so that y1 ≥ y2 ≥ · · · ≥ y2d . Furthermore, let y∗i denote the energy fo the largest
coefficient hashing into the i-th bucket. Formally, if index i corresponds to coset a+H, then we let

yi =
∑

β∈a+H
f̂(β)2, y∗i = max

β∈a+H
f̂(β)2.

Definition 3.3 (Hashing Error) We define the hashing error of h as errsh(E1, . . . , E2n) =
∑s

i=1 yi−
Ei to be the difference between the overall energy in the top s buckets and the energy of the top s
coefficients.

Note that the hashing error is always non-negative as there are at most s buckets containing the
top s Fourier coefficients. The contribution to the energy of the ith bucket from the largest Fourier
coefficient hashing into this bucket is denoted as y∗i . We have:

errsh(E1, . . . , E2n) =
s∑
i=1

yi − Ei =
s∑
i=1

yi − y∗i +
s∑
i=1

y∗i − Ei ≤
s∑
i=1

yi − y∗i ,

where we used the fact that
∑s

i=1 y
∗
i ≤

∑s
i=1 Ei.

We can bound the hashing error across any set of s buckets, rather than just the hashing error
across the buckets containing the top s Fourier coefficients.

8

Lemma 3.4 (Expected Hashing Error Bound) Let H ≤ Fn2 be a subspace of codimension d
drawn uniformly at random. Let zi = yi − y∗i be the “collision error” in the ith bucket. Then

E
H

[
s∑
i=1

zi

]
≤
√

2s

2d
||f ||22.

Proof : By the Cauchy-Schwarz inequality,
∑s

i=1 zi ≤
√
s
√∑s

i=1 z
2
i . Let δjk be the indicator

variable for the event that Fourier coefficients Ej and Ek collide and let Dj be the indicator variable
for the event that Ej is not the largest coefficient in its hash bucket. Then we have:

s∑
i=1

z2i ≤
2d∑
i=1

z2i =

2d∑
i=1

(yi − y∗i)2 =
∑

j,k∈[2n]

EjEkδjkDjDk ≤
∑

j,k∈[2n]

EjEkδjkDj ,

where the first inequality holds since the s buckets is a subset of the 2d buckets, and the second
inequality holds because either Dk = 0 or Dk = 1.

Taking expectation over H we have:

E
H

 ∑
j,k∈[2n]

EjEkδjkDj

 = E
H

 ∑
j∈[2n]

E2jDj

+ E
H

 ∑
j 6=k∈[2n]

EjEkδjkDj

 ≤ E
H

 ∑
j∈[2n]

E2jDj

+

(∑2n

j=1 Ej
)2

2d
,

where we used Fact 2.9 and pairwise independence, so that E
H

[δjk] = 1
2d

. Note that by Fact 2.9,

pairwise independence and a union bound, Pr[Dj] ≤ j−1
2d

and hence for the first term we have:

E
H

 ∑
j∈[2n]

E2jDj

 ≤ 2n∑
j=1

j − 1

2d
E2j ≤

1

2d

2n∑
j=1

j−1∑
k=1

EjEk ≤

(∑2n

j=1 Ej
)2

2d

Putting things together, we have

E
H

[
s∑
i=1

zi

]
≤
√
s · E

H

√√√√ s∑
i=1

z2i

 ≤ √s ·
√√√√E

H

[
s∑
i=1

z2i

]
≤
√

2s

2d

2n∑
j=1

Ej =

√
2s

2d
||f ||22,

where we recall that the first inequality is by Cauchy-Schwarz, the second is by Jensen and the third
is from the bound on E

H

[∑s
i=1 z

2
i

]
derived above. 2

Now we give an upper bound on the variance of the difference between the energies of the top s
buckets and their respective largest Fourier coefficients:

Lemma 3.5 (Variance of the Hashing Error) Let H ≤ Fn2 be a subspace of codimension d
drawn uniformly at random. Let zi = yi − y∗i be the “collision error” in the ith bucket. Then

Var
H

[
s∑
i=1

zi

]
≤ 2||f ||42

2d
.

9

Proof : By pairwise independence we have:

Var
H

[
s∑
i=1

zi

]
≤ Var

H

 2d∑
i=1

zi

 =
2d∑
i=1

Var
H

[zi] ≤
2d∑
i=1

E
H

[
z2i
]
≤

2(
∑n

i=1 Ei)2

2d
=

2||f ||42
2d

,

where the last inequality follows using the same argument as in the proof of Lemma 3.4. 2

We now give a bound on the hashing error.

Corollary 3.6 For 2d = 2s
ε4

and 0 < ε ≤ 1/2, then with probability at least 15/16 over the possible
choices of H:

errsh(E1, . . . , E2n) =
s∑
i=1

yi − Ei ≤ 5ε2||f ||22.

Proof : Let zi = yi − y∗i be the collision error in the ith bucket and let Z =
∑s

i=1 zi and
‖E‖1 =

∑n
i=1 Ei. From Lemma 3.4, Lemma 3.5, and Chebyshev’s inequality, we have that for any

α > 0:

Pr

[
Z ≥

√
2s

2d
||f ||22 + α

√
2

2d
||f ||22

]
≤ 1

α2
.

For 2d = 2s
ε4

we have Pr[Z ≥ (1 + α√
s
)ε2||f ||22] ≤ 1/α2. Recall that as we already argued above:

s∑
i=1

yi − Ei =
s∑
i=1

yi − y∗i +
s∑
i=1

y∗i − Ei ≤
s∑
i=1

yi − y∗i ,

since
∑s

i=1 y
∗
i ≤

∑s
i=1 Ei. Taking α = 4 and noting that s ≥ 1, it follows that

s∑
i=1

yi − Ei ≤ 5ε2||f ||22

with probability at least 15/16. 2

3.2 Estimation Error

We now analyze the error introduced to our estimator through sampling used to approximate the
true bucket energies. Our intuition is the following standard fact to estimate the total energy via
sampling.

Fact 3.7 (Fact 2.5 in [GOS+11])
∑

α∈a+H f̂(α)2 = E
x∈Fn2 ,z∈H⊥

[χa(z)f(x)f(x+ z)].

Using Fact 3.7, the energy
∑

α∈a+H f̂(α)2 in each bucket a + H can be approximated by
repeatedly querying f using the following Lemma 3.8, whose proof is similar to Proposition 2.6 in
[GOS+11]. We include the full proofs to formalize the dependency on ||f ||2.

In the language of Lemma 3.8, suppose xi is the energy of bucket a+H and Ij is a set of pairs
(x, x+ z) of size γ, as in Algorithm 1. Then the estimate yi,j corresponding to a sample Ij is:

yi,j =
1

|Ij |
∑

(x,x+z)∈Ij

χa(x)f(z)(x+ z).

10

We now bound the expected squared distance between yi,j and xi by the inverse of the sample
size.

Lemma 3.8 Given a subspace H ≤ Fn2 , let x1 ≥ x2 ≥ . . . ≥ x2d be the true energies in each of the
buckets and yi,j be the estimate of xi given sample Ij of size γ. Then using γ = O

(
s
ε4
||f ||22

)
queries

to f ,

E
[
|yi,j − xi|2

]
≤ ε4

s
||f ||22,

where the expectation is taken over possible samples Ij.

Proof : Given a subspace H ≤ Fn2 , let x, y ∈ Fn2 so that |f(x)f(y)| ≤ f2(x)+f2(y)
2 ≤ 1

2 ||f ||
2
2. Thus,

an empirical estimation of E
x∈Fn2 ,z∈H⊥

[χa(z)f(x)f(x+ z)], with O
(
1
ε2

log 1
δ

)
queries to f , is within

an additive factor of ε||f ||22 by standard Chernoff bounds.
Let C be a constant such that C

ε2
log 1

δ samples suffice to estimate yi,j − xi within an additive
ε||f ||22 with probability at least 1− δ. Equivalently for any θ > 0, the probability that |yi,j − xi| ≥ θ

using γ samples is at most e
− γθ2

C||f ||42 . Then we have:

E
[
|yi,j − xi|2

]
=

∫ ∞
0

Pr
[
|yi,j − xi|2 ≥ t

]
dt

=

∫ ∞
0

Pr
[
|yi,j − xi| ≥

√
t
]
dt

≤
∫ ∞
0

e
− γt

C||f ||42 dt =
C||f ||42
γ

.

Hence, for γ = O
(
s
ε4
||f ||22

)
, we have E

[
|yi,j − xi|2

]
≤ ε4

s ||f ||
2
2, as desired. 2

Note that the estimate yi,j is exactly the estimate y
(j)
a+H in Algorithm 1, where bucket a+H is

the ith largest Fourier coefficient. We use two different notations to refer to the same quantity since
it is more convenient to use the notation yi,j to index estimates by magnitude of Fourier coefficient,

whereas the notation y
(j)
a+H is more convenient to index by coset. Moreover, observe that we can

obtain estimates yi,j of the energies xi simultaneously, by Proposition 2.6.
As before, let y∗i denote the contribution to the energy of the ith bucket from the largest Fourier

coefficient hashing into this bucket.

Lemma 3.9 Let ε > 0 and H be a random subspace of codimension d = log 2s
ε4

and let x1 ≥ x2 ≥
. . . ≥ x2d be the true energies in each of the buckets. Let ` = O

(
log 1

ε

)
be the number of random

samples. Then for any η > 0,

Pr[|y∗i − xi|2 ≥ η] ≤
(

2eε2||f ||22
sη

)`/2
,

where the probability is taken over all samples of size `.

Proof : By applying Markov’s inequality to Lemma 3.8, it follows that for each pair of i and j,

Pr
[
|yi,j − xi|2 ≥ η

]
≤ ε4||f ||22

sη
.

11

Then the probability that at least half of the ` samples returns such estimates is

Pr

[
|{j : |yi,j − xi|2 ≥ η}| >

`

2

]
≤
(
`

`/2

)(
ε4||f ||22
sη

)`/2
≤
(

2eε4||f ||22
sη

)`/2
,

where the second inequality follows from the well-known bound on the binomial coefficient
(
n
k

)
≤(

n·e
k

)k
for all 1 ≤ k ≤ n. 2

Lemma 3.10 Let H be a random subspace of codimension d = log 2s
ε4

. Then the expected value of
the estimation error satisfies

E
H

[
s∑
i=1

|y∗i − xi|2
]
≤ ε2 · ||f ||22.

Proof : Let β =
2eε4||f ||22
sε4/`

. Then:

E
H

[
s∑
i=1

|y∗i − xi|2
]

= E
H

[∫ ∞
0

min(s, |{a : |y∗a − xa|2 ≥ η|})dη
]

≤
∫ ∞
0

min(s,E
[
|{i : |y∗i − xi|2 ≥ η|}

]
)dη

≤
∫ ∞
0

min

(
s, 2d

(
2eε4||f ||22

sη

)`/2)
dη

≤
∫ β

0
s dη +

∫ ∞
β

2d
(

2eε4||f ||22
sη

)`/2
dη,

where the second inequality follows from Lemma 3.9. Thus,

E
H

[
s∑
i=1

|y∗i − xi|2
]
≤ 2eε4||f ||22

ε4/`
+ 2d

(
2eε4||f ||22

s

)`/2
2

`− 2

(
1

β

)`/2−1
=

2eε4||f ||22
ε4/`

+ 2d
(

2eε4||f ||22
s

)
ε2

ε4/`
2

`− 2
.

Hence for ` = Θ
(
log 1

ε

)
, we have E

H

[∑s
i=1 |y∗i − xi|2

]
≤ ε2 · ||f ||22. 2

3.3 Proof of Theorem 1.1

Recall that our algorithm returns an estimate ξ of the sum of the s buckets with the largest energy.
Since the estimation error is small by Lemma 3.10, ξ is a good estimate of the actual sum of the s
buckets with the largest energy. Because the hashing error is small by Corollary 3.6, ξ is also a
good approximation of the energy of the s Fourier coefficients β1, . . . , βs with the largest energy.
Consider the function f∗ whose values are the same as f at the Fourier coefficients {βi} but are
zero elsewhere and note that by Parseval’s identity, f∗ is the s-sparse function closest to f . Hence,
ξ is a good estimate of ||f∗||22.

12

For each random sample Ij of size γ = O
(
s‖f‖22
ε4

)
, let y

(i)
a+H be the corresponding estimate of

(f̂ |a+H)2. Let S∗ = argmax|S|=s
∑

a∈S median{y(1)a+H , y
(2)
a+H , . . . , y

(`)
a+H}, where ` = O

(
log 1

ε

)
is the

number of repetitions. Let β∗f |a+H = argmaxα∈a+H f̂(α)2 and define the function h : Fn2 → R by
setting

ĥ(β∗f |a+H) = sgn(f̂(β∗f |a+H)) ·median

{√
y
(i)
a+H

}
for each a ∈ S∗ to be the only non-zero Fourier coefficients of h. Let β1, β2, . . . , βs be defined so that

f̂(β1), f̂(β2), . . . , f̂(βs)

are the largest s Fourier coefficients of f . Define the function f∗ : Fn2 → R by setting

f̂∗(βi) = f̂(βi)

for each 1 ≤ i ≤ s to be the only non-zero Fourier coefficients of f∗.

Lemma 3.11 Let ξ be the output of Algorithm 1 and f∗ and h be defined as above. Then∣∣∣ξ − ||f∗||22∣∣∣ ≤ 2||f∗ − h||2||f ||2.

Proof : Observe that Algorithm 1 outputs

ξ =
∑
a∈S∗

median
{
y
(1)
a+H , y

(2)
a+H , . . . , y

(i)
a+H

}
=
∑
a∈S∗

ĥ(β∗f |a+H)2 = ||h||22.

Let g : Fn2 → R be the s-sparse function defined by setting

ĝ(β∗f |a+H) = f̂(β∗f |a+H)

for each a ∈ S∗ to be the only non-zero Fourier coefficients of f∗. Therefore,∣∣∣ξ − ||f∗||22∣∣∣ =
∣∣||h||22 − ||f∗||22∣∣ = (|||h||2 − ||f∗||2|) (|||h||2 + ||f∗||2|) .

By triangle inequality, |||h||2 − ||f∗||2| ≤ ||f∗ − h||2 and |||h||2 + ||f∗||2| ≤ ||h||2 + ||f∗||2. Thus,∣∣∣ξ − ||f∗||22∣∣∣ ≤ ||f∗ − h||2(||h||2 + ||f∗||2).

Since ||h||2 + ||f∗||2 ≤ 2||f ||2, then it remains to bound ||f∗ − h||2. 2

Lemma 3.12 Let ξ be the output of Algorithm 1 and f∗ be defined as above. Then with probability
at least 7

8 , ∣∣∣ξ − ||f∗||22∣∣∣ ≤ 14ε||f ||22.

Proof : Let g : Fn2 → R be the s-sparse function defined by setting

ĝ(β∗f |a+H) = f̂(β∗f |a+H)

13

for each a ∈ S∗ to be the only non-zero Fourier coefficients of f∗. Then by triangle inequality,

||f∗ − h||2 ≤ ||f∗ − g||2 + ||g − h||2.

Recall that E1 ≥ · · · ≥ E2n are the true values of the energies of the 2n Fourier coefficients
corresponding to function f : Fn2 → R and y∗i is the contribution to the energy of the ith bucket from
the largest Fourier coefficient hashing into this bucket. Let S be the set of indices corresponding to
the buckets with nonzero energy in f∗ and g and observe that |S| ≤ s. Thus, ||f∗ − g||22 is at most∑

i∈S(yi−Ei), where yi is the total energy in the ith bucket. By Corollary 3.6,
∑

i∈S(yi−Ei) ≤ 5ε2||f ||22
with probability at least 15

16 .
On the other hand, ||g−h||22 ≤ 16ε2||f ||22 with probability at least 15

16 by Lemma 3.10 and Markov’s

inequality. Thus, ||f∗−h||2 ≤
(√

5 + 4
)
ε||f ||2 ≤ 7ε||f ||2 and by Lemma 3.11,

∣∣∣ξ−||f∗||22∣∣∣ ≤ 14ε||f ||22
with probability at least 7

8 . 2

By Lemma 3.8, it suffices to use O
(
s
ε2
‖f‖22 log 1

ε log 1
δ

)
queries to bound the sampling error. Hence,

the query complexity follows as we assume ‖f‖22 = 1.
Algorithm 1 runs through ` = O

(
log 1

ε

)
iterations, each time sampling f at γ = O

(
s
ε4

)
pairs of

points and updating each of the 2d = O
(
s
ε4

)
cosets. Hence, Algorithm 1 runs in O

(
s2

ε8
log 1

ε

)
time.

We do not attempt to optimize runtime in Algorithm 1, as further optimizations can be made using
standard sparse Hadamard transform techniques, e.g. page 163 in [Gol00] or in [Lev95, Pri] to update
the empirical estimation of each coset, which improves the total running time to O

(
s
ε4

log s
ε4

log 1
ε

)
.

4 Lower Bounds for `2
2-Testing of s-Sparsity

To the best of our knowledge the only lower bound known for the s-sparsity testing problem is due
to [GOS+11]. Formally, they construct a hard distribution that is far from s-sparse in Hamming
distance but since the support of the distribution is Boolean functions this also implies a lower
bound under `22. Under `22-distance their Theorem 2 can be restated as follows:

Theorem 4.1 (Lower bound for `22 testing of Fourier sparsity [GOS+11]) Fix any constant
τ > 0. Let C(τ) = O (log 1/τ) and s ≤ 2n/C(τ). There exists a constant c(τ) so that any algorithm,
which given non-adaptive query access to f : Fn2 → {−1, 1}, that distinguishes s-sparse functions
from functions that are c(τ)-far from s-sparse in `22 distance with probability at least 2/3 requires
Ω(
√
s) queries.

Below we extend this result to larger values of s for non-adaptive testers of real-valued functions.

4.1 Ω(
√
s) Lower Bound for Non-adaptive Testers

We show a lower bound by designing two distributions DY ES and DNO, the former supported on
the class of interest and the latter being far from it, such that the total variation distance between
these distributions restricted to the query set is at most δ. This implies that the query set cannot
distinguish the two distributions with probability greater than 1+δ

2 .

Definition 4.2 (Total Variation Distance) The total variation distance between two random
variables P1 and P2 with corresponding probability density functions p1(x), p2(x) ∈ Rn is defined as
dTV (P1, P2) = 1

2

∫
Rn |p1(x)− p2(x)| dx.

14

Theorem 4.3 For any s ≤ 2n−1, there exists a constant c > 0 such that any non-adaptive algorithm
given query access to f : Fn2 → R such that ‖f‖22 = 1± ε that distinguishes whether f is s-sparse or
f is 1

3 -far from s-sparse in `22 with probability at least 2/3 has to make at least c
√
s queries to f .

Proof : We define two distributions DY ES and DNO where DY ES is supported on s-sparse
functions only and DNO is supported on functions that are far from s-sparse. Then by Yao’s
principle it suffices to show that if the size of the query set Q is at most c

√
s then the total variation

distance between the two distributions restricted on the query set dTV (DY ES(Q),DNO(Q)) < 1/3.
We now define the DY ES distribution. For each z ∈ 2[n] let gz ∼ N(0, 1) be an independent zero

mean and unit variance Gaussian random variable. Let S ⊆ 2[n] be a random subset of fixed size s
chosen uniformly at random from the collection of all subsets of size exactly s. Our distribution
DY ES corresponds to a random family of functions fS defined as follows:

fS(x) :=
1√
s

∑
z∈S

gzχz(x).

The distribution DNO is defined similarly, except that we fix S = 2[n], i.e. we set:

f(x) =
1

2n/2

∑
z∈2[n]

g′zχz(x),

where g′z ∼ N(0, 1) are again independent and identically distributed standard normal variables.
Note that by standard Chernoff bounds with high probability functions sampled from both

distributions satisfy ‖f‖22 = 1± ε. Furthermore by Chernoff bounds, with high probability functions
in the support of DNO are at least 1

3 -far in `22 from s-sparse for s ≤ 2n−1 (their expected distance is
at least 1/2). Consider any non-adaptive randomized algorithm that makes q queries. By Yao’s
principle we can fix the set of queries to form a set Q ⊆ Fn2 or size q. The values of fS on Q form a
vector with (possibly correlated) zero mean Gaussian entries.

Fix any S of size s. If x = y then we have:

Eg[fS(x)fS(y)] = Eg[fS(x)2] =
1

s
Eg

∑
z1∈S

gz1χz1(x)

2 =
1

s

∑
z1∈S

Eg[g2
z1]

 = 1.

Computing the values of the off-diagonal entries in the covariance matrix of fS for x 6= y we have:

Eg[fS(x)fS(y)] =
1

s
Eg

∑
z1∈S

gz1χz1(x)
∑
z2∈S

gz2χz2(y)

=

1

s
Eg

∑
z∈S

g2
zχz(x)χz(y) +

∑
z1 6=z2∈S

gz1χz1(x)gz2χz2(y)

=

1

s

∑
z∈S

χz(x)χz(y)Eg

[
g2
z

]
+

∑
z1 6=z2∈S

χz1(x)χz2(y)Eg [gz1gz2]

=

1

s

∑
z∈S

χz(x)χz(y) +
∑

z1 6=z2∈S
χz1(x)χz2(y)Eg [gz1]Eg[gz2]

15

=
1

s

∑
z∈S

χz(x)χz(y)

Let ξ1, . . . , ξq be the inputs in the query set Q. For any fixed z ∈ 2[n] define az ∈ {−1, 1}q to be
a column vector with entries az,i = χz(ξi). Then the covariance matrix of fS(ξ1), . . . fS(ξq) under
the distribution DY ES is given by a random family of matrices MS ∈ Rq×q defined as follows:

MS =
1

s

∑
z∈S

aza
T
z .

Similarly for DNO the covariance matrix of f(ξ1), . . . , f(ξq) is 1
2n
∑

z∈2[n] aza
T
z = I.

The following standard fact allows to bound the total variation distance between two zero mean
Gaussians with known covariance matrices.

Fact 4.4 (See e.g. Corollary 2.14 in [DKK+16]) Let δ > 0 be sufficiently small and let N (0,Σ1)
and N (0,Σ2) be normal distributions with zero mean and covariance matrices Σ1 and Σ2 respectively.

If ‖I − Σ
−1/2
2 Σ1Σ

−1/2
2 ‖F ≤ δ then:

dTV (N (0,Σ1),N (0,Σ2)) ≤ O (δ) .

Using the lemma above and setting Σ1 = MS and Σ2 = I in order to show an upper bound
on the total variation distance it suffices to bound the expected Frobenius norm of the difference
ES [‖I −MS‖F].

We have:

ES

[∥∥∥∥∥I − 1

s

∑
z∈S

aza
T
z

∥∥∥∥∥
F

]
= ES

 ∑
1≤i,j≤q

(
δij −

1

s

∑
z∈S

χz(ξi)χz(ξj)

)2

=
∑

1≤i≤q
ES

(1− 1

s

∑
z∈S

χz(ξi)
2

)2
+

∑
1≤i 6=j≤q

ES

(1

s

∑
z∈S

χz(ξi)χz(ξj)

)2

=
1

s2

∑
1≤i 6=j≤q

ES

∑
z1∈S

χz1(ξi)χz1(ξj)

∑
z2∈S

χz2(ξi)χz2(ξj)

=

1

s2

∑
1≤i 6=j≤q

ES

[∑
z∈S

χz(ξi)
2χz(ξj)

2

]
+ ES

 ∑
z1 6=z2∈S

χz1(ξi)χz1(ξj)χz2(ξi)χz2(ξj)

≤ q2

s

Thus if q <
√
δs we have dTV (DY ES(Q),DNO(Q)) ≤ O (δ). By picking δ to be a sufficiently

small constant it follows that no algorithm that makes less than c
√
s queries for some constant

c > 0 can distinguish DY ES and DNO with high probability. 2

Acknowledgements

The authors would like to thank Piotr Indyk and Eric Price for multiple helpful discussions of this
topic as well as Andrew Arnold, Arturs Backurs, Eric Blais, Michael Kapralov and Krzysztof Onak
for their participation in earlier versions of this work.

16

References

[AGS03] Adi Akavia, Shafi Goldwasser, and Shmuel Safra. Proving hard-core predicates using
list decoding. In 44th Symposium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 146–157, 2003. 1

[BBG18] Siddharth Barman, Arnab Bhattacharyya, and Suprovat Ghoshal. Testing sparsity over
known and unknown bases. In Proceedings of the 35th International Conference on
Machine Learning, ICML, pages 500–509, 2018. 1.1, 1

[BC99] Anna Bernasconi and Bruno Codenotti. Spectral analysis of boolean functions as a
graph eigenvalue problem. IEEE Trans. Computers, 48(3):345–351, 1999. 1

[BRY14] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Sympo-
sium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 164–173, 2014. 1, 2.3

[DKK+16] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. Robust estimators in high dimensions without the computational
intractability. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 655–664, 2016. 4.4

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. J. ACM, 45(4):653–750, 1998. 1.1, 2.2, 3

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May
14-17, 1989, Seattle, Washigton, USA, pages 25–32, 1989. 1, 1.1

[Gol00] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness,
2000. 3.3

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001. 1.1

[GOS+11] Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and Karl Wimmer.
Testing fourier dimensionality and sparsity. SIAM J. Comput., 40(4):1075–1100, 2011.
1, 1.1, 1.2, 2.3, 3.7, 3.2, 4, 4.1

[HIK+13] Haitham Hassanieh, Piotr Indyk, Michael Kapralov, Dina Katabi,
Eric Price, and Lixin Shi. Sfft: Sparse fast fourier transform.
http://groups.csail.mit.edu/netmit/sFFT/index.html, 2013. [Online; accessed
07-July-2015]. 1

[HIKP12a] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse
fourier transform. In Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 563–578, 2012.
1

17

[HIKP12b] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical
algorithm for sparse fourier transform. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012, pages 1183–1194, 2012. 1

[HL13] Hamed Hatami and Shachar Lovett. Estimating the distance from testable affine-
invariant properties. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 237–242, 2013.
1.1

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM J. Comput., 22(6):1331–1348, 1993. 1, 1.1

[Lev95] Leonid A Levin. Randomness and nondeterminism. In Proceedings of the International
Congress of Mathematicians, pages 1418–1419. Springer, 1995. 3.3

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. J. ACM, 40(3):607–620, 1993. 1

[MO09] Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR
functions. CoRR, abs/0909.3392, 2009. 1

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. 1.1,
2.3

[Pri] Eric Price. Private communication. 3.3

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006. 1

[Ron08] Dana Ron. Property testing: A learning theory perspective. Foundations and Trends in
Machine Learning, 1(3):307–402, 2008. 1

[STlV14] Amir Shpilka, Avishay Tal, and Ben lee Volk. On the structure of boolean functions
with small spectral norm. In Innovations in Theoretical Computer Science, ITCS’14,
Princeton, NJ, USA, January 12-14, 2014, pages 37–48, 2014. 1

[TWXZ13] Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity,
spectral norm, and the log-rank conjecture. In 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA, pages 658–667, 2013. 1

[WY13] Karl Wimmer and Yuichi Yoshida. Testing linear-invariant function isomorphism.
In Proceedings of the 40th International Conference on Automata, Languages, and
Programming - Volume Part I, ICALP’13, pages 840–850, 2013. 1, 1.1

[ZS09] Zhiqiang Zhang and Yaoyun Shi. Communication complexities of symmetric XOR
functions. Quantum Information & Computation, 9(3):255–263, 2009. 1

[ZS10] Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of boolean functions.
Theor. Comput. Sci., 411(26-28):2612–2618, 2010. 1

18

A Appendix

A.1 Basic Facts

Fact A.1 (Reduction of Property Testing to Energy Estimation of Top s Fourier Coefficients)
Suppose we are given query access to some function f : Fn2 → R with ||f ||22 = 1. Given an energy
estimator of the top s Fourier coefficients that uses qs(ε) queries, there exists a property tester for
s-sparsity with parameter ε that uses qs

(
ε
2

)
queries, where qs(·) is some function that depends on ε.

Proof : Let Fs be the class of s-sparse functions mapping from Fn2 to R. Trivially if f ∈ Fs, then
the sum of the top s Fourier coefficients is ||f ||22 and so an ε

2 -energy estimator of the top s Fourier
coefficients outputs a value ξ with ξ ≥ ||f ||22 − ε

2 ||f ||
2
2.

On the other hand, if for any s-sparse function g, it holds that ||f − g||22 ≥ ε||f ||22, then the
energy of the top s Fourier coefficients of f is at most (1− ε)||f ||22. Then an ε

2 -energy estimator of
the top s Fourier coefficients outputs a value ξ with∣∣∣∣∣ξ −max

|S|=s

∑
α∈S

f̂(α)2

∣∣∣∣∣ ≤ ε

2
||f ||22,

so the energy estimator outputs a value ξ with ξ ≤ ||f ||22 − ε
2 ||f ||

2
2.

Thus, the energy estimator can differentiate whether f ∈ Fs or f is ε-far from s-sparsity, using
qs
(
ε
2

)
queries. 2

A.2 Poisson Summation Formula

Recall the proof of the Poisson summation formula:

Proof of Proposition 2.7: For any z ∈ Fn2 , we have that

f |a+H(z) = E
x∈H⊥

[∑
β∈Fn2

f̂(β)χβ(x+ z) · χa(x)
]

=
∑
β∈Fn2

f̂(β)χβ(z) · E
x∈H⊥

[χβ+a(x)] .

Since E
x∈H⊥

[
χβ+a(x)

]
equals 1 when β + a ∈ H and 0 otherwise, we obtain

f |a+H(z) =
∑

β∈a+H
f̂(β)χβ(z)

and hence:

f̂ |a+H(α) = E
x∈Fn2

[f |a+H(x)χα(x)] = E
x∈Fn2

 ∑
β∈a+H

f̂(β)χβ(x)χα(x)

=

∑
β∈a+H

(
f̂(β) E

x∈Fn2
[χβ(x)χα(x)]

)
= f̂(α)

2

19

	Introduction
	Previous work
	Our Contributions

	Preliminaries
	Fourier Analysis
	Property Testing
	Fourier Hashing

	22-Distance Approximation and Sparsity Testing
	Hashing Error
	Estimation Error
	Proof of Theorem 1.1

	Lower Bounds for 22-Testing of s-Sparsity
	(s) Lower Bound for Non-adaptive Testers

	Appendix
	Basic Facts
	Poisson Summation Formula

