The Count-Min Sketch with Applications

Steven Wu

University of Pennsylvania

December 6, 2014

Paper by G. Cormode and S. Muthukrishnan
(awarded the 2014 Imre Simon Test-of-Time Award)
Data Streams
Data Streams

- Approach: take one pass over data, summarize the data (to answer some class of queries)
Data Stream Model

Data stream represents a high-dimensional vector a, initially all zero: for $1 \leq i \leq U$, $a[i] = 0$.
Data Stream Model

1. Data stream represents a high-dimensional vector a, initially all zero: for $1 \leq i \leq U$, $a[i] = 0$

2. n items in the stream: t-th update is $(i(t), c(t))$, meaning $a[i(t)]$ is updated to $a[i] + c(t)$
Sketches

Figure: Sketches are a class of data summaries
Sketches

Figure: Sketches are a class of data summaries

- For example, linear projection of source data with appropriate random vectors
Count-Min Sketch

CM Sketch solve the following problems

- Point Estimation: \(a[i] \)
- Range Sums: \(\sum_{i=j}^{k} a[i] \)
- Inner Product: \(\langle a, b \rangle = \sum_{i} a[i] \times b[i] \)
Point Estimation

Problem: given \(i \), return \(a[i] \)

- Let \(N = \sum c(t) = \|a\|_1 \)
- Replace vector \(a \) with small sketch which approximates each \(a[i] \) up to \(\varepsilon N \) with probability \(1 - \delta \)
2-wise independent hash functions $h_1, \ldots, h_{\log(1/\delta)} : [U] \rightarrow \left[\frac{2}{\varepsilon} \right]$
Tools

- 2-wise independent hash functions $h_1, \ldots, h_{\log(1/\delta)} : [U] \to \left[\frac{2}{\varepsilon} \right]$
- A family H mapping $A \to B$ is 2-wise independent if for any distinct i, j, and any values u, v

$$\Pr_{h \in_R H} [h(i) = u \text{ and } h(j) = v] = \frac{1}{|B|^2}$$
2-wise independent hash functions $h_1, \ldots, h_{\log(1/\delta)} : [U] \rightarrow \left[\frac{2}{\varepsilon} \right]$

A family H mapping $A \rightarrow B$ is 2-wise independent if for any distinct i, j, and any values u, v

$$\Pr_{h \in RH} [h(i) = u \text{ and } h(j) = v] = 1/|B|^2$$

Example:

$$h(j) = a \cdot j + b \mod |B|$$

a, b are chosen independently from B and $|B|$ is prime
Update Algorithm

Update an array of counters:

\[
\text{Update an array of counters:}
\]

\[
\text{Update Algorithm}
\]

\[
\text{Update an array of counters:}
\]

\[
\text{Table: Array of counters, dimension: log(1/δ) × 2/ε}
\]

\[
\text{Steven Wu (Penn)}
\]

\[
\text{CountMin}
\]

\[
\text{Big Data Reading Group}
\]

\[
8 / 19
\]
Update Algorithm

Update an array of counters:
(i, count) comes in: \(C'[j][h_j(i)] + \text{count} \)
Update Algorithm

Update an array of counters:
(i, count) comes in: \(C[j][h_j(i)] + \text{count} \)

\[
\begin{array}{|c|c|}
\hline
h_1 & +\text{count} \\
\hline
h_2 & \quad +\text{count} \\
\vdots & +\text{count} \\
h_{\log(1/\delta)} & \quad +\text{count} \\
\hline
\end{array}
\]

Table: Array of counters, dimension: \(\log(1/\delta) \times 2/\varepsilon \)
Estimate

\[\hat{a}[i] = \min_j C[j][h_j(i)] \]
Estimate

\[\hat{a}[i] = \min_j C[j][h_j(i)] \]

Analysis

For the \(j \)-th counter,

\[C[j][h_j(i)] = a[i] + X_{i,j} \]
Estimate

\[\hat{a}[i] = \min_j C[j][h_j(i)] \]

Analysis

For the \(j \)-th counter,

\[C[j][h_j(i)] = a[i] + X_{i,j} \]

where \(X_{i,j} = \sum_k a[k] \) such that \(h_j(i) = h_j(k) \)
Estimate

\[\hat{a}[i] = \min_j C[j][h_j(i)] \]

Analysis

For the \(j \)-th counter,

\[C[j][h_j(i)] = a[i] + X_{i,j} \]

where \(X_{i,j} = \sum_k a[k] \) such that \(h_j(i) = h_j(k) \)

\[
\mathbb{E}[X_{i,j}] = \sum_{k \neq i} a[k] \times \Pr[h_j(i) = h_j(k)] \\
\leq \varepsilon / 2 \times \sum_{k \neq i} a[k] \\
\leq \varepsilon N / 2
\]
With high probability...

Markov Inequality:

\[
\Pr[X_{i,j} \geq \varepsilon N] = \Pr[X_{i,j} \geq 2\mathbb{E}[X_{i,j}]] \leq 1/2
\]
With high probability...

Markov Inequality:

$$\Pr[X_{i,j} \geq \varepsilon N] = \Pr[X_{i,j} \geq 2\mathbb{E}[X_{i,j}]] \leq 1/2$$

And so

$$\Pr[\hat{a}[i] \geq a[i] + \varepsilon N] = \Pr[\forall j, X_{i,j} > \varepsilon N]$$

$$\leq \left(\frac{1}{2}\right)^{\log(1/\delta)} = \delta$$
With high probability...

Markov Inequality:

\[
\Pr[X_{i,j} \geq \varepsilon N] = \Pr[X_{i,j} \geq 2\mathbb{E}[X_{i,j}]] \leq 1/2
\]

And so

\[
\Pr[\hat{a}[i] \geq a[i] + \varepsilon N] = \Pr[\forall j, X_{i,j} > \varepsilon N] \\
\leq (1/2)^{\log(1/\delta)} = \delta
\]

- For sure, \(a[i] \leq \hat{a}[i]\)
- With probability at least \(1 - \delta\),

\[
\hat{a}[i] < a[i] + \varepsilon N
\]
Dyadic Intervals

$\log n$ partitions of $[n]$

- $I_0 = \{1, 2, 3, \ldots, n\}$
- $I_1 = \{\{1, 2\}, \{3, 4\} \ldots, \{n - 1, n\}\}$
- $I_2 = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \ldots, \{n - 3, n - 2, n - 1, n\}\}$
- \ldots
- $I_{\log n} = \{[n]\}$
Dyadic Intervals

\(\log n \) partitions of \([n]\)

- \(I_0 = \{1, 2, 3, \ldots, n\} \)
- \(I_1 = \{\{1, 2\}, \{3, 4\}, \ldots, \{n - 1, n\}\} \)
- \(I_2 = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \ldots, \{n - 3, n - 2, n - 1, n\}\} \)
- \(\ldots \)
- \(I_{\log n} = \{[n]\} \)

Any interval \((i, j)\) can be written as a disjoint union of at most \(2 \log n\) such intervals.
Range Queries and Quantiles

- Range: \(i, j \in [U] \), estimate \(a[i] + \ldots + a[j] \)
Range Queries and Quantiles

- Range: $i, j \in [U]$, estimate $a[i] + \ldots + a[j]$
- Approximate median: find j such that

 $$a[1] + \ldots + a[j] \geq \frac{N}{2} + \varepsilon N \text{ and } a[1] + \ldots + a[j-1] \leq \frac{N}{2} - \varepsilon N$$

Steven Wu (Penn)
Algorithm

Construct $\log U$ Count-Min Sketches, one for each I_i.
Algorithm

Construct $\log U$ Count-Min Sketches, one for each I_i

Guarantee

For each $l \in I_i$, we have an estimate $\tilde{a}[l]$ for $a[l]$ such that

$$\Pr[a[l] \leq \tilde{a}[l] \leq a[l] + \varepsilon N] \geq 1 - \delta$$
Algorithm

Construct $\log U$ Count-Min Sketches, one for each I_i

Guarantee

For each $l \in I_i$, we have an estimate $\tilde{a}[l]$ for $a[l]$ such that

$\Pr[a[l] \leq \tilde{a}[l] \leq a[l] + \varepsilon N] \geq 1 - \delta$

To estimate range sum for interval $[i, j]$

$\tilde{a}[i, j] = \tilde{a}[l_1] + \ldots + \tilde{a}[l_{\log U}]$
Construct $\log U$ Count-Min Sketches, one for each I_i

Guarantee

For each $l \in I_i$, we have an estimate $\tilde{a}[l]$ for $a[l]$ such that

\[\Pr[a[l] \leq \tilde{a}[l] \leq a[l] + \varepsilon N] \geq 1 - \delta \]

To estimate range sum for interval $[i, j]$

\[\tilde{a}[i, j] = \tilde{a}[l_1] + \ldots + \tilde{a}[l_{\log U}] \]

Take a union bound,

\[\Pr [a[i, j] \leq \tilde{a}[i, j] \leq a[i, j] + \varepsilon N \log U] \geq 1 - \delta \log U \]
Given a sequence of items arriving (or departing) and ϕ, find all items occurring more than ϕN times: find i for which $a[i] > \phi N$
Heavy Hitters

Given a sequence of items arriving (or departing) and ϕ, find all items occurring more than ϕN times: find i for which $a[i] > \phi N$

Approximation

Find all heavy hitters with certainty, with probability at most δ, output an item with $a[i] < (\phi - \varepsilon)N$
Cash Register Case

Figure: All updates are positive
Cash Register Case

Figure: All updates are positive

1. Keep track of $\|a(t)\|_1 = \sum_i \text{count}(t)$
Cash Register Case

Figure: All updates are positive

1. Keep track of $\|a(t)\|_1 = \sum_i \text{count}(t)$
2. (i, count) comes in check if $\hat{a}[i] \geq \phi \|a(t)\|_1$
Cash Register Case

Figure: All updates are positive

1. Keep track of $\|a(t)\|_1 = \sum_i \text{count}(t)$
2. (i, count) comes in check if $\hat{a}[i] \geq \phi \|a(t)\|_1$
3. If so, add i to the heap; scan the heap throw away j if previous estimate $\hat{a}[j] \leq \phi \|a(t)\|_t$
4. Scan the heap again at last to delete items with estimate below $\phi \|a\|_1$
Turnstile case

Figure: Both Departures and Arrivals

Problem becomes harder.
Search Structure

- Associate internal nodes with intervals
- Compute Count-Min sketches for each I_i
- Starting from root, level-by-level, mark children l of marked nodes if $\tilde{a}[l] \geq \phi N$

Find heavy-hitters in $O(\phi^{-1} \log n)$ steps

Figure: Binary Search Tree on the Universe $[U]$
Improved Concentration Bounds for Count-Sketch*

Gregory T. Minton
MIT

Eric Price
MIT

Figure: Improved Analysis
The Count-Min Sketch with Applications

Steven Wu

University of Pennsylvania

December 6, 2014

(Some slides credited to Graham Cormode and Grigory)