The Count-Min Sketch with Applications

Steven Wu
University of Pennsylvania

December 6, 2014

Paper by G. Cormode and S. Muthukrishnan (awarded the 2014 Imre Simon Test-of-Time Award)

Data Streams

Data Streams

- Approach: take one pass over data, summarize the data (to answer some class of queries)

Data Stream Model

(1) Data stream represents a high-dimensional vector a, initially all zero: for $1 \leq i \leq U, a[i]=0$

Data Stream Model

(1) Data stream represents a high-dimensional vector a, initially all zero: for $1 \leq i \leq U, a[i]=0$
(2) n items in the stream: t-th update is $(i(t), c(t))$, meaning $a[i(t)]$ is updated to $a[i]+c(t)$

Sketches

Figure: Sketches are a class of data summaries

Sketches

Figure: Sketches are a class of data summaries

- For example, linear projection of source data with appropriate random vectors

Count-Min Sketch

CM Sketch solve the following problems

- Point Estimation : a[i]
- Range Sums : $\sum_{i=j}^{k} a[i]$
- Inner Product : $\langle a, b\rangle=\sum_{i} a[i] \times b[i]$

Point Estimation

Problem: given i, return $a[i]$

- Let $N=\sum c(t)=\|a\|_{1}$
- Replace vector a with small sketch which approximates each $a[i]$ up to εN with probability $1-\delta$

(Story Points)
How far is the house away?

Tools

- 2-wise independent hash functions $h_{1}, \ldots, h_{\log (1 / \delta)}:[U] \rightarrow\left[\frac{2}{\varepsilon}\right]$

Tools

- 2-wise independent hash functions $h_{1}, \ldots, h_{\log (1 / \delta)}:[U] \rightarrow\left[\frac{2}{\varepsilon}\right]$
- A family H mapping $A \rightarrow B$ is 2 -wise independent if for any distinct i, j, and any values u, v

$$
\operatorname{Pr}_{h \in_{R} H}[h(i)=u \text { and } h(j)=v]=1 /|B|^{2}
$$

Tools

- 2-wise independent hash functions $h_{1}, \ldots, h_{\log (1 / \delta)}:[U] \rightarrow\left[\frac{2}{\varepsilon}\right]$
- A family H mapping $A \rightarrow B$ is 2 -wise independent if for any distinct i, j, and any values u, v

$$
\operatorname{Pr}_{h \in_{R} H}[h(i)=u \text { and } h(j)=v]=1 /|B|^{2}
$$

- Example:

$$
h(j)=a \cdot j+b \quad \bmod |B|
$$

a, b are chosen independently from B and $|B|$ is prime

Update Algorithm

Update an array of counters:

Update Algorithm

Update an array of counters:
(i, count) comes in: $C[j]\left[h_{j}(i)\right]+$ count

Update Algorithm

Update an array of counters:
(i, count) comes in: $C[j]\left[h_{j}(i)\right]+$ count

h_{1}			+ count			
h_{2}				+ count		
		+ count				
$(1 / \delta)$						+ count

Table: Array of counters, dimension: $\log (1 / \delta) \times 2 / \varepsilon$

Estimate

$$
\hat{a}[i]=\min _{j} C[j]\left[h_{j}(i)\right]
$$

Estimate

$$
\hat{a}[i]=\min _{j} C[j]\left[h_{j}(i)\right]
$$

Analysis

For the j-th counter,

$$
C[j]\left[h_{j}(i)\right]=a[i]+X_{i, j}
$$

Estimate

$$
\hat{a}[i]=\min _{j} C[j]\left[h_{j}(i)\right]
$$

Analysis

For the j-th counter,

$$
C[j]\left[h_{j}(i)\right]=a[i]+X_{i, j}
$$

where $X_{i, j}=\sum_{k} a[k]$ such that $h_{j}(i)=h_{j}(k)$

Estimate

$$
\hat{a}[i]=\min _{j} C[j]\left[h_{j}(i)\right]
$$

Analysis

For the j-th counter,

$$
C[j]\left[h_{j}(i)\right]=a[i]+X_{i, j}
$$

where $X_{i, j}=\sum_{k} a[k]$ such that $h_{j}(i)=h_{j}(k)$

$$
\begin{aligned}
\mathbb{E}\left[X_{i, j}\right] & =\sum_{k \neq i} a[k] \times \operatorname{Pr}\left[h_{j}(i)=h_{j}(k)\right] \\
& \leq \varepsilon / 2 \times \sum_{k \neq i} a[k] \\
& \leq \varepsilon N / 2
\end{aligned}
$$

With high probability...

Markov Inequality:

$$
\operatorname{Pr}\left[X_{i, j} \geq \varepsilon N\right]=\operatorname{Pr}\left[X_{i, j} \geq 2 \mathbb{E}\left[X_{i, j}\right]\right] \leq 1 / 2
$$

With high probability...

Markov Inequality:

$$
\operatorname{Pr}\left[X_{i, j} \geq \varepsilon N\right]=\operatorname{Pr}\left[X_{i, j} \geq 2 \mathbb{E}\left[X_{i, j}\right]\right] \leq 1 / 2
$$

And so

$$
\begin{aligned}
\operatorname{Pr}[\hat{a}[i] \geq a[i]+\varepsilon N] & =\operatorname{Pr}\left[\forall j, X_{i, j}>\varepsilon N\right] \\
& \leq(1 / 2)^{\log (1 / \delta)}=\delta
\end{aligned}
$$

With high probability...

Markov Inequality:

$$
\operatorname{Pr}\left[X_{i, j} \geq \varepsilon N\right]=\operatorname{Pr}\left[X_{i, j} \geq 2 \mathbb{E}\left[X_{i, j}\right]\right] \leq 1 / 2
$$

And so

$$
\begin{aligned}
\operatorname{Pr}[\hat{a}[i] \geq a[i]+\varepsilon N] & =\operatorname{Pr}\left[\forall j, X_{i, j}>\varepsilon N\right] \\
& \leq(1 / 2)^{\log (1 / \delta)}=\delta
\end{aligned}
$$

- For sure, $a[i] \leq \hat{a}[i]$
- With probability at least $1-\delta$,

$$
\hat{a}[i]<a[i]+\varepsilon N
$$

Dyadic Intervals

$\log n$ partitions of $[n]$

- $I_{0}=\{1,2,3, \ldots, n\}$
- $I_{1}=\{\{1,2\},\{3,4\} \ldots,\{n-1, n\}\}$
- $I_{2}=\{\{1,2,3,4\},\{5,6,7,8\}, \ldots,\{n-3, n-2, n-1, n\}\}$
- $I_{\log n}=\{[n]\}$

Dyadic Intervals

$\log n$ partitions of $[n]$

- $I_{0}=\{1,2,3, \ldots, n\}$
- $I_{1}=\{\{1,2\},\{3,4\} \ldots,\{n-1, n\}\}$
- $I_{2}=\{\{1,2,3,4\},\{5,6,7,8\}, \ldots,\{n-3, n-2, n-1, n\}\}$
- $I_{\log n}=\{[n]\}$

Any interval (i, j) can be written as a disjoint union of at most $2 \log n$ such intervals.

Range Queries and Quantiles

- Range: $i, j \in[U]$, estimate $a[i]+\ldots+a[j]$

Range Queries and Quantiles

- Range: $i, j \in[U]$, estimate $a[i]+\ldots+a[j]$
- Approximate median: find j such that

$$
\begin{aligned}
a[1]+\ldots+a[j] & \geq \frac{N}{2}+\varepsilon N \text { and } \\
a[1]+\ldots+a[j-1] & \leq \frac{N}{2}-\varepsilon N
\end{aligned}
$$

Algorithm

Construct $\log U$ Count-Min Sketches, one for each I_{i}

Algorithm

Construct $\log U$ Count-Min Sketches, one for each I_{i}

Guarantee

For each $l \in I_{i}$, we have an estimate $\tilde{a}[l]$ for $a[l]$ such that

$$
\operatorname{Pr}[a[l] \leq \tilde{a}[l] \leq a[l]+\varepsilon N] \geq 1-\delta
$$

Algorithm

Construct $\log U$ Count-Min Sketches, one for each I_{i}

Guarantee

For each $l \in I_{i}$, we have an estimate $\tilde{a}[l]$ for $a[l]$ such that

$$
\operatorname{Pr}[a[l] \leq \tilde{a}[l] \leq a[l]+\varepsilon N] \geq 1-\delta
$$

To estimate range sum for interval $[i, j]$

$$
\tilde{a}[i, j]=\tilde{a}\left[l_{1}\right]+\ldots+\tilde{a}\left[l_{\log U}\right]
$$

Algorithm

Construct $\log U$ Count-Min Sketches, one for each I_{i}

Guarantee

For each $l \in I_{i}$, we have an estimate $\tilde{a}[l]$ for $a[l]$ such that

$$
\operatorname{Pr}[a[l] \leq \tilde{a}[l] \leq a[l]+\varepsilon N] \geq 1-\delta
$$

To estimate range sum for interval $[i, j]$

$$
\tilde{a}[i, j]=\tilde{a}\left[l_{1}\right]+\ldots+\tilde{a}\left[l_{\log U}\right]
$$

Take a union bound,

$$
\operatorname{Pr}[a[i, j] \leq \tilde{a}[i, j] \leq a[i, j]+\varepsilon N \log U] \geq 1-\delta \log U
$$

Heavy Hitters

Given a sequence of items arriving (or departing) and ϕ, find all items occurring more than ϕN times: find i for which $a[i]>\phi N$

Heavy Hitters

Given a sequence of items arriving (or departing) and ϕ, find all items occurring more than ϕN times: find i for which $a[i]>\phi N$

Approximation

Find all heavy hitters with certainty, with probability at most δ, output an item with $a[i]<(\phi-\varepsilon) N$

Cash Register Case

Figure: All updates are positive

Cash Register Case

Figure: All updates are positive
(1) Keep track of $\|a(t)\|_{1}=\sum_{i} \operatorname{count}(t)$

Cash Register Case

Figure: All updates are positive
(1) Keep track of $\|a(t)\|_{1}=\sum_{i} \operatorname{count}(t)$
(2) (i, count) comes in check if $\hat{a}[i] \geq \phi\|a(t)\|_{1}$

Cash Register Case

Figure: All updates are positive
(1) Keep track of $\|a(t)\|_{1}=\sum_{i} \operatorname{count}(t)$
(2) (i, count) comes in check if $\hat{a}[i] \geq \phi\|a(t)\|_{1}$
(3) If so, add i to the heap; scan the heap throw away j if previous estimate $\hat{a}[j] \leq \phi\|a(t)\|_{t}$
(9) Scan the heap again at last to delete items with estimate below $\phi\|a\|_{1}$

Turnstile case

Figure: Both Departures and Arrivals

Problem becomes harder.

Search Structure

Figure: Binary Search Tree on the Universe $[U]$

- Associate internal nodes with intervals
- Compute Count-Min sketches for each I_{i}
- Starting from root, level-by-level, mark children l of marked nodes if $\tilde{a}[l] \geq \phi N$
Find heavy-hitters in $O\left(\phi^{-1} \log n\right)$ steps

Improved Concentration Bounds for Count-Sketch*

Gregory T. Minton MIT

Eric Price
MIT

Figure: Improved Analysis

The Count-Min Sketch with Applications

Steven Wu
University of Pennsylvania

December 6, 2014
(Some slides credited to Graham Cormode and Grigory)

