The Count-Min Sketch with Applications

Steven Wu

University of Pennsylvania

December 6, 2014

Paper by G. Cormode and S. Muthukrishnan (awarded the 2014 Imre Simon Test-of-Time Award)

Data Streams

Data Streams

• Approach: take one pass over data, summarize the data (to answer some class of queries)

Oata stream represents a high-dimensional vector a, initially all zero: for 1 ≤ i ≤ U, a[i] = 0

- Oata stream represents a high-dimensional vector a, initially all zero: for 1 ≤ i ≤ U, a[i] = 0
- 0 n items in the stream: t-th update is (i(t),c(t)), meaning a[i(t)] is updated to a[i]+c(t)

Sketches

Figure: Sketches are a class of data summaries

Sketches

Figure: Sketches are a class of data summaries

• For example, linear projection of source data with appropriate random vectors

CM Sketch solve the following problems

- Point Estimation : a[i]
- Range Sums : $\sum_{i=j}^{k} a[i]$
- Inner Product : $\langle a,b\rangle = \sum_i a[i] \times b[i]$

Problem: given i, return a[i]

• Let
$$N = \sum c(t) = ||a||_1$$

• Replace vector a with small sketch which approximates each a[i] up to εN with probability $1-\delta$

• 2-wise independent hash functions $h_1, \ldots, h_{\log(1/\delta)} \colon [U] \to \left[\frac{2}{\varepsilon}\right]$

- 2-wise independent hash functions $h_1, \ldots, h_{\log(1/\delta)}$: $[U] \to \begin{bmatrix} 2\\ \varepsilon \end{bmatrix}$
- A family H mapping $A \to B$ is 2-wise independent if for any distinct i,j, and any values u,v

$$\Pr_{h \in_R H}[h(i) = u \text{ and } h(j) = v] = 1/|B|^2$$

- 2-wise independent hash functions $h_1, \ldots, h_{\log(1/\delta)}$: $[U] \to \left[\frac{2}{\varepsilon}\right]$
- A family H mapping $A \to B$ is 2-wise independent if for any distinct i,j, and any values u,v

$$\Pr_{h\in_R H}[h(i)=u \text{ and } h(j)=v]=1/|B|^2$$

• Example:

$$h(j) = a \cdot j + b \mod |B|$$

a, b are chosen independently from B and |B| is prime

Update an array of counters:

Update an array of counters: (*i*, count) comes in: $C[j][h_j(i)]$ + count

Update an array of counters: (*i*, count) comes in: $C[j][h_j(i)]$ + count

Table: Array of counters, dimension: $\log(1/\delta) \times 2/\varepsilon$

Estimate

$$\hat{a}[i] = \min_{j} C[j][h_{j}(i)]$$

Estimate

$$\hat{a}[i] = \min_{j} C[j][h_{j}(i)]$$

Analysis

For the j-th counter,

$$C[j][h_j(i)] = a[i] + X_{i,j}$$

$$\hat{a}[i] = \min_{j} C[j][h_{j}(i)]$$

Analysis

For the j-th counter,

$$C[j][h_j(i)] = a[i] + X_{i,j}$$

where $X_{i,j} = \sum_k a[k]$ such that $h_j(i) = h_j(k)$

$$\hat{a}[i] = \min_{j} C[j][h_{j}(i)]$$

Analysis

For the j-th counter,

$$C[j][h_j(i)] = a[i] + X_{i,j}$$

where $X_{i,j} = \sum_k a[k]$ such that $h_j(i) = h_j(k)$

$$\mathbb{E} [X_{i,j}] = \sum_{k \neq i} a[k] \times \Pr[h_j(i) = h_j(k)]$$
$$\leq \varepsilon/2 \times \sum_{k \neq i} a[k]$$
$$\leq \varepsilon N/2$$

With high probability...

Markov Inequality:

$$\Pr[X_{i,j} \ge \varepsilon N] = \Pr[X_{i,j} \ge 2\mathbb{E}[X_{i,j}]] \le 1/2$$

With high probability...

Markov Inequality:

$$\Pr[X_{i,j} \ge \varepsilon N] = \Pr[X_{i,j} \ge 2\mathbb{E}[X_{i,j}]] \le 1/2$$

And so

$$\Pr[\hat{a}[i] \ge a[i] + \varepsilon N] = \Pr[\forall j, X_{i,j} > \varepsilon N]$$
$$\le (1/2)^{\log(1/\delta)} = \delta$$

With high probability ...

Markov Inequality:

$$\Pr[X_{i,j} \ge \varepsilon N] = \Pr[X_{i,j} \ge 2\mathbb{E}[X_{i,j}]] \le 1/2$$

And so

$$\Pr[\hat{a}[i] \ge a[i] + \varepsilon N] = \Pr[\forall j, X_{i,j} > \varepsilon N]$$
$$\le (1/2)^{\log(1/\delta)} = \delta$$

- For sure, $a[i] \leq \hat{a}[i]$
- With probability at least 1δ ,

$$\hat{a}[i] < a[i] + \varepsilon N$$

 $\log n$ partitions of [n]

•
$$I_0 = \{1, 2, 3, \dots, n\}$$

• $I_1 = \{\{1, 2\}, \{3, 4\}, \dots, \{n - 1, n\}\}$
• $I_2 = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \dots, \{n - 3, n - 2, n - 1, n\}$
• \dots

• $I_{\log n} = \{[n]\}$

}

 $\log n$ partitions of [n]

•
$$I_0 = \{1, 2, 3, \dots, n\}$$

• $I_1 = \{\{1, 2\}, \{3, 4\}, \dots, \{n - 1, n\}\}$
• $I_2 = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \dots, \{n - 3, n - 2, n - 1, n\}\}$
• \dots
• $I_{\log n} = \{[n]\}$

Any interval (i,j) can be written as a disjoint union of at most $2\log n$ such intervals.

• Range: $i, j \in [U]$, estimate $a[i] + \ldots + a[j]$

- Range: $i, j \in [U]$, estimate $a[i] + \ldots + a[j]$
- Approximate median: find j such that

$$a[1] + \ldots + a[j] \ge rac{N}{2} + arepsilon N$$
 and $a[1] + \ldots + a[j-1] \le rac{N}{2} - arepsilon N$

Guarantee

For each $l \in I_i$, we have an estimate $\tilde{a}[l]$ for a[l] such that

 $\Pr[a[l] \le \tilde{a}[l] \le a[l] + \varepsilon N] \ge 1 - \delta$

Guarantee

For each $l \in I_i$, we have an estimate $\tilde{a}[l]$ for a[l] such that

$$\Pr[a[l] \le \tilde{a}[l] \le a[l] + \varepsilon N] \ge 1 - \delta$$

To estimate range sum for interval [i, j]

$$\tilde{a}[i,j] = \tilde{a}[l_1] + \ldots + \tilde{a}[l_{\log U}]$$

Guarantee

For each $l \in I_i$, we have an estimate $\tilde{a}[l]$ for a[l] such that

 $\Pr[a[l] \le \tilde{a}[l] \le a[l] + \varepsilon N] \ge 1 - \delta$

To estimate range sum for interval [i, j]

$$\tilde{a}[i,j] = \tilde{a}[l_1] + \ldots + \tilde{a}[l_{\log U}]$$

Take a union bound,

$$\Pr\left[a[i,j] \le \tilde{a}[i,j] \le a[i,j] + \varepsilon N \log U\right] \ge 1 - \delta \log U$$

Given a sequence of items arriving (or departing) and ϕ , find all items occurring more than ϕN times: find *i* for which $a[i] > \phi N$

Given a sequence of items arriving (or departing) and ϕ , find all items occurring more than ϕN times: find *i* for which $a[i] > \phi N$

Approximation

Find all heavy hitters with certainty, with probability at most $\delta,$ output an item with $a[i]<(\phi-\varepsilon)N$

Figure: All updates are positive

Figure: All updates are positive

• Keep track of
$$||a(t)||_1 = \sum_i \operatorname{count}(t)$$

Figure: All updates are positive

Weep track of ||a(t)||₁ = ∑_icount(t)
(i, count) comes in check if â[i] ≥ φ||a(t)||₁

Figure: All updates are positive

- Keep track of $||a(t)||_1 = \sum_i \text{count}(t)$
- $\ \ \, \hbox{($i$, count) comes in check if $\widehat{a}[i] \geq \phi \|a(t)\|_1 $}$
- If so, add *i* to the heap; scan the heap throw away *j* if previous estimate $\hat{a}[j] ≤ \phi ||a(t)||_t$
- ullet Scan the heap again at last to delete items with estimate below $\phi\|a\|_1$

Turnstile case

Figure: Both Departures and Arrivals

Problem becomes harder.

Search Structure

Figure: Binary Search Tree on the Universe [U]

- Associate internal nodes with intervals
- Compute Count-Min sketches for each I_i
- Starting from root, level-by-level, mark children l of marked nodes if $\tilde{a}[l] \geq \phi N$

Find heavy-hitters in $O(\phi^{-1}\log n)$ steps

Improved Concentration Bounds for Count-Sketch*

Gregory T. Minton MIT Eric Price MIT

Figure: Improved Analysis

The Count-Min Sketch with Applications

Steven Wu

University of Pennsylvania

December 6, 2014

(Some slides credited to Graham Cormode and Grigory)