
Primal-Dual Approximation Algorithms

for Node-Weighted Network Design
in Planar Graphs�

Piotr Berman and Grigory Yaroslavtsev

Pennsylvania State University, USA
{berman,grigory}@cse.psu.edu

Abstract. We present primal-dual algorithms which give a 2.4 approx-
imation for a class of node-weighted network design problems in planar
graphs, introduced by Demaine, Hajiaghayi and Klein (ICALP’09). This
class includes Node-Weighted Steiner Forest problem studied re-
cently by Moldenhauer (ICALP’11) and other node-weighted problems
in planar graphs that can be expressed using (0, 1)-proper functions in-
troduced by Goemans and Williamson. We show that these problems can
be equivalently formulated as feedback vertex set problems and analyze
approximation factors guaranteed by different violation oracles within
the primal-dual framework developed by Goemans and Williamson.

1 Introduction

In feedback vertex set problems the input is a graphG = (V,E), a family of cycles
C in G and a function w : V → R

≥0. The goal is to find a set of vertices H ⊂ V
which contains a node in every cycle in C such that the total weight of vertices
in H is minimized. This is a special case of the hitting set problem, where sets
correspond to the cycles of C. There five natural examples for the family C.
– All cycles. This is Feedback Vertex Set problem (FVS).
– Odd cycles. If H ⊂ V is a hitting set for all odd-length cycles then the

subgraph of G, induced by the vertex set V \H is bipartite. This is Bipar-
tization problem (BIP).

– The set of all cycles which contain at least one node from a given set of
nodes. This is Subset Feedback Vertex Set problem (S-FVS).

– The set of all directed cycles of a given directed graph. This is Directed
Feedback Vertex Set problem (D-FVS).

– In Node-Weighted Steiner Forest problem we are given a weighted
graph and a set of terminal pairs (si, ti). The goal is to select S ⊂ V such that
in the subgraph induced by S all terminal pairs are connected. In Section 2.1
we show that Node-Weighted Steiner Forest belongs to a class of
problems which can be expresed as a hitting set problem for an appropriately
defined collection of cycles.

� G.Y. is supported by NSF / CCF CAREER award 0845701 and by College of
Engineering Fellowship.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 50–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 51

Table 1. Planar graphs

Problem Previous work (our analysis)1 Our work Hardness

FVS 10 [3], 3 (18/7) [11], 2 [4,1]
2.4 NP-hard [20]BIP, D-FVS, S-FVS 3 (18/7) [11]

Node-Weighted Steiner Forest 6 [5], 3 (18/7) [17]

While in general graphs FVS can be approximated within factor of 2 for all
graphs, as shown by Becker and Geiger [4] and Bafna, Berman and Fujito [1],
hitting a restricted family of cycles can be much harder. For example, the best
known approximation ratio for graph bipartization in general graphs is O(log n)
by Garg, Vazirani and Yannakakis [9]. ForD-FVS the best known approximation
is O(log n log logn), as shown by Even, Naor, Schieber and Sudan [8]. These and
other results for general graphs are discussed in the full version.

Yannakakis [20] has given an NP-hardness proof for many vertex deletion
problems restricted to planar graphs which applies to all problems that we con-
sider. For planar graphs, the unweighted Feedback Vertex Set problem ad-
mits a PTAS, as shown by Demaine and Hajiaghayi [6] using a bidimensionality
technique. Goemans and Williamson [11] created a framework for primal-dual
algorithms that for planar instances of all above problems provide approximation
algorithms with constant approximation factors. More specifically, they showed
9/4-approximations for FVS, S-FVS, D-FVS and BIP. For Node-Weighted
Steiner Forest it was shown by Demaine, Hajiaghayi and Klein [5] that the
generic framework of Goemans and Williamson gives a 6-approximation which
was improved to 9/4-approximation by Moldenhauer [17]. However, the original
paper by Goemans and Williamson [11] contains a mistake in the analysis. Sim-
ilar mistake was repeated in [17]. We exhibit the mistake on an example and
prove that no worse example exists. More precisely, primal-dual approximation
algorithms of Goemans and Williamson for all problems described above give
approximation factor 18/7 rather than 9/4. We also give an improved version
of the violation oracle which can be used within the primal-dual framework of
Goemans and Williamson and guarantees approximation factor 2.4. Results for
planar graphs are summarized in Table 1.

Applications and ramifications. Node-weighted Steiner problems have been stud-
ied theoretically in many different settings, see e.g. [15,18,19,16]. Applications of
such problems range from maintenance of electric power networks [12] to com-
putational sustainability [7]. Experimental evaluation of primal-dual algorithms
for feedback vertex set problems in planar graphs in applications to VLSI design
has been done by Kahng, Vaya and Zelikovsky [13].

Organization. We give basic definitions and preliminary observations in Sec-
tion 2. In Section 2.1 we show that a wide class of node-weighted network design
problems in planar graphs, introduced by Demaine, Hajiaghayi and Klein [5], can

1 See discussion in the text.

52 P. Berman and G. Yaroslavtsev

be equivalently defined as a class of hitting set problems for appropriately defined
collections of cycles satisfying uncrossing property, as introduced by Goemans
and Williamson [11]. In Section 3 we introduce local-ratio analog of primal-dual
framework of Goemans and Williamson for such problems and give examples of
violation oracles which can be used within this framework.

In Section 4 we give corrected analysis of the approximation factor achieved by
the generic primal-dual algorithm with a violation oracle, presented by Goemans
and Williamson in [11]. In the full version we present analysis of primal-dual
algorithms with a new violation oracle which gives approximation factor 2.4.
In Section 4.2 we show examples, on which these approximation factors are
achieved.

2 Preliminaries

A simple cycle of length k is a sequence of vertices v1, . . . , vk+1, where vk+1 ≡ v1,
all vertices v1, . . . vk are distinct, (vi, vi+1) ∈ E for all 1 ≤ i ≤ k and all these
edges are distinct. Note that in undirected simple graphs a simple cycle has
length at least three. For a cycle C, the edge set of C is denoted as E(C),
although to simplify presentation we may refer to it as just C.

Every planar graph has a combinatorial embedding which for every vertex
specifies a cyclic ordering of edges that are adjacent to it. A subset U ⊂ V
defines G[U], the induced subgraph of G, with node set U and edges {(u, v) ∈
E : u, v ∈ U}. An embedding of a planar graph naturally defines embeddings
of all its induced subgraphs. We denote the set of faces of a planar graph as F
(for a standard definition of the set of faces via a combinatorial embedding, see
e.g. [14]). The planar dual of a graph G is graph G∗ = (F,E′) where F is the
set of faces of G, and E′ is the set of pairs of faces that share an edge. We select
one face F0 as the outer face.

For a simple cycle C = (v1, . . . , vk+1) we denote the set of faces that are
surrounded by C as Faces(C). More formally, let E′′ be the set of pairs of faces
that share an edge that is not on C then in (F,E′′) has exactly two connected
components. We denote as Faces(C) the connected component of (F,E′′) that
does not contain the outer face F0.

For a weight function w : V → R and a set S ⊆ V we denote w(S) =∑
e∈S w(e).

2.1 Uncrossable Families of Cycles and Proper Functions

Two simple cycles C,D are crossing if neither Faces(C) ⊂ Faces(D), nor
Faces(D) ⊂ Faces(C), nor Faces(D) ∩ Faces(C) = ∅. A family of simple
cycles Z is laminar iff it does not contain a pair of crossing cycles.

Our algorithms apply to every family of cycles that satisfies the following
(similar to the uncrossing property of [11]). If two simple cycles C1, C2 are cross-
ing then there exist paths P1 ⊆ C1 and P2 ⊆ C2, such that P1 (P2) intersects
C2 (C1) only at its endpoints and P2 contains an edge in the interior of C1.

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 53

Definition 2.1 (Uncrossing property [11]). A family of simple cycles C has
the uncrossing property if for every pair of crossing cycles C1, C2 ∈ C as described
above either P1 ∪ P2 ∈ C and (C1 \ P1) ∪ (C2 \ P2) contains a cycle in C, or
(C1 \ P1) ∪ P2 ∈ C and (C2 \ P2) ∪ P1 contains a cycle in C.
Many natural families of cycles satisfy the uncrossing property. Goemans and
Williamson [11] showed this for FVS, D-FVS, BIP, and S-FVS. We show that
these problems belong to a wider class of node-weighted connectivity problems
in planar graphs which can be expressed as problems of finding hitting sets
for families of cycles satisfying the uncrossing property. To state it formally we
introduce some definitions.

Definition 2.2 ((0, 1)-proper function). A Boolean function f : 2V → {0, 1}
is proper if f(∅) = 0 and it satisfies the following properties:
1. (Symmetry) f(S) = f(V \ S).
2. (Disjointness) If S1 ∩ S2 = ∅ and f(S1) = f(S2) = 0 then f(S1 ∪ S2) = 0.

These properties imply the property known as complementarity: if A ⊆ S and
f(S) = f(A) = 0 then f(S \A) = 0.

For a set S ⊆ V , let Γ (S) be its boundary, i.e. the set of nodes not in S
which have a neighbor in S, or formally Γ (S) = {v ∈ V |v /∈ S, ∃u ∈ S : (u, v) ∈
E}. As observed by Demaine, Hajiaghayi and Klein [5], a wide class of node-
weighted network design problems can be formulated as the following generic
integer program, where f : 2V → {0, 1} is a (0, 1)-proper function:

Minimize:
∑

v∈V

w(v)x(v) (1)

Subject to:
∑

v∈Γ (S)

x(v) ≥ f(S) for all S ⊆ V (2)

x(v) ∈ {0, 1} for all v ∈ V, (3)

For example, for Node-Weighted Steiner Forest the corresponding (0, 1)-
proper function is defined as follows: f(S) = 1 iff there exists a pair of terminals
(si, ti), such that |S ∩ {si, ti}| = 1. The edge-weighted version of this program
was introduced by Goemans and Williamson in [10]. Note that without loss of
generality we can assume that the input graph is triangulated. Otherwise we add
extra nodes of infinite cost inside each face and connect these new nodes to all
nodes on their faces without changing the cost of the optimum solution. Let V ′

be the set of nodes after such extension. Then the corresponding (0, 1)-proper
function f ′ for the extended instance is defined for all S ⊆ V ′ as f ′(S) = f(S∩V).

In Theorem 2.1 we show that a problem expressed by an integer program (1-3)
with some (0, 1)-proper function f can also be expressed as a problem of hitting
a collection of cycles with the uncrossing property. We give some definitions and
simplifying assumptions first.

54 P. Berman and G. Yaroslavtsev

Definition 2.3 (Active sets and boundaries). Assume that f : 2V → {0, 1}
is a (0, 1)-proper function. If f(S) = 1 we say that S is active, and that Γ (S)
is an active boundary. If Γ (S) is a simple cycle we call it an active simple
boundary. We denote the collection of all active simple boundaries as Cf .

Using this terminology the integer program (1-3) expresses the problem of find-
ing a minimum weight hitting set for the collection of all active boundaries.
Note that every active singleton set {s} must be included in the solution be-
cause {s} = Γ (V \ {s}) and V \ {s} is active by symmetry, so {s} has to be
hit. Let S0 be the set of such singletons. Using the observation above we can
simplify the integer program (1-3) by using only inequalities of type (2) such
that Γ (S) ∩ S0 = ∅. By disjointness of f , if Γ (S) ∩ S0 = ∅ then f(Γ (S)) = 0,
i.e. every active boundary in the inequalities (2) of the simplified program is
inactive.

In Lemma 2.1 we show that hitting all active boundaries is equivalent to
hitting Cf because every active boundary contains an active simple boundary as
a subset. This lemma is proved in the full version.

Lemma 2.1. Let G(V,E) be a connected triangulated planar graph, f be a (0, 1)-
proper function and Γ ⊂ V be a set with the following properties:

1. f({a}) = 0 for every a ∈ Γ .
2. f(B) = 1 for some B that is a connected component of V \ Γ .

Then every set C which is a minimal subset of Γ satisfying the two properties
above is a simple cycle.

Then we show that the family of active simple boundaries Cf satisfies the un-
crossing property.

Theorem 2.1. Let G(V,E) be a triangulated planar graph. For every (0, 1)-
proper function f : 2V → {0, 1} the collection of active simple boundaries Cf

forms an uncrossable family of cycles.

Proof. Consider two active simple boundaries Γ (S1) and Γ (S2). If Γ (S2) crosses
Γ (S1) then there exists a collection of edge-disjoint paths in Γ (S2) which we
denote as P , such that each path Pi ∈ P has only two nodes in common with
Γ (S1). Each path Pi ∈ P partitions S1 \ Pi into two parts which we denote as
A1

i and A2
i respectively. Let’s fix a path Pi ∈ P , such that at A1

i doesn’t contain
any other paths from P .

There are two cases: A1
i ∩ S2 = ∅ and A1

i ⊆ S2. They are symmetric because
if A1

i ⊆ S2 we can replace the set S2 by a set S′
2 = V \S2 \ Γ (S2), ensuring that

A1
i ∩ S2 = ∅. Note that the boundary doesn’t change after such replacement,

because Γ (S2) = Γ (S′
2). By symmetry of f we have that f(S2) = f(V \S2) = 1.

Because f(Γ (S2)) = 0 by disjointness we have f(V \ S2 \ Γ (S2)) = f(S′
2) = 1,

so S′
2 is also an active set.

This is why it is sufficient to consider only the case when A1
i ∩ S2 = ∅. We

will show the following auxiliary lemma:

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 55

Lemma 2.2. Let A1, A,B ⊆ V be such that A1 ⊆ A, A1 ∩ B = ∅ and f(A) =
f(B) = 1. Then at least one of the following two statements holds:
1. f(A1 ∪B) = f(A \A1) = 1.
2. f(A1) = max [f(B \ (A \A1)), f((A \A1) \B)] = 1.

The proof of the lemma follows from the properties of (0, 1)-proper functions
and is given in the full version.

To show the uncrossing property for cycles C1 = Γ (S1) and C2 = Γ (S2) we
select the paths in the definition of the uncrossing property as P1 = Γ (A2

i) \ Pi

and P2 = Pi. Now we can apply Lemma 2.2 to sets A1
i , S1 and S2, because A

1
i ⊆

S1, A
1
i ∩S2 = ∅ and f(S1) = f(S2) = 1. Thus, by Lemma 2.2 either f(A1

i ∪S2) =
f(S1 \A1

i) = 1 or f(A1
i) = max(f(S2 \ (S1 \A1

i)), f((S1 \A1
i) \ S2)) = 1. In the

first case we have f(A2
i) = f(A1

i ∪S2) = 1 and thus both cycles P1∪P2 = Γ (A2
i)

and (C1 \ P1) ∪ (C2 \ P2) = Γ (A1
i ∪ S2) are active simple boundaries. In the

second case f(A1
i) = 1 and thus the cycle (C1 \ P1) ∪ P2 = Γ (A1) is an active

simple boundary. The cycle (C2 \P2)∪P1 is not necessarily simple, but it forms
a boundary of an active set (S2\(S1\A1

i))∪((S1 \A1
i)\S2). Thus, by Lemma 2.1

it contains an active simple boundary, which is a cycle in Cf .

3 Algorithm

3.1 Generic Local-Ratio Algorithm

We will use a local-ratio analog of a generic primal-dual algorithm formulated
by Goemans and Williamson [11] which we state as Algorithm 1. As observed
in the full verison of [17] these two formulations are equivalent for the problems
that we consider (see also [2]).

Algorithm 1: Generic local-ratio algorithm (G(V,E), w, C)
1 w̄ ← w.
2 S ← {u ∈ V : w̄(u) = 0}.
3 while S is not a hitting set for C do
4 M← Violation(G, C, S).
5 cM(u)← |{M ∈ M : u ∈M}|, for all u ∈ V \ S.
6 α← minu∈V \S

w̄(u)
cM(u)

.

7 w̄(u)← w̄(u)− αcM(u), for all u ∈ V \ S.
8 S ← {u ∈ V : w̄(u) = 0}.

end
9 return a minimal hitting set H ⊂ S of C.

We say that a hitting set for a collection of cycles is minimal, if it doesn’t contain
another hitting set as its proper subset. Note that we don’t need to specify the
collection of cycles C explicitly. Instead the generic algorithm requires that we
specify an oracle Violation(G, C, S) used in Step 4. Given a graph G, collection

56 P. Berman and G. Yaroslavtsev

of cycles C and a solution S if there are some cycles in C which are not hit by
S this oracle should return a non-empty collection of such cycles, otherwise it
should return the empty set. Such an oracle also allows to perform Step 3 and
Step 9 without explicitly specifying C.

The performance guarantee of the generic algorithm depends on the oracle
used as described below.

Theorem 3.1 (Local-ratio analog of Theorem 3.1 in [11]). If the set M
returned by a violation oracle used in Step 4 of the generic local-ratio Algorithm 1
satisfies that for any minimal solution H̆:

cM(H̆) ≤ γ|M|,

then Algorithm 1 returns a hitting set H of cost w(H) ≤ γw(H∗), where H∗ is
the optimum solution.

We give the proof of this theorem for completeness in the full version.
The simplest violation oracles return a single cycle. Bar-Yehuda, Geiger, Naor

and Roth [3] show that for FVS this approach can give a 10-approximation for
planar graphs and Goemans andWillamson [11] improve it to a 5-approximation.
They also analyzed an oracle, which returns a collection of all faces in C,
which are not hit by the current solution, and showed such oracle gives a 3-
approximation for all families of cycles satisfying uncrossing property. Thus, by
Theorem 2.1 such oracle gives a 3-approximation for all problems that we con-
sider. We now give more complicated examples of violation oracles which give
better approximation factors.

3.2 Face Minimal Violation Oracles

Definition 3.1. Given S ⊂ V , C(S) = {C ∈ C : C ∩ S = ∅}. A cycle C ∈
C(S) is face minimal if there is no D ∈ C(S) such that Faces(D) � Faces(C).
Minimal(S) = {C ∈ C(S) : C is face minimal}.
Goemans and Williamson [11] showed that using Minimal(S) as Violation
(G, C, S) leads to approximation ratio 3. Other violation oracles we discuss can
be computed by selecting a subset of Minimal(S). Thus the algorithms we
discuss run in polynomial time if the function Minimal(S) can be computed
in polynomial time. This is shown in [11,17] for the problems considered there.
This also holds in general for sets of cycles defined by (0, 1)-proper functions.

Lemma 3.1. For a family of cycles Cf defined by a (0, 1)-proper function
Minimal(S) can be computed in polynomial time.

We give a sketch of the proof below. Let A be the set of active connected com-
ponents of V \ S. Each cycle in Minimal(S) will be a minimal subset of Γ (A)
for some A ∈ A. However, we need to show how to find all cycles of Minimal(S)
rather than one.

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 57

We start by defining a partial order on A. For a fixed A ∈ A we have set
K(A) of connected components of V \ Γ (A); note that A ∈ K(A). We say that
a B ∈ K(A) is an outer (inner) component if B contains at least one node of
the outer face (does not contain any). One can see that there exists at most one
outer component in K(A). We say that A dominates A′ ∈ A if some B is an
inner component of K(A), B
= A and A′ ⊂ B. This relation is anti-symmetric
and transitive, hence it defines a partial order. We can show that each cycle of
Minimal(S) is contained in Γ (A) where A is a minimal element of A in terms
of domination.

Then given such minimal A we first insert to A those nodes from Γ (A) that
have neighbors only in Γ (A)∪A. Then we can show that resulting smaller Γ (A)
induces a subgraph that can be uniquely decomposed into a family of simple
cycles, and exactly one of those cycles is a boundary of an active set. Details
will be provided in the full version.

3.3 Minimal Pocket Violation Oracles

The following oracle, introduced by Goemans and Williamson [11], returns a col-
lection of faces in C inside a minimal pocket not hit by the current solution H .

Definition 3.2. A pocket for a planar graph G(V,E) and a cycle collection C
is a set U ⊆ V such that:
1. The set U contains at most two nodes with neighbors outside U .
2. The induced subgraph G[U] contains at least one cycle in C.

Algorithm 2: Minimal-Pocket-Violation (G, C, S)
1 C0 ← {c ∈ C : c not hit by S}
2 M←Minimal(S)
3 Construct a graph GS by removing from G:
4 All edges in the interior of cycles ofM.
5 All vertices which are not adjacent to any edges.
6 Let U0 be a pocket for GS and C0 which doesn’t contain any other pockets.
7 return A collection of all cycles in C0 which are faces of GS[U0].

As in the generic algorithm, we will not specify C and C0 explicitly, but will
rather use an oracle to check relevant properties with respect to them. We show
analysis of the approximation factor obtained with this oracle in Section 4.

We will obtain a better approximation ratio by analyzing the following oracle
in the full version.

Definition 3.3. A triple pocket for a planar graph G(V,E) and a cycle collec-
tion C is a set U ⊆ V such that:

1. The set U contains at most three nodes with neighbors outside U .
2. The induced subgraph GS [U] has at least three faces in C.

58 P. Berman and G. Yaroslavtsev

The violation oracle Minimal-3-Pocket-Violation finds a minimal U0 that is
either a pocket or a triple pocket, and otherwise works like Minimal-Pocket-
Violation.

4 18/7 Approximation Ratio with Pocket Oracle

According to Theorem 3.1, to show that Algorithm 1 with Minimal-Pocket-
Violation oracle has approximation factor 18/7 it suffices to prove the following:

Theorem 4.1. In every iteration of the generic local-ratio algorithm (Algo-
rithm 1) with oracle Minimal-Pocket-Violation for every minimal hitting
set H̆ of C we have cM(H̆) ≤ γ|M| for γ = 18/7.

The proof is in the full version.

4.1 12/5 Approximation Ratio with Triple Pocket Oracle

In the generic local-ratio algorithm we can change the implementation of the
oracle Violation. Namely we can use Minimal-3-Pocket-Violation which
in turn is a modification of Algorithm 2: in line 6 select U0 as a minimal triple
pocket. Note that a triple pocket is defined by three (or less) nodes that form
Γ (V − U0), hence we still have a polynomial time. In the full version we prove

Theorem 4.2. In every iteration of the generic local-ratio algorithm (Algo-
rithm 1) with oracle Minimal-3-Pocket-Violation for every minimal hitting
set H̆ of C we have cM(H̆) ≤ γ|M| for γ = 12/5.

4.2 Tight Examples

We show instances of graphs, on which the primal-dual algorithm with oracles
Minimal-Pocket-Violation andMinimal-3-Pocket-Violation gives 18/7
and 12/5 approximations respectively.

Our examples are for the Subset Feedback Vertex Set problem. Recall
that in this problem we need to hit all cycles which contain a specified set of
“special” nodes. Our examples are graphs with no pockets (or triple pockets),
in which every face belongs to the family of cycles that we need to hit – this
is ensured by selection of “special” nodes, which are marked with a star . The
weights of vertices are assigned as follows. Given a node u with degree d(u), its
weight is w(u) = d(u) if u is a solid dot and w(u) = d(u)+ ε otherwise (for some
negligibly small value of ε).

First we show an example for the oracle Minimal-Pocket-Violation in
Figure 1. Because there are no pockets, the first execution of the violation oracle
returns the collection of all faces in the graph. Thus, in each building block
of Picture 1 (which shows 5 such blocks from left to right), the primal-dual
algorithm selects the black dots with total weight 18 while stars also form a

Primal-Dual Approximation Algorithms for Node-Weighted Network Design 59

valid solution with weight 7 + 3ε. Hence the ratio will be arbitrarily close to
18/7, if we repeat the building block many times.

Similar family of examples for the oracle Minimal-3-Pocket-Violation is
shown in Figure 2. In these examples there are no pockets or triple pockets, so
the oracle Minimal-3-Pocket-Violation returns the collection of all faces in
the graph. As above, the primal-dual algorithm selects the black dots with total
weight 12 within each block, while the cost of the solution given by the stars is
5 + 2ε, so we can make the ratio arbitrarily close to 12/5.

●●

●

●

●●

✿

✿

✿

●●

●

●

●●

✿

✿

✿

●●

●

●

●●

✿

✿

✿

●●

●

●

●●

✿

✿

✿

●●

●

●

●●

✿

✿

✿

✿

✿

Fig. 1. Family of instances of S-FVS with approximation factor 18/7 for the primal-
dual algorithm with oracle Minimal-Pocket-Violation

✿ ●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

●●

✿

Fig. 2. Family of instances of S-FVS with approximation factor 12/5 for primal-dual
algorithm with oracle Minimal-3-Pocket-Violation

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

2. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: A unified frame-
work for approxmation algrithms in memoriam: Shimon even 1935-2004. ACM
Comput. Surv. 36(4), 422–463 (2004)

3. Bar-Yehuda, R., Geiger, D., Naor, J.S., Roth, R.M.: Approximation algorithms
for the vertex feedback set problem with applications to constraint satisfaction
and bayesian inference. In: SODA 1994, pp. 344–354. SIAM, Philadelphia (1994),
http://dl.acm.org/citation.cfm?id=314464.314514

http://dl.acm.org/citation.cfm?id=314464.314514

60 P. Berman and G. Yaroslavtsev

4. Becker, A., Geiger, D.: Optimization of pearl’s method of conditioning and
greedy-like approximation algorithms for the vertex feedback set problem. Artif.
Intell. 83(1), 167–188 (1996)

5. Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-Weighted Steiner Tree and
Group Steiner Tree in Planar Graphs. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp.
328–340. Springer, Heidelberg (2009)

6. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between fpt
algorithms and ptass. In: SODA 2005, pp. 590–601. SIAM, Philadelphia (2005),
http://dl.acm.org/citation.cfm?id=1070432.1070514

7. Dilkina, B., Gomes, C.P.: Solving Connected Subgraph Problems in Wildlife Con-
servation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140,
pp. 102–116. Springer, Heidelberg (2010)

8. Even, G., (Seffi) Naor, J., Schieber, B., Sudan, M.: Approximating minimum feed-
back sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)

9. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut
theorems and their applications. SIAM J. Comput. 25, 235–251 (1996)

10. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

11. Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for feed-
back problems in planar graphs. Combinatorica 18, 37–59 (1998)

12. Guha, S., Moss, A., Naor, J., Schieber, B.: Efficient recovery from power outage
(extended abstract). In: STOC 1999, pp. 574–582 (1999)

13. Kahng, A.B., Vaya, S., Zelikovsky, A.: New graph bipartizations for double-
exposure, bright field alternating phase-shift mask layout. In: ASP-DAC 2001, pp.
133–138. ACM, New York (2001)

14. Klein, P.: Optimization Algorithms for Planar Graphs,
http://www.planarity.org/

15. Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted steiner trees. J. Algorithms 19(1), 104–115 (1995)

16. Li, X., Xu, X.-H., Zou, F., Du, H., Wan, P., Wang, Y., Wu, W.: A PTAS for Node-
Weighted Steiner Tree in Unit Disk Graphs. In: Du, D.-Z., Hu, X., Pardalos, P.M.
(eds.) COCOA 2009. LNCS, vol. 5573, pp. 36–48. Springer, Heidelberg (2009)

17. Moldenhauer, C.: Primal-Dual Approximation Algorithms for Node-Weighted
Steiner Forest on Planar Graphs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011. LNCS, vol. 6755, pp. 748–759. Springer, Heidelberg (2011)

18. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted
steiner tree problems. SIAM J. Comput. 37(2), 460–481 (2007)

19. Remy, J., Steger, A.: Approximation Schemes for Node-Weighted Geometric
Steiner Tree Problems. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L.
(eds.) APPROX and RANDOM 2005. LNCS, vol. 3624, pp. 221–232. Springer,
Heidelberg (2005)

20. Yannakakis, M.: Node-and edge-deletion np-complete problems. In: STOC 1978,
pp. 253–264. ACM, New York (1978)

http://dl.acm.org/citation.cfm?id=1070432.1070514
http://www.planarity.org/

	Primal-Dual Approximation Algorithms for Node-Weighted Network Design in Planar Graphs
	Introduction
	Preliminaries
	Uncrossable Families of Cycles and Proper Functions

	Algorithm
	Generic Local-Ratio Algorithm
	Face Minimal Violation Oracles
	Minimal Pocket Violation Oracles

	18/7 Approximation Ratio with Pocket Oracle
	12/5 Approximation Ratio with Triple Pocket Oracle
	Tight Examples

	References

