
Lp-Testing

Draft full version

Piotr Berman∗ Sofya Raskhodnikova† Grigory Yaroslavtsev‡

July 16, 2016

Abstract

We initiate a systematic study of sublinear algorithms for approximately testing properties of real-
valued data with respect to Lp distances for p ≥ 1. Such algorithms distinguish datasets which either
have (or are close to having) a certain property from datasets which are far from having it with respect
to Lp distance. For applications involving noisy real-valued data, using Lp distances allows algorithms
to withstand noise of bounded Lp norm. While the classical property testing framework developed with
respect to Hamming distance has been studied extensively, testing with respect to Lp distances has
received little attention.

We use our framework to design simple and fast algorithms for classic problems, such as testing
monotonicity, convexity and the Lipschitz property, and also distance approximation to monotonicity.
In particular, for functions over the hypergrid domains [n]d, the complexity of our algorithms for all
these properties does not depend on the linear dimension n. This is impossible in the standard model.
Most of our algorithms require minimal assumptions on the choice of sampled data: either uniform or
easily samplable random queries suffice. We also show connections between the Lp-testing model and the
standard framework of property testing with respect to Hamming distance. Some of our results improve
existing bounds for Hamming distance.

1 Introduction

Property testing [54, 36] is a rigorous framework for approximate analysis of global properties of data,
which can be performed given access to a small sample. For example, one can approximately verify whether
a (possibly multidimensional) array of numbers is sorted by examining a carefully chosen subset of its
elements [26, 37, 24]. Formally, a property testing problem can be stated by treating data as a function
on the underlying domain. The datasets satisfying a property form a class of functions. E.g., the set of all
sorted real-valued n-element datasets corresponds to the class of monotone functions of the form f : [n]→ R,
while monotone functions f : [n]d → R represent d-dimensional arrays with linear size n, sorted in each of
the d dimensions1. The problem of testing sortedness can be formalized as follows. LetM be the class of all
monotone functions. Given a function f : [n]d → R and a proximity parameter ε, we want to decide whether
f ∈ M or f is at distance at least ε from any function in M. The distance measure in the standard model
is (relative) Hamming distance.

In this paper, we initiate a systematic study of properties of functions with respect to Lp distances,
where p > 0. Property testing was originally introduced for analysis of algebraic properties of functions over
finite fields such as linearity and low degree. Attention to these properties was motivated by applications

∗Pennsylvania State University, USA; berman@cse.psu.edu.
†Pennsylvania State University, USA and Boston University, USA; sofya@cse.psu.edu.
‡Brown University, Institute for Computational and Experimental Research in Mathematics; grigory@grigory.us.
1We use [n] to denote the set {1, 2, . . . , n}.

1

to Probabilistically Checkable Proofs. In such applications, Hamming distance between two functions is a
natural choice because of its interpretation as the probability that the two functions differ on a random
point from the domain. Also, many initial results in property testing focused on Boolean functions, for
which Lp distances are the same for p = 0, 1 and, more generally, are related in a simple way for different
values of p, so all choices of p lead to the same testing problems. Subsequently, property testing algorithms
have been developed for multiple basic properties of functions over the reals (e.g., monotonicity, convexity,
submodularity, the Lipschitz property, etc.). We study testing these properties w.r.t. Lp distances, providing
different approximation guarantees, better suited for many applications with real-valued data.

Lp-testing. Let f be a real-valued function over a finite2 domain D. For p ≥ 1, the Lp-norm of f is

‖f‖p =
(∑

x∈D |f(x)|p
)1/p

. For p = 0, let ‖f‖0 =
∑
x∈D |f(x)|0 be the number of non-zero values of f .

Let 1 denote the function that evaluates to 1 on all x ∈ D. A property P is a set of functions over D. For
real-valued functions f : D → [0, 1] and a property P, we define relative Lp distance as follows3:

dp(f,P) = inf
g∈P

‖f − g‖p
‖1‖p

= inf
g∈P

(E[|f − g|p])1/p
,

where the first equality holds for p ≥ 0 and the second for p > 0. The normalization by a factor ‖1‖p ensures
that dp(f,P) ∈ [0, 1]. For p ≥ 0, a function f is ε-far from a property P w.r.t. the Lp distance if dp(f,P) ≥ ε.
Otherwise, f is ε-close to P.

Definition 1.1 (Lp-tester). An Lp-tester for a property P is a randomized algorithm that, given a proximity
parameter ε ∈ (0, 1) and oracle access to a function f : D → [0, 1],

1. accepts with probability at least 2/3 if f ∈ P;

2. rejects with probability at least 2/3 if dp(f,P) ≥ ε.

The corresponding algorithmic problem is called Lp-testing. Standard property testing corresponds to
L0-testing, which we also call Hamming testing.

Tolerant Lp-testing and Lp-distance approximation. An important motivation for measuring dis-
tances to properties of real-valued functions w.r.t. Lp metrics is noise-tolerance. In order to be able to
withstand noise of bounded Hamming weight (small number of outliers) in the property testing framework,
Parnas, Ron, and Rubinfeld [48] introduced tolerant property testing. One justification for Lp-testing is that
in applications involving real-valued data, noise added to the function often has large Hamming weight, but
bounded Lp-norm for some p > 0 (e.g., Brownian motion, white Gaussian noise, etc.). This leads us to the
following definition, which generalizes tolerant testing [48].

Definition 1.2 (Tolerant Lp-tester). An (ε1, ε2)-tolerantLp-tester for a property P is a randomized algorithm
which, given ε1, ε2 ∈ (0, 1), where ε1 < ε2, and oracle access to a function f : D → [0, 1],

1. accepts with probability at least 2/3 if dp(f,P) ≤ ε1.

2. rejects with probability at least 2/3 dp(f,P) ≥ ε2.

If the tester works for arbitrary ε1 < ε2, it is called fully tolerant.

2Some of our results apply to functions over infinite measurable domains, i.e.,
∫
D 1 < ∞, where 1 is an indicator function

of the domain D. This is why we use the name Lp rather than `p. An important example of such a domain is the hypercube
[0, 1]d in Rd.

3The definition of distance dp can be extended to functions f : D → [a, b], where a < b, by changing the normalization
factor to ‖1‖p · (b− a). Our results hold for the more general range (if the algorithms are given bounds a and b), since for the

properties we consider (monotonicity, the Lipschitz property and convexity), testing f reduces to testing f ′ =
f(x)−a
b−a

. For ease

of presentation, we set the range to [0, 1].

2

For example, a tolerant L1-tester can ignore both uniform noise of bounded magnitude and noise of large
magnitude concentrated on a small set of outliers.

A related computational task is approximating the Lp distance to a property P: given oracle access
to a function f , output an additive approximation to the relative Lp distance dp(f,P), which has the
desired accuracy with probability at least 2/3. Distance approximation is equivalent to tolerant testing
(up to small multiplicative factors in the running time) [48]. Both problems were studied extensively for
monotonicity [48, 3, 55, 28] and convexity [27]. Despite significant progress, an optimal algorithm is not
known even for monotonicity in one dimension. In contrast, for L1-testing we are able to fully resolve this
question for one-dimensional functions.

Connections with learning. Another compelling motivation for Lp-testing comes from learning the-
ory [60]. It has been pointed out that property testing can be helpful in model selection. If the concept
class for learning a target function is not known reliably in advance, one can first run more efficient property
testing or distance approximation algorithms in order to check multiple candidate concept classes for the
subsequent learning step. It is important that the approximation guarantees of the preprocessing step and
the learning step be aligned. Because Lp distances are frequently used to measure error in PAC-learning of
real-valued functions (see e.g. [41]), an Lp-testing algorithm is a natural fit for preprocessing in such appli-
cations, especially when noisy real-valued data is involved. We believe that investigating Lp-testing might
be an important step in bridging the gap between existing property testing and learning models.

We note that other property testing models introduced to help bridge that gap (prominent examples
include distribution-free testing [36, 39], and passive and active testing [5]) combine well with our distance
measures. We leave the investigation of these models w.r.t. Lp distances for future work. We remark,
however, that some of our algorithms only take uniform samples from the domain (or make queries according
to another easily samplable distribution), so they can also be used in the passive testing model.

We also note that the well established connection between Hamming testing and learning [36, 52] naturally
extends to Lp-testing, and we exploit it in our results on monotonicity and convexity (see Section 1.2).
Namely, from the information-theoretic perspective, property testing is not harder than PAC-learning (up to
a small additive factor), although computationally this holds only for proper learning. Tolerant testing and
distance approximation are related in a similar way to agnostic learning [44, 48]. Thus, the goal of property
testing is to design algorithms which have significantly lower complexity than the corresponding learning
algorithms and even go beyond the lower bounds for learning.

Connections with approximation theory. Connections between learning and property testing are well
established. Another closely related field is that of approximation theory. Computational tasks considered in
that field (e.g., approximating a class of functions with Lp error) are similar to learning tasks. Basically, the
only differences between approximation and learning tasks are that approximation algorithms are usually
allowed to query the input function at points of their choice and are non-agnostic (i.e., they work only
under the assumption that the input function is in a given class). Approximation theory is not known to
imply any interesting results for Hamming property testing primarily because approximation results usually
have Lp error with p > 0. But once the Lp metric is considered in property testing, the parallels between
the computational tasks studied in sublinear algorithms and approximation theory become apparent. In
Section 1.2.3, we exploit the connection to approximation theory to get an Lp-testing algorithm for convexity.
We believe that a systematic investigation of Lp-testing is likely to yield deep and interesting connections
between property testing and approximation theory.

Previous work related to Lp-testing. To the best of our knowledge no prior work systematically studies
Lp-testing of properties of functions. The only explicitly stated Lp-testing result for p > 0 is the L1-tester
for submodular functions in a recent paper by Feldman and Vondrák [30]. It is a direct corollary of their
junta approximation result w.r.t. L1 distance. The upper bound on the query complexity of L1-testing of
submodularity in [30] is far from the known lower bound. For related classes of functions over the Boolean
hypercube such as coverage, XOS and self-bounding functions, Lp-testing algorithms can be derived from

3

the learning algorithms of [30, 29]. In the Hamming testing model it is well-understood that for classes of
functions, which can be approximated by juntas, learning-theoretic bounds can be significantly improved via
a generic “testing by implicit learning” framework [22, 56]. It remains open whether the same is true for
Lp-testing.

There are also property testing papers that work with L1 distance, but consider different input access.
Rademacher and Vempala [49] study property testing whether a given set S is convex, where ε-far means
that there is no convex set K such that vol(K∆S) ≤ ε · vol(S). In addition to oracle access, their algorithm
can sample a random point form the set S. Finally, L1 distance is also widely used in testing properties of
distributions [7, 61, 59, 9, 21, 19].

1.1 Basic Relationships Between Lp-Testing Models

Our first goal is to establish relationships between Hamming, L1 and Lp-testing for standard and toler-
ant models4. We stress that even though the basic relations between Lp-testing problems, summarized in
Facts 1.1 and 1.2, are stated for query complexity of general algorithms, these facts still hold if the query
complexity is defined for a restricted class of algorithms (e.g., nonadaptive and/or with one-sided error,
defined next); they also hold for analogous time complexity measures.

Definition 1.3. An algorithm is called nonadaptive if it makes all queries in advance, before receiving any
responses; otherwise, it is called adaptive. A testing algorithm for property P has one-sided error if it always
accepts all inputs in P; otherwise, it has 2-sided error.

Lp-testing. We denote the worst-case query complexity of Lp-testing for property P with proximity pa-
rameter ε by Qp(P, ε). The following fact establishes basic relationships between Lp-testing problems and
follows directly from the inequalities between Lp-norms. A generalization of this fact is proved in Section 5.1.

Fact 1.1. Let ε ∈ (0, 1) and P be a property over any domain. Then

1. Q1(P, ε) ≤ Q0(P, ε); 2. Q1(P, ε) ≤ Qp(P, ε) ≤ Q1(P, εp) for all p ≥ 1.

Moreover, if P is a property of Boolean functions then

1. Q1(P, ε) = Q0(P, ε); 2. Qp(P, ε) = Q1(P, εp) for all p ≥ 1.

This fact has several implications. First, L1-testing is no harder than standard Hamming testing (the
first inequality). Hence, upper bounds on the query complexity of the latter are the baseline for the design
of L1-testing algorithms. As we will demonstrate, for the properties considered in this paper, L1-testing has
significantly smaller query complexity than Hamming testing. This fact also shows that the complexity of L1

and L2-testing problems is equivalent up to quadratic dependence on ε (the second and third inequalities).
Finally, the equivalence of Lp-testing problems for Boolean functions (and, more generally, equivalence up
to constant factors for functions with constant size range) implies that all lower bounds for such functions
in the standard Hamming testing model are applicable to Lp-testing.

Tolerant Lp-testing. We denote the worst-case query complexity of (ε1, ε2)-tolerant Lp-testing of a prop-
erty P by Qp(P, ε1, ε2). Introducing tolerance complicates relationships between Lp-testing problems for
different p as compared to the relationships in Fact 1.1. A generalization of this fact is proved in Section 5.2.

Fact 1.2. Let ε1, ε2 ∈ (0, 1) such that ε1 < εp2 and P be a property over any domain. Then

Q1(P, εp1, ε2) ≤ Qp(P, ε1, ε2) ≤ Q1(P, ε1, ε
p
2).

Moreover, if P is a property of Boolean functions then

4In the rest of the paper, we consider Lp-testing and distance approximation only for p = 0 and p ≥ 1, leaving the remaining
cases for future work.

4

1. Q1(P, ε1, ε2) = Q0(P, ε1, ε2); 2. Qp(P, ε1, ε2) = Q1(P, εp1, ε
p
2) for all p ≥ 1.

Facts 1.1-1.2 establish the key role of L1-testing in understanding property testing w.r.t. Lp distances
since results for L2-testing follow with a minor loss in parameters. Moreover, in many cases, these results
turn out to be optimal. Hence, in the rest of this paper we focus primarily on L1-testing.

1.2 Our Results on Properties of Real-Valued Functions

We consider three properties of real-valued functions: monotonicity, the Lipschitz property and convexity.
We focus on understanding the L1 distance to these properties and obtain results for Lp-distance for p >
1 by applying Facts 1.1-1.2. Most of our algorithms are nonadaptive and/or have one-sided error (see
Definition 1.3).

1.2.1 Monotonicity

Monotonicity is perhaps the most investigated property in the context of property testing and distance
approximation. Monotonicity testing has been extensively studied, with specific focus on the hypergrid
domains [37, 26, 24, 31, 6, 40, 2, 11, 13, 15, 16, 12, 17], as well as on general partially ordered domains [32, 10].
Distance approximation to monotone functions has also received significant attention [48, 3, 55, 28, 8].

Definition 1.4 (Monotone function). Let D be a (finite) domain equipped with a partial order �. A function
f : D → R is monotone if f(x) ≤ f(y) for all x, y ∈ D satisfying x � y.

An important specific domain D is a d-dimensional hypergrid [n]d equipped with the partial order �,
where (x1, . . . , xn) � (y1, . . . , yn) whenever x1 ≤ y1, . . . , xn ≤ yn. The special case [n] of the hypergrid is
called a line, and the special case [2]d is a hypercube. These domains are interesting in their own right. For
example, testing monotonicity on the line [n] corresponds to testing whether a list of n numbers is sorted
(in nondecreasing order). The L1 distance to monotonicity on the line is the total change in the numbers
required to make them sorted.

Characterization. We give a characterization of the L1 distance to monotonicity in terms of the distance
to monotonicity of Boolean functions (Lemma 2.1). The main idea in our characterization is that every
function can be viewed as an integral over Boolean threshold functions. This view allows us to express the
L1 distance to monotonicity of a real-valued function f : D → [0, 1] as an integral over the L1 distances
to monotonicity of its Boolean threshold functions. We use this characterization to obtain reductions from
the general monotonicity testing and distance approximation to the case of Boolean functions (Lemmas 2.2
and 2.3) that preserve query complexity and running time5.

Recall that for Boolean functions, L0 and L1 distances are equal. Thus, our reductions allow us to
capitalize on existing algorithms and lower bounds for (Hamming) testing of and distance approximation
to monotonicity of Boolean functions. For example, for the case of the line domain [n], it is folklore that
monotonicity of Boolean functions can be tested nonadaptively and with 1-sided error in O

(
1
ε

)
time. In

contrast, for Hamming testing with the general range, one needs Ω
(

logn
ε −

1
ε log 1

ε

)
queries even for adaptive

2-sided error testers [26, 31, 17]. Therefore, testing monotonicity on the line is a factor of log n faster
w.r.t. the L1 distance than Hamming distance. A comparison between the query complexity of Lp-testing
monotonicity on the line, the hypercube, the hypergrid and general partially ordered (PO) domains for p = 0
and p ≥ 1 is given in Table 1.1. The results for p ≥ 1 for the line, the hypercube and general PO domains
follow from the basic relationships between Lp-testing problems Fact 1.1, our reduction to the Boolean case

5Our reductions are stated for nonadaptive algorithms. Such reductions are useful because all known upper bounds for
testing monotonicity can be achieved by nondaptive testers, with one exception: our adaptive bound for testing Boolean
functions on constant-dimensional hypergrids from Section 2.3. We can get a reduction that works for adaptive algorithms by
viewing L1-testing monotonicity as a multi-input concatenation problem [33]. This reduction preserves the query complexity
for the special class of proximity-oblivious testers [23], but incurs a loss of O

(
1
ε

)
in general and, specifically, when applied to

our adaptive tester. As this approach would not improve our results, we focus on reductions for nonadaptive algorithms.

5

Monotonicity

Domain Hamming Testing Lp-Testing for p ≥ 1

[n]
O
(

logn
ε

)
n.a. 1-s. [26] O

(
1
εp

)
n.a. 1-s. Lem. 2.2 + Fact 1.1

Ω
(

logn
ε −

1
ε log 1

ε

)
a. 2-s. [26, 31, 17] Ω

(
1
εp

)
a. 2-s. Fact 1.1

{0, 1}d
O
(
d
ε

)
n.a. 1-s. [24, 37] O

(
d5/6

ε5p/3

)
n.a. 1-s. [16] + Lem. 2.2 + Fact 1.1

Ω
(
d
ε

)
a. 2-s. [11, 14] Ω(

√
d) n.a. 1-s., Ω(log d) n.a. 2-s. [32] + Fact 1.1

[n]d
O
(
d logn
ε

)
n.a. 1-s. [15] O

(
d
εp log d

εp

)
n.a. 1-s. Thm. 1.3 + Fact 1.1

Ω
(
d logn
ε − 1

ε log 1
ε

)
a. 2-s. [17] Ω

(
1
εp log 1

εp

)
n.a. 1-s. Thm. 2.14 + Fact 1.1

D
O

(√
|D|
ε

)
n.a. 1-s. [32] O

(√
|D|

ε
p
2

)
n.a. 1-s. [32] + Lem. 2.2 + Fact 1.1

|D|Ω(1
log log |D|) n.a. 2-s. [32] |D|Ω(1

log log |D|) n.a. 2-s. [32] + Fact 1.1

Table 1.1: Query complexity of Lp-testing monotonicity of a function f : D → [0, 1] (a./n.a. = adap-
tive/nonadaptive, 1-s./2-s. = 1-sided error/2-sided error).

(Lemma 2.1) and the best known bounds on Boolean testers for these domains. For the hypergrid domains,
in addition to Fact 1.1 and Lemma 2.1, the results in the table rely on our improvements to the bounds on
the complexity of testing Boolean monotonicity on hypergrids, which we describe next.

L1-testing on hypergrids and Levin’s work investment strategy. One of our reductions (described
above) shows that the nonadaptive complexity of L1-testing monotonicity is the same for functions over
[0, 1] and over {0, 1}. Dodis et al. [24] gave a monotonicity tester of Boolean functions on [n]d that makes
O
(
d
ε log2 d

ε

)
queries and runs in O

(
d
ε log3 d

ε

)
time. We obtain a tester with better query and time complexity.

Theorem 1.3. Let n, d ∈ N and ε ∈ (0, 1). The time complexity of L1-testing monotonicity of functions
f : [n]d → [0, 1] with proximity parameter ε (nonadaptively and with one-sided error) is O

(
d
ε log d

ε

)
.

The test in [24] is based on the dimension reduction (stated as Theorem 2.6 in Section 2.2) and Levin’s
work investment strategy [45], described in detail by Goldreich [33]. Our improvement in the upper bound
on the query complexity stems from an improvement to Levin’s strategy. (The additional improvement in
running time comes from a more efficient check for violations of monotonicity among sampled points.) As
described in [33], Levin’s strategy has been applied in many different settings [45, 34], including testing
connectedness of bounded-degree graphs in [35], testing connectedness of images in [50] and analyzing com-
plexity of the concatenation problem [33]. Our improvement to Levin’s strategy saves a logarithmic factor
in the running time in these applications. Specifically, whether a graph of bounded degree is connected
can be tested with O

(
1
ε log 1

ε

)
queries, whether an image represents a connected object can be tested with

O
(

1
ε2 log 1

ε

)
queries, and there is only an O

(
log 1

ε

)
overhead in the query complexity of the concatenation

of property testing instances as compared to solving a single instance.

Role of adaptivity. Researchers have repeatedly asked whether adaptivity is helpful in testing monotonic-
ity. All previously known adaptive tests have been shown to have nonadaptive analogs with the same query

6

and time complexity. (See, e.g., [12] for a discussion of both points.) Yet, for some domains and ranges
there is a large gap between adaptive and nonadaptive lower bounds. We exhibit the first monotonicity
testing problem where adaptivity provably helps: we show that for functions of the form f : [n]2 → {0, 1},
monotonicity testing can be performed with O

(
1
ε

)
queries with an adaptive 1-sided error algorithm, while

every nonadaptive 1-sided error algorithm for this task requires Ω
(

1
ε log 1

ε

)
queries. Our upper bound of

O
(

1
ε

)
queries holds more generally: for any constant d. This upper bound is optimal because one needs

Ω
(

1
ε

)
queries to test any nontrivial property, including monotonicity. Our lower bound shows that the tester

from Theorem 1.3 is an optimal nonadaptive 1-sided error tester for hypergrids of constant dimension.
Our adaptive tester is based on an algorithm that partially learns the class of monotone Boolean functions

over [n]d. (The partial learning model is formalized in Definition 2.3. In particular, our partial learner
implies a proper PAC learner under the uniform distribution with membership queries.) A straightforward
transformation6 gives a 1-sided error tester from the learner. For the special case of d = 2, the tester has the
desired O(1

ε) query complexity. Our O
(

1
ε

)
-query tester for higher dimensions is more sophisticated: it uses

our nonadaptive monotonicity tester (from Theorem 1.3) in conjunction with the learner. The idea is that
the values previously deduced by the learner do not have to be queried, thus reducing the query complexity.

Our lower bound for nonadaptive testing is based on a hexagon packing. (See Figures 2.1 and 2.2).

Tolerant testing and distance approximation. We give L1-distance approximation algorithms with
additive error δ for monotonicity of functions on the line and the 2-dimensional grid. The query complexity
for the line and the grid are O(1/δ2) and Õ(1/δ4), respectively. Our algorithm for the line is optimal. It
implies a tolerant L1-tester for monotonicity on the line with query complexity O

(
ε2

(ε2−ε1)2

)
and, by Fact 1.2,

for p ≥ 1, a tolerant Lp-tester for this problem with query complexity O
(εp2

(εp2−ε1)2

)
. The next theorem

summarizes our results for L1-distance approximation and tolerant L1-testing.

Theorem 1.4. Let n ∈ N and δ ∈ (0, 1). There is an algorithm that approximates the relative L1-distance
to monotonicity, d1(f,M), of functions f : [n]d → [0, 1] with additive error δ with probability at least 2/3;

1. for d = 1, it makes O
(

max
(
dM(f)
δ2 , 1

δ

))
queries and runs in time ...

2. for d = 2, it makes Õ(1/δ4) queries and runs in time ...

Let n ∈ N and ε1, ε2 ∈ (0, 1), where ε1 < ε2. There is an (ε1, ε2)-tolerant L1-tester for monotonicity of
functions f : [n]d → [0, 1];

3. for d = 1, it makes O
(

ε2
(ε2−ε1)2

)
queries and runs in time ...

4. for d = 2, it makes Õ(1/(ε2 − ε1)4) queries and runs in time ...

A crucial building block of our algorithms is the reduction from the general approximation problem
to the special case of Boolean functions (Lemma 2.3). For the line, we further reduce the problem to
approximating the longest correct bracket subsequence. Our distance approximation algorithm for Boolean
functions improves on the Õ(1/δ2)-query algorithm of Fattal and Ron [28]. For d = 2, we apply our reduction
to the algorithm of [28] for Boolean functions.

1.2.2 The c-Lipschitz properties

The c-Lipschitz properties are a subject of a recent wave of investigation [43, 4, 23, 15, 18], with a focus on
hypergrid domains, due to their applications to differential privacy [25].

6Our transformation can be viewed as an analog of Proposition 3.1 in [36]. This proposition relates the query complexity of
2-sided error testing to the sample complexity of proper learning. Our transformation requires a stronger learner and yields a
1-sided error tester.

7

The c-Lipschitz property

Domain Hamming Testing Lp-Testing for p ≥ 1

[n]d
O
(
d logn
ε

)
n.a. 1-s. [15] O

(
d
εp

)
n.a. 1-s. Thm. 1.5 + Fact 1.1

Ω
(
d logn
ε − 1

ε log 1
ε

)
a. 2-s. [18] Ω(d+ 1

εp) a. 2-s. [43] + Fact 1.1

Table 1.2: Query complexity of Lp-testing the c-Lipschitz property of a function f : D → [0, 1] for p ≥ 1
(a./n.a. = adaptive/nonadaptive, 1-s./2-s. = 1-sided error/2-sided error).

Definition 1.5 (c-Lipschitz function). Let (D, dD) be a finite metric space, i.e., D is a finite set and
dD : D ×D → R is a metric. Let the Lipschitz constant c > 0 be a real number. A function f : D → R is
c-Lipschitz if |f(x)− f(y)| ≤ c · dD(x, y) for all x, y ∈ D. If c = 1, such a function is called Lipschitz.

The hypergrid, the hypercube and the line domains are defined as for monotonicity, except that instead
of equipping them with the partial order, we equip them with the following metric: dD(x, y) = ‖x− y‖1.

Characterization. We give a combinatorial characterization of the L1 distance to the Lipschitz property
(in Lemma 4.1). We show that it is equal to the weight of a maximum weight matching in the appropriately
defined graph associated with the function. We note that a similar-looking near-characterization is known
w.r.t. the Hamming distance, but the upper and lower bounds on the Hamming distance to the Lipschitz
property are off by a factor of 2. Our characterization w.r.t. the L1 distance is tight.

L1-testing on hypergrids. We use our characterization to obtain a c-Lipschitz L1-tester for functions
over hypergrids that is faster by a factor of log n than the best possible Hamming tester. Known bounds on
the query complexity of testing the c-Lipschitz property on hypergrids are summarized in Table 1.2.

Theorem 1.5. Let n, d ∈ N and ε, c ∈ (0, 1). The time complexity of L1-testing the c-Lipschitz property of
functions f : [n]d → [0, 1] (nonadaptively and with 1-sided error) with proximity parameter ε is O

(
d
ε

)
.

The running time of our tester has optimal dependence on dimension d. This follows from the Ω(d)
lower bound on Hamming testing of the Lipschitz property of functions f : {0, 1}d → {0, 1, 2} in [43]. (This
problem is equivalent to Hamming testing 1/2-Lipschitz property of functions f : {0, 1}d → {0, 1/2, 1}, and
for functions with this range, relative L0 and L1 distances are off by at most factor of 2.)

The running time of our tester does not depend on the Lipschitz constant c, but the algorithm itself does.
The crux of designing the algorithm is understanding the number of pairs of points on the same line which
do not obey the Lipschitz condition (called violated pairs), and selecting the right subset of pairs (depending
on c) so that a constant fraction of them are violated by any function on the line that is ε-far from monotone.
The analysis uses dimension reduction from [4], generalized to work for functions with range R.

1.2.3 Convexity and Submodularity

We establish and exploit the connection of L1-testing to approximation theory. Our results for testing
convexity of functions over [n]d follow from this connection and are given in Appendix A. For d = 1, we get
an optimal tester with query complexity O(1/ε) and for higher dimensions, query complexity is independent
of the linear dimension n.

8

2 Lp-Testing Monotonicity

2.1 Characterization of L1 Distance to Monotonicity

We characterize the L1 distance to monotonicity in terms of the distance to monotonicity of Boolean func-
tions. We use this characterization to obtain reductions from the general monotonicity testing and distance
approximation to the case of Boolean functions, presented in Lemmas 2.2 and 2.3, respectively. The main
idea in our characterization is that every function can be viewed as an integral over Boolean threshold
functions, defined next.

Definition 2.1. For a function f : D → [0, 1] and t ∈ [0, 1], the threshold function f(t) : D → {0, 1} is:

f(t)(x) =

{
1 if f(x) ≥ t;
0 if f(x) < t.

We can express a real-valued function f : D → [0, 1] as an integral over its Boolean threshold functions:

f(x) =

∫ f(x)

0

dt =

∫ 1

0

f(t)(x)dt.

The integrals above and all other integrals in this section are well defined because we are integrating over
piecewise constant functions.

Let L1(f,M) denote the L1 distance from f to the set of monotone functions,M, and let dM(f) be the
relative version of this distance, i.e., dM(f) = L1(f,M)/|D| for functions f : D → [0, 1].

Lemma 2.1 (Characterization of L1 distance to monotone). For every function f : D → [0, 1],

dM(f) =

∫ 1

0

dM(f(t)) dt.

Proof. Since f and f(t) are functions over the same domain, it is enough to prove L1(f,M) =
∫ 1

0
L1(f(t),M) dt.

First, we prove that L1(f,M) ≤
∫ 1

0
L1(f(t),M) dt. For all t ∈ [0, 1], let gt be the closest monotone (Boolean)

function to f(t). Define g =
∫ 1

0
gt dt. Since gt is monotone for all t ∈ [0, 1], function g is also monotone. Then

L1(f,M) ≤ ‖f − g‖1 =
∥∥∥ ∫ 1

0

f(t) dt−
∫ 1

0

gt dt
∥∥∥

1

=
∥∥∥∫ 1

0

(f(t) − gt) dt
∥∥∥

1

≤
∫ 1

0

‖f(t) − gt‖1 dt =

∫ 1

0

L1(f(t),M) dt.

Next, we prove that L1(f,M) ≥
∫ 1

0
L1(f(t),M) dt. Let g denote the closest monotone function to f in

9

L1 distance. Then g(t) is monotone for all t ∈ [0, 1]. We obtain:

L1(f,M) = ‖f − g‖1 =

∥∥∥∥∫ 1

0

(f(t) − g(t)) dt

∥∥∥∥
1

=
∑

x:f(x)≥g(x)

∫ 1

0

(f(t)(x)− g(t)(x)) dt

+
∑

x:f(x)<g(x)

∫ 1

0

(g(t)(x)− f(t)(x)) dt

=

∫ 1

0

(∑
x:f(x)≥g(x)

(f(t)(x)− g(t)(x))

+
∑

x:f(x)<g(x)

(g(t)(x)− f(t)(x))
)
dt

=

∫ 1

0

‖f(t) − g(t)‖1 dt ≥
∫ 1

0

L1(f(t),M) dt.

The last equality above holds because for all functions f, g and x ∈ D, the inequality f(x) ≥ g(x) holds iff
for all thresholds t ∈ [0, 1], it holds that f(t)(x) ≥ g(t)(x).

We use our characterization in reductions for L1-testing (Lemma 2.2) and distance approximation
(Lemma 2.3).

Lemma 2.2. If T is a nonadaptive 1-sided error ε-test for monotonicity of functions f : D → {0, 1} then it
is also a nonadaptive 1-sided error ε-test w.r.t. the L1 distance for monotonicity of functions f : D → [0, 1].

Proof. Observe that a 1-sided error nonadaptive test consists of querying f on a random (not necessarily
uniformly random) set of points Q ⊆ D and accepting iff f is monotone on Q. Such a test always accepts
monotone functions. It remains to prove that if f is ε-far from monotone w.r.t. the L1 distance, then T will
reject with probability at least 2/3.

Assume that dM(f) ≥ ε. Then, it follows from Lemma 2.1 that there exists a threshold t∗ ∈ [0, 1] such
that dM(f(t∗)) ≥ ε. Recall that for Boolean functions, Hamming distance is the same as the L1 distance.
Since T is an ε-test for monotonicity of Boolean functions, for the random set Q selected by T , the restriction
f(t∗)|Q is not monotone with probability at least 2/3. It is well known (see [32]) that for every function h,
the restriction h|Q is not monotone iff there is a pair of points in Q violated by h, i.e., x, y ∈ Q such that
x ≺ y and h(x) > h(y). That is, if f(t∗)|Q is not monotone then f(t∗)(x) = 1 and f(t∗)(y) = 0 for some x ≺ y,
where x, y ∈ Q. But then this pair (x, y) is also violated by f , since f(x) ≥ t∗ > f(y), and the restriction f |Q
is not monotone. Thus, f |Q is not monotone with probability 2/3, and the test T satisfies the requirements
in the lemma.

Lemma 2.3. Let A be a nonadaptive algorithm that approximates dM(f) for Boolean functions f over D
with the following guarantee: there exist concave functions δA(), σA() such that for all input functions f ,
|E[A(f)]− dM(f)| ≤ δA(dM(f)) and the standard deviation σ(A(f)) ≤ σA(dM(f)).

Suppose A makes qA queries and runs in time tA. Then there is a nonadaptive algorithm A′ that ap-
proximates dM(f) for functions f : D → [0, 1] with the same guarantee, qA queries and at most qA · tA time.
Moreover, if A outputs dM(f|Q) for a random (not necessarily uniformly random) set of queries Q, then so
does A′. In this case, the running time of A′ is O(qA · log qA).

Proof. Let A′ be the algorithm that on input f runs algorithm A on a Boolean function with the same
domain as f , queries f on the qA positions queried by A and uses the answers to these queries to compute

and output
∫ 1

0
A(f(t))dt. Observe that only values returned by the oracle for f in response to the queries

need to be considered as thresholds in order to compute the integral, so the running time is at most qA · tA.

10

Moreover, if A(f) = dM(f|Q) for some random set Q of size qA then, by Lemma 2.1, A′(f) =
∫ 1

0
A(f(t))dt =∫ 1

0
dM((f(t))|Q)dt =

∫ 1

0
dM((f|Q)(t))dt = dM(f|Q). By Lemma B.1, this can be computed in time O(qA ·

log qA). This lemma applies because the partially ordered set Q is a line.
Now we prove the guarantee on the accuracy of A′. Consider any function f : D → [0, 1]. First, we show

that E[A′(f)] ≤ δA + dM(f). We get:

E[A′(f)] = E
[∫ 1

0

A(f(t)) dt

]
=

∫ 1

0

E[A(f(t))] dt

≤
∫ 1

0

[δA(dM(f(t))) + dM(f(t))] dt

≤ δA
(∫ 1

0

dM(f(t))

)
dt+

∫ 1

0

dM(f(t)) dt

= δA + dM(f)

The first equality holds by definition of A, the second—by the linearity of expectation, the first inequality
follows from the accuracy guarantee on A, the second inequality is by Jensen’s inequality applied to δA(),
and the final equality holds by Lemma 2.1. Similarly, E[A′(f)] ≥ dM(f)− δA. Putting these two inequalities
together, we obtain |E[A′(f)]− dM(f)| ≤ δA for all f .

It remains to prove the bound on σ(A′(f)), the standard deviation of A′. We get:

σ(A′(f)) ≤
∫ 1

0

σ(A(f(t))) dt ≤
∫ 1

0

σA(dM(f(t))) dt ≤ σA
(∫ 1

0

dM(f(t))

)
= σA(dM(f)),

where the first inequality holds by subadditivity of standard deviation, the second one uses the bound on
standard deviation of A from the assumption of the lemma, the third inequality is by Jensen’s inequality
and concavity of σA and the last equality is by Lemma 2.1.

Using Lemma 2.3 we can derive L1-distance approximation results from the corresponding results for
Boolean functions given by Fattal and Ron [28].

Corollary 2.4. There exists an L1 distance approximation algorithm for functions f : [n]d → [0, 1] with
additive error δ with query complexity:

1. Õ(1/δ2) for d = 1.

2. Õ(1/δ4) for d = 2.

Proof. These two results follow from Lemma 2.3 together with a distance approximation algorithms of
Fattal and Ron [28], who give a distance approximation algorithm for Boolean functions f : [n]d → {0, 1}
with additive error δ and complexity Õ(1/δ2) for d = 1 and Õ(1/δ4) for d = 2. Bounds on expectation and
variance that we need for the reduction can be derived form additive error bounds, as shown in Appendix D.

The bound in the second part of Theorem 1.4 corresponds to the second part of the corollary above. As
for the first part of this theorem, we prove a better bound using a different algorithm than that of [28] in
Section 3.2.

2.2 Nonadaptive Monotonicity Tester for Boolean Functions on Hypergrids

Before proving Theorem 1.3, we state one of the building blocks—the probabilistic inequality that leads to
an improvement on Levin’s work investment strategy. To motivate the result, we summarize Goldreich’s
explanation [33] on how it can be used and instantiate it with our scenario.

11

Suppose an algorithm needs to find some “evidence” (e.g., a violation of monotonicity) using as little
work as possible7. It can select an element (e.g., a line) according to some distribution D and invest some
work in it to discover the evidence. All elements e have different quality q(e) ∈ [0, 1], not known in advance
(e.g., the distance from the line to monotonicity). To extract evidence from element e (e.g., find a violated
pair on the line), the algorithm must invest work which is higher when the quality q(e) is lower (e.g., work
inversely proportional8 to q(e)). Suppose Ee←D[q(e)] ≥ α. What is a good work investment strategy for the
algorithm?

This question can be formalized as follows. The algorithm’s strategy is the list (s1, . . . , sk) of k positive
integers, indicating that the algorithm will invest work si in the ith element. In the ith step, the algorithm
selects an element ei according to its distribution. If si is at least the work needed for item ei, the algorithm
wins. If it does not win in k steps, it loses. The cost of the strategy is

∑k
i=1 si, the total work the

algorithm decided to invest. What is the minimum cost of a strategy that guarantees that the algorithm
wins with constant probability (specifically, say, probability at least 2/3)? A good strategy is suggested by
the following probabilistic inequality (a strengthening of [33, Fact A.1]). In this inequality, X represents the
random variable equal to q(e) when e is selected according to D.

Lemma 2.5. Let X be a random variable that takes values in [0, 1]. Suppose E[X] ≥ α, where α ≤ 1/2, and
let t = d3 log 1

αe. Let δ ∈ (0, 1) be the desired probability of error. For all j ∈ [t], let pj = Pr[X ≥ 2−j] and

kj = 4 ln 1/δ
2jα . Then

t∏
j=1

(1− pj)kj ≤ δ.

That is, for each j ∈ [t], the algorithm can set kj of the si’s to be equal to the work needed for elements
with quality 2−j (or higher). Then the probability that the algorithm loses in all rounds is at most δ. This
strategy achieves a reduction by a factor of t for the number of si’s that need to be devoted to elements
of quality 2−j , compared to Levin’s strategy, as explained by Goldreich. For example, when the work is
inversely proportional to the quality, kj of the si’s would be set to 2j . Then the total cost of the strategy
for constant δ is

∑
j∈[t]O(1/(2jα)) · 2j = O

(
1
α log 1

α

)
. This is a reduction by a factor of log 1

α in total work,
compared to Levin’s strategy. Lemma C.1 in the appendix shows that the improved strategy is optimal for
this case.

Proof of Lemma 2.5. It is enough to prove that

t∑
j=1

pj
2j
≥ α

4
. (1)

It implies the lemma since
∏t
j=1(1−pj)kj ≤

∏t
j=1 e

−pj ·kj = e−
∑t
j=1 pj ·kj = e−

∑t
j=1

pj

2jα
·(4 ln 1/δ) ≤ e− 1

4 ·(4 ln 1/δ) =

δ. The first inequality in this calculation follows from the fact that 1−x ≤ e−x and the last inequality follows
from (1).

7Levin’s work investment strategy, as described by Goldreich [33], deals with a detection problem. A similar idea was used
by Chazelle, Rubinfeld, and Trevisan [20] to address an estimation problem: namely, estimating the number of connected
components in a graph.

8The relationship between work and quality is different in our application to monotonicity, but this one is most frequently
used. Also, in the application to monotonicity, there is no certainty that if you invest the specified amount of work, you will
find a witness; rather, the probability of finding a witness increases with the amount of work you invest.

12

To prove (1), first, we bound the sum on the left-hand side of (1) with i going to ∞ instead of t:

∞∑
j=1

pj
2j

=
1

2

∞∑
j=1

2−j+1 Pr[X ≥ 2−j]

≥ 1

2

∞∑
j=1

2−j+1 Pr
[
X ∈

(
2−j , 2−j+1

]]
≥ 1

2
E[X] ≥ α

2
.

The first inequality above holds since the interval
(
2−j , 2−j+1

]
is contained in the interval

[
2−j ,∞

)
. The

second inequality follows from the definition of the expectation.
The terms corresponding to large i do not contribute much to the sum above:

∞∑
j=t+1

pj
2j
≤

∞∑
j=t+1

1

2j
≤ 2

2t+1
≤ α3.

Here, the first inequality holds because pj are probabilities, and hence are at most 1. The last inequality
follows from the definition of t.

Thus,
∑t
j=1

pj
2j ≥

α
2 − α

3, which is at least α/4 for all α ≤ 1/2. This proves (1), and the lemma follows.

Proof of Theorem 1.3. By Lemma 2.2, it suffices to prove Theorem 1.3 for the special case when the input
function f is Boolean. Our monotonicity tester for functions f : [n]d → {0, 1}, like that in [24], works
by picking a random axis-parallel line, querying a few random points on it and checking if they violate
monotonicity. The difference is in the choice of the number of lines and points to query and in a more
efficient check for monotonicity violations.

We start by establishing notation for axis-parallel lines. For i ∈ [d], let ei ∈ [n]d be 1 on the ith coordinate
and 0 on the remaining coordinates. Then for every dimension i ∈ [d] and α ∈ [n]d with αi = 0, the line along
dimension i with position α is the set {α + xi · ei | xi ∈ [n]}. Let Ln,d be the set of all dnd−1 axis-parallel
lines in [n]d. Let dM(f) denote the (relative) distance to monotonicity of a function f .

Algorithm 1: Nonadaptive monotonicity tester of Boolean functions on hypergrids.

input : parameters n, d and ε; oracle access to f : [n]d → {0, 1}.
1 for j = 1 to d3 log(2d/ε)e do
2 repeat d(8 ln 9)d/(2jε)e times:
3 Sample a uniformly random line ` from Ln,d.
4 Query a set Q of 10 · 2j points selected uniformly at random from `.
5 Let x be the largest coordinate along ` of a point in Q whose f -value is 0.
6 Let y be the smallest coordinate along ` of a point in Q whose f -value is 1.
7 if x > y then reject

8 accept

Consider the test presented in Algorithm 1. Clearly, its query complexity and running time areO
(
d
ε log d

ε

)
.

It is nonadaptive and always accepts all monotone functions. It remains to show that functions that are
ε-far from monotone are rejected with probability at least 2/3. We use the following two lemmas from [24]
in our analysis of this case.

Lemma 2.6 ([24, Lemma 6(2)], Dimension Reduction for Boolean Range). For f : [n]d → {0, 1},

E
`←Ln,d

[dM(f |`)] ≥
dM(f)

2d
.

13

Lemma 2.7 ([24, Lemma 16]). For f : [n]→ {0, 1} if dM(f) = γ then for a random sample Q ⊆ [n] of size
k, the probability that f |Q is not monotone is at least (1− e−γk/4)2.

Consider the behavior of Algorithm 1 on an input function f that is ε-far from monotone. We apply
our improvement to Levin’s strategy (Lemma 2.5) with the random variable X = dM(f |`), where line `
is selected uniformly from Ln,d, and with probability of error δ = 1/9. By Lemma 2.6, the expectation
E[X] ≥ ε

2d . Thus, in Lemma 2.5, parameter α is set to ε
2d , parameter t is set to d3 log 2d

ε e, and for all

j ∈ [t], the parameter kj = (8 ln 9)·d
2jε . By Lemma 2.5, with probability at least 8/9, in at least one iteration

of Step 3, Algorithm 1 will sample a line ` satisfying dM(f |`) ≥ 2−j . Conditioned on sampling such a line,
by Lemma 2.7, the sample Q taken in Step 4 of Algorithm 1 results in a non-monotone restriction f |Q with
probability at least 3/4. Finally, Step 6 of Algorithm 1 rejects iff f |Q is not monotone. Thus, for the index
j given by Lemma 2.5, the probability that Algorithm 1 rejects f in the jth iteration of the for loop is at
least 8

9 ·
3
4 = 2

3 , as required.

2.3 Adaptive Monotonicity Tester for Boolean Functions on Hypergrids

Theorem 2.8. The query complexity of ε-testing monotonicity of functions f : [n]d → {0, 1} (with one-sided

error) is O
(
d2d logd−1 1

ε + d2 log d
ε

)
. Specifically, for constant d, the query complexity is O

(
1
ε

)
.

Recall from Section 1.2.1 that our adaptive tester is based on an algorithm that learns the class of
monotone Boolean functions over [n]d in the sense of Definition 2.3 below. The learner is presented in
Section 2.3.1. Transformation from the learner to the tester is given in Lemma 2.13. This transformation,
together with our learner, immediately implies Theorem 2.8 for the special case of d = 2. The general test
is presented in Section 2.3.3.

2.3.1 Partial learner of monotone Boolean functions

Definition 2.2. An ε-partial function g with domain D and range R is a function g : D → R ∪ {?} that
satisfies Prx∈D[g(x) = ?] ≤ ε. An ε-partial function g agrees with function f if g(x) = f(x) for all x on
which g(x) 6= ?. Given a function class C, let Cε denote the class of ε-partial functions, each of which agrees
with some function in C.

Definition 2.3. An ε-partial learner for a function class C is an algorithm that, given a parameter ε and
oracle access to a function f , outputs a hypothesis g ∈ Cε or fails. Moreover, if f ∈ C then it outputs g that
agrees with f .

Theorem 2.9. Algorithm 2 is a d/2t-partial learner for the class of monotone Boolean functions over [n]d.
It makes O(d2t(d−1)+d) queries.

Proof. Our learner (Algorithm 2) constructs a d-dimensional quadtree representation of (a partial function
that agrees with) the input function f . Each node in the tree is marked 0, 1 or ?. The algorithm starts
by constructing the root that holds the entire domain [n]d and is marked with ?. We use 1d to denote the
d-dimensional vector of 1s. The domain can be thought of as a d-dimensional cube with the low and high
corners at 1d and n ·1d, respectively. For the ease of presentation, we assume that n is a power of 2. At every
stage, the learner constructs the next level of the tree by assigning 2d children to each ? node of the previous
level. The cubes corresponding to the children are obtained by cutting the cube of the parent through the
middle in all dimensions. We record the cube corresponding to node v by storing its smallest and largest
element in v[low] and v[hi], respectively. The algorithm queries the smallest and the largest element of each
new square and marks the corresponding node of the quadtree with 0 or 1 if the function values on the points
in the cube are determined by the answers. Namely, if f maps the largest element to 0, then the node is
marked with 0; if f maps the smallest element to 1, then it is marked with 1. Otherwise, the new node is
marked ?. The learner stops after constructing t tree levels.

The quadtree is a representation of a partial Boolean function g on [n]d in the following sense. Each
point x in the domain is contained in exactly one leaf, and g(x) is equal to the value the leaf is marked with.

14

Algorithm 2: Partial learner of monotone Boolean functions on hypergrids

input : parameters n, d and ε; depth t; oracle access to a monotone f : [n]d → {0, 1}.
output: a d-dimensional quadtree representation of f .

1 Create quadtree root marked with ? and holding [n]d, i.e., set root[low]= 1d and root[hi]= n · 1d.
// 1d denotes the d-dimensional vector of 1s.

2 for j = 1 to t do
// Create nodes of level j in the quadtree.

3 Set len = n
2j .

4 foreach leaf v of the quadtree marked with ? do
// Create 2d children of v.

5 foreach vector k ∈ {0, 1}d do
6 Create child vk of v marked with ?.
7 Set vk[low] = v[low] + len · k and vk[hi] = vk[low] + (len− 1)1d.
8 if f(vk[hi]) = 0 then mark child vk with 0.
9 if f(vk[low]) = 1 then mark child vk with 1.

10 if more than d2j(d−1) nodes are marked ? then fail.

11 return the quadtree

Lemma 2.10. Algorithm 2 never fails if the input function f is monotone.

Proof. We need to show that in the quadtree constructed by Algorithm 2 run on a monotone function f , for

all j, at most d2j(d−1) nodes in level j are marked ?. Fix j. Consider the set S = { v[hi]
n/2j | v is a node of level

j marked with ?}.

Definition 2.4. Let x, y ∈ [n]d. We say that y fully dominates x if xi < yi for all i ∈ [d].

Consider two nodes u and v at level j of the quadtree, such that v[hi] fully dominates u[hi]. Observe that
at most one of u and v can be marked with ?. Indeed, if f(u[hi]) = 0 then u is marked with 0. Otherwise,
f(u[hi]) = 1. By monotonicity of f , since u[hi] ≺ v[low], it follows that f(v[low]) = 1. That is, v is marked
with 1. Thus, for no elements x, y ∈ S, element y fully dominates element x.

Finally, observe that S ⊆ [m]d, where m = 2j . The lemma follows from Claim 2.11 that bounds the
number of elements in a set that satisfies the observed conditions.

Claim 2.11. Let S ⊆ [m]d, such that for no elements x, y ∈ S, element y fully dominates element x. Then
|S| ≤ dmd−1.

Proof. Let A = {a ∈ [m]d | ai = 1 for some i ∈ [d]}. We can partition [m]d into chains Ca = {(a+ c · 1d) ∈
[m]d | c ∈ N}, where a ∈ A. Note that for all a ∈ A and all distinct x, y ∈ Ca, element y fully dominates
element x. Thus, S can contain at most 1 element in each Ca. Consequently,

|S| ≤ |A| ≤ d ·md−1.

The last inequality holds because there are d ways to choose i such that ai = 1 and at most md−1 ways to
set the remaining coordinates.

Correctness of Algorithm 2. Each node at level t holds 1/2dt fraction of the domain points. Because
of the fail condition in Step 10, the fraction of the domain points that are associated with ? leaves of the

quadtree is at most d2t(d−1)

2td
= d

2t .
If function f is monotone, the values on the remaining points are learned correctly because for each domain

point x associated with a node that is marked 0 or 1, we have a witness that implies the corresponding value
for f(x) by monotonicity of f . Moreover, by Lemma 2.10, Algorithm 2 always outputs a quadtree in this
case.

15

Complexity of Algorithm 2. The learner makes 2d+1 queries for each node marked with ?: two per
child. Because of the fail condition in Step 10, there at most

∑t
j=0 d2j(d−1) ≤ 2d · 2t(d−1) nodes marked ?,

so it makes O(d2t(d−1)+d) queries. This completes the proof of Theorem 2.9.

Corollary 2.12. There is an ε-partial learner for the class of monotone Boolean functions over [n]2 that
makes O

(
1
ε

)
queries. Over [n]d, there is a d

log 1
ε

-partial learner that makes O
(
d2d logd−1 1

ε

)
queries.

Proof. To get the first statement, we run Algorithm 2 with d = 2 and depth t = dlog 1
εe+ 1. For the second

statement, we set t = dlog log 1
εe.

2.3.2 Optimal monotonicity tester for functions [n]2 → {0, 1}

For the special case of d = 2, we can easily get the tester claimed in Theorem 2.8 from the learner of
Theorem 2.9 by applying the following reduction from testing to learning.

Lemma 2.13. If there is an ε-partial learner for a function class C that makes q(ε) queries then C can be
ε-tested with 1-sided error with q(ε/2) +O

(
1
ε

)
queries.

Proof. To test if a function f ∈ C, we run the learner with parameter ε/2. If it fails to output a hypothesis
function g, we reject. Otherwise, we select d 2 ln 3

ε e points x ∈ D uniformly at random, and query both f and
g on the sample. If we find a point x on which g(x) 6= ?, but f(x) 6= g(x), we reject. Otherwise, we accept.

If a function f ∈ C, it is accepted because the learner will output a hypothesis g which agrees with f .
If f is ε-far from C then any g ∈ Cε/2 will differ from f on at least ε domain points, at most ε/2 of which
can be mapped to ? by g. Thus, for at least an ε/2 fraction of the domain points g(x) 6= ? and g(x) 6= f(x).
Such a point will be selected with probability at least 2/3.

2.3.3 Optimal monotonicity tester for functions f : [n]d → {0, 1}

Proof of Theorem 2.8. Our tester is Algorithm 3.

Algorithm 3: Adaptive monotonicity tester of Boolean functions on hypergrids.

input : parameters d ≥ 3, n and ε; oracle access to f : [n]d → {0, 1}.
1 Let g be the d

log 1
ε

-partial function returned by the learner from Corollary 2.12 run on f .

2 repeat d 2 log 3
ε e times:

3 Sample a uniform x ∈ [n]d, query f(x) and reject if g(x) 6= ? and g(x) 6= f(x).
4 Run Algorithm 1 with parameters n, d, ε/2 as follows:
5 foreach point x queried by the algorithm do
6 Query f(x) only if g(x) = ?; otherwise, substitute g(x) for f(x).
7 accept if Algorithm 1 accepts, reject if it rejects.

Correctness. Algorithm 3 always accepts a monotone function because the learner produces a correct
partial function g, there are no inconsistencies between g and f , and Algorithm 1 always accepts monotone
functions. Now suppose f is ε-far from monotone. Let h : [n]d → {0, 1} be the function defined as follows:
h(x) = f(x) if g(x) = ?, and h(x) = g(x) otherwise. If d0(f, h) > ε/2 then Step 2 of Algorithm 3 rejects
with probability at least 2/3. Otherwise, h is ε/2-far from monotone. Consequently, it is rejected by Step 4
with probability at least 2/3.

Query complexity. By Corollary 2.12, the learning step uses O
(
d2d logd−1 1

ε

)
queries. Step 2 (that

checks whether g agrees with f) uses O(1/ε) queries. It remains to analyze Step 4. Algorithm 1 queries
O(dε log d

ε) points. Out of these, only the points mapped to ? by g are queried in Step 4. Since g is a
d/log 1

ε -partial function, it maps at most d/log 1
ε fraction of its domain to ?. The expected number of queries

made by Step 4 is O(dε log d
ε) times the probability that the ith queried point x is mapped to ? by g. This

16

probability is at most d/log 1
ε , as all points in [n]d are equally likely to be the ith query (for all i). So, the

expected query complexity is O(dε log d
ε) · d

log 1
ε

= O(d
2

ε + d2 log d
ε log 1/ε) = O(d

2 log d
ε).

To get the same asymptotic guarantee in the worst case, we amplify the probability of success of Al-
gorithm 3 to 5/6, run the new version and reject if it attempts to query more than 6 times the expected
number of points. By Markov inequality, the algorithm runs into the limit on the number of queries with
probability at most 1/6. The resulting algorithm always accepts monotone functions, rejects functions that
are ε-far from monotone with probability at least 2/3 and has the claimed worst-case query complexity.

2.4 A Lower Bound for Monotonicity Testing of Functions f : [n]2 → {0, 1}
Theorem 2.14. Every 1-sided error nonadaptive ε-test for monotonicity of functions f : [n]2 → {0, 1} must
make Ω

(
1
ε log 1

ε

)
queries.

Proof. By standard arguments, it suffices to specify a distribution on functions which are ε-far from mono-
tone, such that every deterministic algorithm must make Ω

(
1
ε log 1

ε

)
queries to find a violated pair of domain

points with probability at least 2/3 on inputs from this distribution. Our distribution is uniform over a hard
set of functions, each of which corresponds to a hexagon. All pairs violated by a function in the set are
contained in the corresponding hexagon. In this proof, we identify each point (i, j) ∈ [n]2 in the domain of
the input function with a point (x, y) with coordinates x = i/n and y = j/n in the Cartesian plane. We
assume that n is large enough, so that the area of hexagons in [0, 1]2 we consider is a good approximation
of the fraction of points of the form (i/n, j/n) they contain.

(𝒙, 𝒚)

𝑡
ℎ 𝑡

ℎ

1

0 1
0

Figure 2.1: An illustration for Definition 2.5: a
hexagon Hx,y

t,h and hexagon function fx,yt,h .
Figure 2.2: Packing of hexagons (one level of
hexagons and a hexagon from the next level).

Definition 2.5. As illustrated in Figure 2.1, hexagon Hx,y
t,h with the upper left corner (x,y), thickness t,

and height h consists of points (x, y) satisfying:

x + y − t < x+ y < x + y + t,

x < x < x + h,

y − h < y < y.

Now define the hexagon function fx,yt,h : [0, 1]2 → {0, 1}:

fx,yt,h (x, y) =

{
1− dx+y(x, y) if (x, y) ∈ Hx,y

t,h ,

dx+y(x, y) otherwise,
where da(x, y) =

{
1 if x+ y ≥ a,

0 otherwise.

17

The reason we use hexagons as opposed to tilted rectangles in our construction is that we would like to
make sure that fx,yt,h can only violate pairs of points contained in the corresponding hexagon Hx,y

t,h .
Next, we specify the hexagon functions included in the hard set. The hard set is a union of levels,

and each level is a union of diagonals. (See Figure 2.2.) Functions of the same level are defined by equal
non-overlapping hexagons. Levels are indexed by integers starting from 0. Let t0 =

√
ε/ log 1

ε . In level i,
hexagons have thickness ti = t0 · 2−i and height hi = 2ε/ti. We include levels i ≥ 0 with height hi ≤ 1/2.

Each level i is further subdivided into diagonals indexed by an integer j ∈ (1, 1/ti). In diagonal j, the
coordinates of the upper left corners of the hexagons satisfy x + y = (2j + 1)ti. It remains to specify
the functions that are contained in each diagonal. Intuitively, we pack the maximum possible number of
hexagons into each diagonal, while leaving sufficient separation between them. If x + y = (2j + 1)ti ≤ 1,
we restrict x to integer multiples of hi +

√
ε, and for x + y = (2j + 1)ti > 1, we restrict 1 − y to integer

multiples of hi +
√
ε. In both cases, the projections of the hexagons of these functions onto an axis form

disjoint intervals of length hi that are separated by gaps of length
√
ε. Finally, only if a hexagon Hx,y

t,h is

fully contained in [0, 1]2, the corresponding function fx,yt,h is included in the hard set.

Lemma 2.15. The hard set contains Ω(1
ε log 1

ε) functions, each of which is ε-far from monotone.

Proof. First, we argue that all functions in the hard set are ε-far from monotone. Define a bijection ba(x, y) =
(a−y, a−x) (it is the reflection over the line x+y = a). For every (x, y) ∈ Hx,y

t,h , the pair ((x, y), bx+y(x, y))

is violated by fx,yt,h . Hence, the distance from fx,yt,h to monotone is half the fraction of points contained in the
hexagon, but not on the line x + y = a. Ignoring low-order terms, it is one half of the area of the hexagon
Hx,y
t,h , that is, h · t − t2/2. In our construction, for all hexagons h · t = 2ε and t < h, so h · t − t2/2 > ε.

Therefore, all functions in the hard set are ε-far from monotone.
Next, we give a lower bound on the number of functions in the hard set. The number of levels is

1
2 log 1

ε + Θ(log log 1
ε). The area of each hexagon is less than 4ε. We pack hexagons with gaps that are much

smaller than the thickness of a hexagon, and the unused space in each diagonal is much smaller then the
average length of a diagonal, so they occupy more than half the area of [0, 1]2. Thus, the number of functions
in a level is at least 1/8ε. Consequently, we have Ω(1

ε log 1
ε) functions in our hard set.

Claim 2.16. Each pair ((x, y), (x′, y′)) is violated by at most one function in the hard set.

Proof. Function fx,yt,h violates only pairs which are in the hexagon Hx,y
t,h . Functions of the same level cannot

have violated pairs in common because their corresponding hexagons are disjoint.
Now we argue that functions from different levels cannot violate the same pair. The hexagons of functions

in level i, diagonal j are subsets of the strip {(x, y) | 2jti < x+ y < 2(j + 1)ti}. Each defining strip of level
i is divided into two narrower strips in level i+ 1. Suppose two hexagons, H1 and H2, overlap, and H1 has
higher thickness (i.e., belongs to a lower level). Then the strip of H2 is fully contained either in the lower
or in the upper half of the strip of H1. All the points in the overlap of H1 and H2 are assigned the same
value by the function corresponding to H1. Therefore, functions corresponding to different hexagons cannot
violate the same pair of points.

Lemma 2.17. Every set Q of (queried) points contains violated pairs for at most |Q| − 1 hard functions.

Proof. Fix a set Q of queried points. Suppose it contains violated pairs for k different hard functions. Select
one violated pair for each of k functions. Form an (undirected) representative graph on vertex set Q by
adding edges corresponding to the k violated pairs. Each edge in the graph represents a hard function and is
associated with its pair (i, j), where i is the level and j is the diagonal. We will prove that the representative
graph is acyclic. It implies that the number of nodes |Q| ≥ k + 1.

Claim 2.18. Consider a path P in the representative graph. Every edge in P is associated with a different
pair (i, j), where i is the level and j is the diagonal.

18

Proof. First, we show that every edge in the representative graph is short. Consider a pair ((x, y), (x′, y′))
violated by a hard function which belongs to some level i and a diagonal j of that level. Then the points in the
pair must be comparable: x ≤ x′ and y ≤ y′. Both points must belong to the associated strip. Consequently,
2jti < x+ y and x′+ y′ < 2(j+ 1)ti. Therefore, ‖(x′, y′)− (x, y)‖1 = x′−x+ y′− y < 2(j+ 1)ti− 2jti = 2ti.

Next, consider a path P in the representative graph. The L1-length of a path, denoted L1(P), is the L1

distance between its endpoints. We claim that if every edge on the path is associated with a different pair
(i, j) then L1(P) < 2

√
ε. Recall that strips associated with diagonals of the same level are disjoint. Each

strip of level i contains two strips of level (i+1) and is disjoint from other strips of level (i+1). Consequently,
P remains within one strip of level 0. Each strip of level 0 contains 2i strips of level i ≥ 1. Recall that there
are fewer than log 1

ε levels, and that an edge in level i has L1-length at most 2ti = 2t0/2
i. Each edge is

associated with a different pair (i, j), implying L1(P) ≤
∑
i 2i · (2t0/2i) < 2t0 log 1

ε = 2
√
ε.

Finally, recall that the L1 distance between hexagons of the same level and diagonal is at least 2
√
ε.

Suppose for the sake of contradiction that the selection graph has a path that contains two edges associated
with the same pair (i, j), and let P ∗ be the shortest such path. Let P be P ∗ with the last edge removed.
Then every edge in P is associated with a different pair (i, j), so L1(P) < 2

√
ε. But the first and the last

edges of P ∗ represent different hard functions, so they must belong to different hexagons of the strip for level
i, diagonal j. So, L1(P) > 2

√
ε, a contradiction.

Assume to the contrary that we have a cycle in the representative graph. Consider an edge (u, v) of the
cycle that is associated with the lowest level i (i.e., the largest thickness ti). This edge travels from one
diagonal strip of level i + 1 to another, say from Si+1 to S′i+1. As we proceed further along the cycle, we
stay within S′i+1 until we traverse another edge of level i (recall that the cycle has no edges of levels lower
than i). But this edge is associated with the same pair (i, j) as (u, v), which contradicts Claim 2.18. Thus,
the representative graph is acyclic, which completes the proof of the lemma.

The theorem follows from Lemmas 2.15 and 2.17 because a deterministic test that succeeds on the hard
distribution with probability at least 2/3, must query violated pairs for at least 2/3 of the hard functions.

3 Approximation of L1-Distance to Monotonicity

3.1 Approximation of L1-Distance to Monotonicity for Boolean Functions

In this subsection we prove Theorem 3.1 which shows how to approximate L1-distance to monotonicity for
functions f : [n]→ {0, 1}.

Theorem 3.1. Let f : [n]→ {0, 1} and s ∈ [n]. Consider a random subset S of [n] where each element of
[n] is chosen independently with probability s/n. Let ε̃(S) = L1(f |S ,M)/s. Then

dM(f)−
√

2dM(f)/s ≤ E[ε̃(S)] ≤ dM(f);

Var[ε̃(S)] = O (dM(f)/s) .

Proof. To simplify the presentation, in this proof we let εf = dM(f) and f̃ = f |S .

Let Z(S) = L1(f̃ ,M). To prove the theorem it suffices to show that there exist functions X(S) and
Y (S) such that

1. X(S) ≤ Z(S) ≤ Y (S);

2. E[X(S)] ≥ εf · s−
√

2εf · s and E[Y (S)] = εf · s;

3. Var[X(S)] = O (εf · s) and Var[Y (S)] ≤ εf · s.

Then by linearity of expectation and items 1 and 2 above, εf · s −
√

2εf · s ≤ E[Z] ≤ εf · s. The variance
Var[Z(S)] = O(εf · s) by items 1-3 above and Lemma 3.7, proved at the end of Section 3.1, where the lemma
is used with δ = O (εf · s). Then the stated bounds on the expectation and variance of ε̃(S) = Z(S)/s follow.

19

We will define functions X(S) and Y (S) after we recall a characterization of L1(f,M) from [24, 32].
Let Gf be a violation graph of f , namely, a directed graph with vertex set [n] whose edges correspond to
violated pairs (x, y), i.e., pairs (x, y) for which x < y, but f(x) > f(y). Let VCf be an (arbitrary) minimum
vertex cover of Gf and let MMf be a maximum matching in Gf .

Lemma 3.2 ([24, 32]). For a Boolean function f , the distance L1(f,M) = |VCf | = |MMf |.

Definition 3.1 (Upper bound). The random variable Y (S) = |VCf ∩ S|.

Lemma 3.3. The random variable Y (S) satisfies: Z(S) ≤ Y (S), E[Y (S)] = εf · s, and Var[Y (S)] ≤ εf · s.

Proof. First, we show that Z(S) ≤ Y (S), that is, L1(f̃ ,M) ≤ |VCf ∩S|. By Lemma 3.2, L1(f̃ ,M) = |VCf̃ |.
Note that each pair violated by f̃ is also violated by f . Therefore, VCf ∩ S is a (not necessarily minimum)

vertex cover for the violation graph Gf̃ . Thus, L1(f̃ ,M) = |VCf̃ | ≤ |VCf ∩ S|, as desired.
To analyze the expectation and variance of Y (S), recall from Lemma 3.2 that |VCf | = L1(f,M) = `.

Each element of VCf appears in S independently with probability s/n. Thus, the random variable Y (S) =
|VCf∩S| follows the binomial distribution with mean |VCf |·s/n = εf ·s and variance |VCf |· sn (1− s

n) ≤ εf ·s.
This completes the proof of the lemma.

Consider the maximum matching MMf . In the rest of the proof, we denote |MMf | = εf · n by `. By
definition, MMf consists of ` edges of the form (a, b), where a < b, f(a) = 1 and f(b) = 0. Let V (MMf)
denote the endpoints of edges in MMf . Let a1 < a2 < · · · < a` be the vertices in V (MMf) on which f
evaluates to 1, sorted in increasing order, and b1 < b2 < · · · < b` denote the vertices in V (MMf) on which f
evaluates to 0, also sorted in increasing order. Observe that ai < bi for all i ∈ [`] because each of b1, . . . , bi
is matched to a smaller number in MMf .

Definition 3.2 (Guaranteed edges, lower bound). Guaranteed edges are pairs (ai, bj) such that ai, bj ∈
V (MMf) ∩ S and i ≤ j for some i, j ∈ [`]. Let M̃M(S) denote a maximum matching that consists of

guaranteed edges. The random variable X(S) = |M̃M(S)|.

Note that f̃ violates all guaranteed edges because ai < bi < bj for all i < j and f(ai) = 1, f(bj) = 0.

Lemma 3.4. The random variable X(S) satisfies

(a) X(S) ≤ Z(S), (b) E[X(S)] ≥ εf · s−
√

2εf · s and (c) Var[X(S)] ≤ c2εf · s.

Proof. Item (a) holds because by Lemma 3.2, Z(S) = L1(f̃ ,M) = |MMf̃ | ≥ |M̃M(S)| = X(S). The

inequality follows from the fact that M̃M(S) is a maximum matching consisting of guaranteed edges, which
are edges violated by f̃ , while MMf̃ is a maximum matching consisting of any violated edges of f̃ , not
necessarily guaranteed edges.

Next, we analyze the distribution of X(S). Let X ′(S) = |V (MMf) ∩ S| and U(S) be the number

of elements of V (MMf) ∩ S that are left unmatched by the maximum matching M̃M(S) that consists of
guaranteed edges. Then X(S) = [X ′(S) − U(S)]/2. The random variable X ′(S) has a similar distribution
to Y (S), i.e., E[X ′(S)] = 2εf · s and Var[X ′(S)] < 2εf · s.

To understand the distribution of U(S), we express it using random variables that describe a one-
dimensional random walk. For i ∈ [`], we define

gi =


1 if {ai, bi} ∩ S = {bi};
−1 if {ai, bi} ∩ S = {ai};
0 if |{ai, bi} ∩ S| 6= 1.

We also define the cumulative sums: p0 = 0, pi = pi−1 + gi. We set m(S) = max`i=0 pi, while p(S) = p`, i.e.,
the largest and the last cumulative sums. In other words, p(S) can be viewed as the position of the following
random walk after ` steps: it starts at p0 = 0, and at each step i, it goes up by one if {ai, bi} ∩ S = {bi},

20

down by 1 if {ai, bi} ∩ S = {ai}, and stays in place otherwise. The random variable m(S) is the maximum
of this random walk. Note that Pr[gi = 1] = Pr[gi = 0] = s

n (1 − s
n). Next we express the random variable

U(S) in terms of the maximum value and the final position of this random walk.

Claim 3.5. U(S) ≤ 2m(S)− p(S).

Proof. We will construct a matching of guaranteed edges that leaves at most 2m(S) − p(S) elements of
V (MMf)∩S unmatched. While constructing the matching, we perform operations on g1, . . . , g` that make the
sequence shorter while the maximum and the final position of the corresponding walk remain the unchanged.

Suppose that gi = 0 for some i. This means that either ai, bi ∈ [n] − S or ai, bi ∈ S. We select
the guaranteed edge (ai, bi) for our matching, and remove gi from the sequence. This does not alter the
maximum and the final position of the corresponding walk.

Suppose that for some i, there are two consecutive values gi = −1, gi+1 = 1. Then ai, bi+1 ∈ S. We add
the guaranteed edge (ai, bi+1) to our matching and remove gi, gi+1 from the sequence. Again, the maximum
and the final position of the walk do not change.

Let `′ be the length of the sequence after the operations above cannot be applied anymore. Then all gi’s
are 1 or −1 but a 1 cannot follow a −1. Thus, gi = 1 for i = 1, . . . ,m(S) and gi = −1 for i = m(S)+1, . . . , `′.
That is, p(S) = m(S) − (`′ −m(S)) = 2m(S) − `′, and hence `′ = 2m(S) − p(S). Clearly, the constructed
matching leaves at most `′ members of V (MMf)∩S unmatched. So, in the maximum matching of guaranteed
edges, the number of unmatched members of V (MMf) ∩ S is U(S) ≤ 2m(S)− p(S).

Claim 3.6. Pr[m(S) ≥ z] ≤ Pr[|p(S)| ≥ z] for all z ∈ [`].

Proof. Fix z ∈ [`]. Let Ei be the event that pi = z and pj < z for j ∈ [i − 1]. The event “m(S) ≥ z” is a
disjoint union of the events Ei for i ∈ [`]. By symmetry, Pr[p(S) ≥ z | Ei] ≥ 1/2. Thus,

Pr[|p(S)| ≥ z] = 2 Pr[p(S) ≥ z] = 2
∑̀
i=1

(Pr[p(S) > z | Ei] · Pr[Ei]) ≥
∑̀
i=1

Pr[Ei] = Pr[m(S) > z],

as required.

Now we are ready to bound the expectation of U(S). By Claims 3.5 and 3.6, the expectation of U is

E[U(S)] ≤ 2E[m(S)] ≤ 2E[|p(S)|].

Recall that p(S) is the sum of ` = εf ·n independent zero-mean variables gi that take values in {−1, 0, 1},
each of which satisfies Pr[gi = 1] = Pr[gi = −1] ≤ s/n. Therefore, E[g2

i] = Pr[g2
i = 1] ≤ 2s/n. By Jensen’s

inequality,

E2[|p(S)|] ≤ E[(p(S))2] = E[(
∑̀
i=1

gi)
2] = E[

∑̀
i=1

g2
i] ≤ ` · 2s/n = 2εf · s.

Thus, E[U(S)] ≤ 2E[|p(S)|] ≤ 2
√

2εf · s. Recall that X(S) = [X ′(S) − U(S)]/2 and E[X ′(S)] = 2εf · s.
Therefore, E[X(S)] = E[X ′(S)]/2− E[U(S)]/2 ≥ εf · s−

√
2εf · s, completing the proof of item (b).

Next, we bound the variance of U(S):

Var[U(S)] ≤ E[(U(S))2] ≤ 4E[(m(S))2] ≤ 4E[(p(S))2] ≤ 8εf · s.

Since X(S) = [X ′(S)−U(S)]/2 and Var[X ′(S)] ≤ 2εf · s, we get that Var[X(S)] = O(εf · s), completing
the proof of item (c).

This completes the proof of Theorem 3.1.

The following lemma was used in the proof of Theorem 3.1.

21

Lemma 3.7 (Sandwich lemma). Let X,Y, Z be discrete random variables with means µX , µY , µZ , satisfying
X ≤ Z ≤ Y . Suppose there exists δ ≥ 0 such that

µY − µX ≤
√
δ, Var[X] ≤ δ and Var[Y] ≤ δ.

Then Var[Z] ≤ 3δ.

Proof. Consider random variables X ′ = X − µZ , Z ′ = Z − µZ , and Y ′ = Y − µZ . Then X ′ ≤ Z ′ ≤ Y ′ and
the expectations of these random variables are E[X ′] = µX − µZ , E[Y ′] = µY − µZ and E[Z ′] = 0.

Let V + be the set of positive values and V − be the set of negative values in the support of Z ′. Then

Var[Z] = Var[Z ′] = E[(Z ′)2] =
∑
v∈V +

Pr[Z ′ = v] · v2 +
∑
v∈V −

Pr[Z ′ = v] · v2 ≤ E[(Y ′)2] + E[(X ′)2].

The inequality above holds because X ′ ≤ Z ′ ≤ Y ′. Next, we rewrite the resulting expectations in terms of
variances and squared means of the corresponding variables:

E[(Y ′)2] + E[(X ′)2] = Var[Y ′] + µ2
Y ′ + Var[X ′] + µ2

X′

= Var[Y ′] + Var[X ′] + (µY − µZ)2 + (µZ − µX)2

≤ Var[Y] + Var[X] + (µY − µX)2

≤ 3δ.

The first inequality above holds because a2 + b2 ≤ (a+ b)2 for all nonnegative a, b. The final inequality holds
by the hypothesis in the statement of the lemma.

Before we complete the proof of the first part of Theorem 1.4 we note that the results above can be
extended to real-valued functions.

Corollary 3.8. The guarantees of Theorem 3.1 also hold for real-valued functions f : [n]→ [0, 1].

Proof. Note that both the additive error δA(dM(f)) and standard deviation σA(dM(f)) in Theorem 3.1 are
bounded by a concave function O(

√
dM(f)/s). Hence, we can apply Lemma 2.3 to extend Theorem 3.1 to

real-valued functions.

3.2 Adaptive distance estimation

Now we are ready to complete the proof of the first part of Theorem 1.4. The claimed bound follows from
the analysis of the Algorithm 4, which uses adaptive queries to refine the approximation to the distance. The
adaptive sampling technique we use is very natural and was used in a different context (join size estimation
in databses) by Lipton and Naughton [46].

Algorithm 4: Adaptive distance estimation algorithm.

input : parameter δ; oracle access to f : [n]→ [0, 1].

1 Set i = 1, s1 = c1/δ, t1 = δ
2 repeat
3 Pick a random sample Si ⊆ [n] of size si
4 if dM(f |Si) < ti return dM(f |Si)
5 si+1 = 2si, ti+1 = 2ti, i = i+ 1

Lemma 3.9 (Theorem 1.4 for d = 1). For every function f : [n]→ [0, 1] Algorithm 4 returns a value d such

that |d− dM(f)| ≤ δ and queries O
(

max
(
dM(f)
δ2 , 1

δ

))
points with constant probability.

22

Proof. Query complexity. Consider the first iteration i∗ when ti∗ = t12i
∗−1 > 2dM(f) and hence si∗ =

s12i
∗−1. At this iteration we have Pr[dM(f |Si∗) ≥ ti∗] ≤ Pr[dM(f |Si∗) ≥ 2dM(f)]. From Corollary 3.8 by

using Chebyshev inequality it follows that there exists a constant α such that for a random sample S of size
s

Pr

[
|dM(f |S)− dM(f)| > αc

√
dM(f)

s

]
≤ 1

c2
. (2)

Applying this to Si∗ and taking c =
√
dM(f)si/α we have:

Pr[|dM(f |Si∗)− dM(f)| ≥ dM(f)] ≤ α2

dM(f)si∗

We have dM(f)si∗ = dM(f)s12i
∗−1 > 2(dM(f))2s1

t1
= 2(dM(f))2c1

δ2 .
Case 1. If dM(f) > δ/2 then dM(f)si∗ >

c1
2 and hence:

Pr[|dM(f |Si∗)− dM(f)| ≥ dM(f)] ≤ 2α2

c1

Thus, for a large enough constant c1 Algorithm 4 terminates after iteration i∗ with constant probability.

Note that ti∗ = t12i
∗−1 ≤ 4dM(f) by the choice of i∗ and so i∗ ≤ log2

(
8dM(f)
t1

)
. The overall sample

complexity in this case is thus
∑i∗

1 si =
∑i∗

1
c12i−1

δ ≤ 1
δ c12i

∗ ≤ 8c1dM(f)
δt1

= O
(
dM(f)
δ2

)
.

Case 2. If dM(f) ≤ δ/2 then ti∗ = t1 = δ and thus the sample complexity is s1 = O(1/δ).
Error probability. Let t∗ = dM(f)/2 . We want to claim that if ti < t∗ then the probability of

termination is small, while if ti ≥ t∗ then we have good enough error. First, let’s analyze the termination
probability for ti < t∗. We have:

Pr[∃i : ti < t∗, dM(f |S) < ti] ≤
∑

i : ti<t∗

Pr[dM(f |S) < ti] =
∑

i : ti<t∗

Pr[dM(f)− dM(f |S) > dM(f)− ti]

≤
∑

i : ti<t∗

Pr[|dM(f)− dM(f |S)| > dM(f)− ti] ≤
∑

i : ti<t∗

Pr

[
|dM(f)− dM(f |S)| > dM(f)

2

]
.

If t∗ < δ then the probability of early termination is zero so we can assume dM(f) ≥ 2δ. Taking c =

√
sidM(f)

2α
in (2) we have that the probability of termination with ti < t∗ is at most:

∑
i : ti<t∗

4α2

sidM(f)
=

4α2

dM(f)

∑
i : ti<t∗

δ

c12i
≤ 8α2δ

c1dM(f)
≤ 4α2

c1
.

Now if ti ≥ t∗ we have si ≥ t∗s1
t1

= dM(f)c1
2δ2 and thus by (2) taking c =

√
c1/2

α we have that Pr[|dM(f) −
dM(f |S)| > δ] ≤ 2α2

c1
.

4 L1-Testing of the Lipschitz Property

4.1 Characterization of the L1 distance to the Lipschitz property

In this section, we recall some basic definitions from [43, 24, 15] and present our characterization of the L1

distance to the Lipschitz property.

23

Definition 4.1 (Violated pair, violation score, violation graph [43, 24, 15]). Let f : D → R be a function
with a finite domain D, equipped with distance dD, and let x, y be points in D. The pair (x, y) is violated
by f if |f(x)− f(y)| > dD(x, y). The violation score of (x, y), denoted vsf (x, y), is |f(x)− f(y)| − dD(x, y)
if it is violated and 0 otherwise. The violation graph Gf of function f is the weighted undirected graph with
vertex set D, which contains an edge (x, y) of weight vsf (x, y) for each violated pair of points x, y ∈ D.

Let Lip be the set of Lipschitz functions f : D → R. The following lemma characterizes L1(f,Lip), the
absolute L1 distance from f to Lip, in terms of matchings in Gf . The weight of a matching M is denoted
by vsf (M).

Lemma 4.1 (Characterization of L1 distance to Lipschitz). Consider a function f : D → R, where D is a
finite metric space. Let M be a maximum weight matching in Gf . Then L1(f,Lip) = vsf (M).

Proof. It has already been observed that L1(f,Lip) ≥ vsf (M) for any matching M in Gf [4, Lemma
2.3]. To show the second needed inequality, let g be a Lipschitz function closest to f , that is, satisfying
L1(f, g) = L1(f,Lip). We will construct a matching M in Gf such that L1(f, g) = vsf (M). We start by
constructing a matching M ′ of weight L1(f, g) in a bipartite graph related to Gf , and later transform it to
the matching of the same weight in Gf .

Definition 4.2. For each operation op ∈ {<,>,=}, define a point set Vop = {x ∈ D | f(x) op g(x)}.

Definition 4.3 (bipartite graph BGf). BGf is a weighted bipartite graph. The nodes of BGf are points in
D, except that we make two copies, called x≤ and x≥, of every point x ∈ V=. Nodes are partitioned into V≥
and V≤, where part V≥ = V> ∪ {x≥ | x ∈ V=} and, similarly, part V≤ = V< ∪ {x≤ | x ∈ V=}. The set BEf
of edges of BGf consists of pairs (x, y) ∈ V> × V≤ ∪ V≥ × V<, such that

g(x)− g(y) = dD(x, y).

Metric dD is extended to duplicates: dD(x≤, y) = dD(x≥, y) = dD(x, y), and the weights vsf (x, y) are defined
as before.

Observe that for every edge (x, y) in BGf , by definition,

f(x) ≥ g(x) > g(y) ≥ f(y) and, moreover, (3)

vsf (x, y) = f(x)− f(y)− dD(x, y) = f(x)− f(y)− (g(x)− g(y)) = |f(x)− g(x)|+ |f(y)− g(y)|. (4)

Later, we will show that BGf contains a matching M ′ that matches every x ∈ V< ∪ V>. By (4),

vsf (M ′) =
∑

(x,y)∈M ′
vsf (x, y) =

∑
x is matched in M ′

|f(x)− g(x)|

=
∑

x∈V<∪V>

|f(x)− g(x)| = ‖f − g‖1 = L1(f,Lip).

Next we show how to transform a matching M ′ in BGf into a matching M in Gf , such that vsf (M) =
vsf (M ′). We first remove from M ′ all edges of weight 0. Then we replace each x≤ and x≥ with x. Finally,
we handle the cases when both x≤ and x≥ were replaced with x. If this happens, M ′ contains matches
(y, x≤) and (x≥, z), and we replace them with a single match (y, z). By (3), f(y) > f(x) > f(z). Since (y, x)
and (x, z) are violated pairs, vsf (y, z) = vsf (y, x) + vsf (x, z). Thus, vsf (M) = vsf (M ′), as claimed.

Now it suffices to show that BGf contains a matching M ′ that matches every x ∈ V< ∪ V>. By Hall’s
marriage theorem, it enough to show that whenever A ⊆ V< or A ⊆ V> we have |A| ≤ |N(A)|, where N(A)
is the set of all neighbors of A in BGf . Suppose to the contrary that the marriage condition does not hold
for some set, and w.l.o.g. suppose it is a subset of V>. Let A ⊂ V> be the largest set satisfying |A| > |N(A)|.

Claim 4.2. If x, y ∈ V> and g(x)− g(y) = dD(x, y) then N(y) ⊆ N(x).

24

Proof. Suppose that z ∈ N(y), i.e., f(z) ≤ g(z) and g(y) − g(z) = dD(y, z). Using the triangle inequality,
we get

g(x)− g(z) = [g(x)− g(y)] + [g(y)− g(z)]

= dD(x, y) + dD(y, z) ≥ dD(x, z).

Since g is Lipschitz, g(x) − g(z) ≤ dD(x, z). Therefore, g(x) − g(z) = dD(x, z), and (x, z) is an edge of
BGf .

Since A is the largest set that fails the marriage condition, if x ∈ A, y ∈ V> and g(x)− g(y) = dD(x, y)
then y ∈ A. Similarly, we can argue that if x ∈ N(A), y ∈ V≤ and g(x)− g(y) = dD(x, y) then y ∈ N(A).

Thus, g(x)−g(y) < dD(x, y) for all x ∈ A∪N(A) and y 6∈ A∪N(A). Consequently, for some δ > 0, if we
increase g(x) by δ for every x ∈ A∪N(A) then g remains Lipschitz. This decreases L1(f, g) by δ(|A|−|N(A)|,
a contradiction to g being the closest Lipschitz function to f in L1 distance.

4.2 c-Lipschitz Tester for Hypergrids

In this section, we present our c-Lipschitz test for functions on hypergrid domains and prove Theorem 1.5.
Observe that testing the c-Lipschitz property of functions with range [0, 1] is equivalent to testing the
Lipschitz property of functions with range [0, 1/c] over the same domain. To see this, first note that function
f is c-Lipschitz iff function f/c is Lipschitz. Second, function f is ε-far from being c-Lipschitz iff f/c is ε-far
from being Lipschitz, provided that the relative L1 distance between functions scaled correctly: namely, for

functions f, g : D → [0, r], we define d1(f, g) = ‖f−g‖1
|D|·r . Thus, we can restate Theorem 1.5 as follows.

Theorem 4.3 (Thm. 1.5 restated). Let n, d ∈ N, ε ∈ (0, 1), r ∈ [1,∞). The time complexity of L1-testing
the Lipschitz property of functions f : [n]d → [0, r] (nonadaptively and with 1-sided error) with proximity
parameter ε is O

(
d
ε

)
.

Next we present the test (Algorithm 5) with the complexity claimed in Theorem 4.3. To state the
algorithm, we use the notation for axis-parallel lines established before Algorithm 1.

Algorithm 5: Nonadaptive tester of the Lipschitz property for functions on hypergrids.

input : parameters n, d and ε; oracle access to f : [n]d → [0, r].

1 repeat dd·8 ln 3
ε e times:

2 Sample a uniform line ` from Ln,d. // Ln,d is the set of axis-parallel lines in [n]d.
3 Let P r` be the set of (unordered) pairs (x, y) of points from ` such that ‖x− y‖1 ≤ r.
4 Query a uniformly random pair of points from P r−1

` .
5 if |f(x)− f(y)| > ‖x− y‖1 then reject
6 accept

Algorithm 5 is nonadaptive. It always accepts all Lipschitz functions. It remains to prove that a function
that is ε-far from Lipschitz in L1 distance is rejected with probability at least 2/3. Since the algorithm is
simply picking pairs (x, y) from a certain set and checking if the Lipschitz property is violated on the selected
pairs, it suffices to show that a large fraction of the considered pairs (x, y) is violated by any function that
is ε-far from Lipschitz. Observe that for each ` ∈ Ln,d, the number of pairs x, y on the line ` is n(n− 1)/2.
If r < n then |P r−1

` | ≤ n(r − 1). I.e., |P r−1
` | ≤ n · min{n − 1, r − 1}. Note that |f(x) − f(y)| > ‖x − y‖1

implies that ‖x− y‖1 ≤ r − 1. I.e., all violated pairs on the line ` are in P r−1
` . To complete the analysis of

Algorithm 5, it suffices to prove the following lemma.

Lemma 4.4. Let Pn,d bet the set of pairs x, y ∈ [n]d, where x and y differ in exactly one coordinate.
Consider a function f : [n]d → [0, r] that is ε-far from Lipschitz w.r.t. the L1 distance. Then the number of

25

pairs in Pn,d violated by f is at least

εn

8d
·min{n− 1, r − 1} · |Ln,d|.

Section 4.3 is devoted to the analysis of the number of violated pairs for 1-dimensional functions. The
proof of Lemma 4.4 is completed in Section 4.4.

4.3 Number of violated pairs on a line

Lemma 4.5. Any function f : [n]→ [0, r] violates at least L1(f,Lip)
4 ·min

{
1, n−1

r−1

}
(unordered) pairs.

Proof. Let M be a maximum weight matching in the violation graph Gf . Recall Lemma 4.1 that states that
L1(f,Lip) is the weight of M . We will show that for each edge (x, y) in M , there is a large number of pairs
involving x or y violated by f .

Claim 4.6. Let (x, y) be a pair violated by a function f over domain [n] and let v = dvsf (x,y)
2 e − 1. Then

for all z ∈ [x− v, y + v] ∩ [n], function f violates at least one of the two pairs (x, z) and (y, z).

Proof. W.l.o.g., suppose x < y. By definition of the violation score,

|f(x)− f(y)| = y − x+ vsf (x, y) > y − x+ 2v. (5)

For the sake of contradiction, suppose there is a point z ∈ [x− v, y+ v]∩ [n], such that f violates neither
(x, z) nor (y, z). Then

|f(y)− f(x)| ≤ |f(y)− f(z)|+ |f(x)− f(z)| ≤ |y − z|+ |x− z| ≤ |y + x− 2z|.

Since z ≥ x− v, it follows that

y + x− 2z ≤ y + x− 2(x− v) = y − x+ 2v.

Since z ≤ y + v, it follows that

2z − y − x ≤ 2(y + v)− y − x = y − x+ 2v.

Therefore, |f(y)− f(x)| ≤ |y + x− 2z| ≤ y − x+ 2v, which contradicts (5).

Claim 4.7. Let (x, y) be a pair violated by a function f over domain [n]. Then f violates at least

min

{
vsf (x, y)

2
, n− 1

}
(unordered) pairs in {x, y} × [n].

Proof. Define v as in Claim 4.6. If y+v ≤ n then Claim 4.6 gives that for each z ∈ {y+1, . . . , y+v}, function

f violates at least one of the two pairs (x, z) and (y, z). Since (x, y) is also violated, it gives v+ 1 ≥ vsf (x,y)
2

violated pairs in {x, y}× [n]. Similarly, if x− v ≥ 1 then Claim 4.6 gives that for each z ∈ {x− v, . . . , x− 1},
function f violates at least one of the two pairs (x, z) and (y, z), yielding at least

vsf (x,y)
2 violated pairs in

{x, y}× [n]. Finally, if y+ v > n and x− v < 1 then Claim 4.6 gives that for each z ∈ [n] \ {x, y}, function f
violates at least one of the two pairs (x, z) and (y, z). Together, with (x, y), it yields at least n− 1 violated
pairs of the right form.

26

Recall that M is a maximum weight matching in Gf . Claim 4.7 shows that each edge (x, y) in M

contributes at least min
{

vsf (x,y)
2 , n− 1

}
violated pairs in {x, y}× [n]. Since M is a matching, each violated

pair can be contributed by at most two edges in M .
Let M1 be the set of pairs in M with violation score at most n− 1 and let M2 = M \M1. By Claim 4.7,

edges in M1 contribute at least vsf (M1)/2 violated pairs. Since the range of f is [0, r], the violation score

of a pair cannot exceed r− 1. Therefore, there are at least
vsf (M2)
r−1 edges in M2. By Claim 4.7, edges in M2

contribute at least
vsf (M2)
r−1 · (n− 1) violated pairs. Since each violated pair is contributed at most twice, the

total number of distinct violated pairs contributed by edges in M is at least

1

2
·
(

vsf (M1)

2
+ vsf (M2) · n− 1

r − 1

)
=

vsf (M)

4
·min

{
1, 2 · n− 1

r − 1

}
=
L1(f,Lip)

4
·min

{
1, 2 · n− 1

r − 1

}
.

This completes the proof of the lemma.

4.4 Analysis of Algorithm 5

We use the dimension reduction lemma below to bound the number of violated pairs on all axis-parallel lines
[n]d. This lemma is a direct generalization of the dimension reduction in [4] that was proved for functions
whose values are multiples of integers. More precisely, the range is δZ, i.e., δ multiples of integers, where
δ ∈ (0,∞). (In [4], this result is stated in terms of absolute distances, but for our purposes, we state it in
terms of relative distances.)

Lemma 4.8 (Dimension Reduction). For all f : [n]d → R,

E
`←Ln,d

[dLip(f |`)] ≥
dLip(f)

2d
.

Proof. We will use a proof by contradiction. Let Lip(D,R) denote the set of Lipschitz functions f : D → R.
Suppose that there is a function g that contradicts the lemma. In terms of the absolute L1 distance,
it means that

∑
`∈Ln,d [L1(g|`,Lip([n],R))] < L1(g,Lip([n]d,R))/2. Let δ be sufficiently small, such that

1/δ is a positive integer. (To be more precise in terms of the bound on δ, let ∆ = L1(g,Lip([n]d,R))/2 −
L1(g|`,Lip([n],R))]. Then δ < ∆/(2n · |Ln,d|+nd/2).) We will construct a function g′ : [n]d → δZ which con-
tradicts the reduction dimension lemma in [4], that is,

∑
`∈Ln,d [L1(g′|`,Lip([n], δZ))] < L1(g′,Lip([n]d, δZ))/2.

Claim 4.9. For every function f , define function fδ as follows: for all x, set fδ(x) to f(x) rounded down
to the nearest multiple of δ. Assuming that 1/δ is an integer, if f is Lipschitz on a pair (x, y) then so is fδ.

Proof. Consider a pair (x, y), where |f(y) − f(x)| ≤ 1, and w.l.o.g. assume that f(y) ≥ f(x). Note that
fδ(y) ≤ f(y) because the f -values are rounded down to obtain fδ-values. We get that fδ(y)−1 ≤ f(y)−1 ≤
f(x). Since both fδ(y) and 1 are integer multiples of δ, so is fδ(y) − 1. So, f(x) gets rounded down to
fδ(y)− 1 or a higher value, i.e., fδ(x) ≥ fδ(y)− 1. It follows that fδ is Lipschitz on (x, y).

Let g′ = gδ, defined as in Claim 4.9. Then∑
`∈Ln,d

[L1(g′|`,Lip([n], δZ))] ≤
∑

`∈Ln,d

[L1(g|`,Lip([n],R))] + 2δn · |Ln,d|

< L1(g,Lip([n]d,R))/2− δnd/2 ≤ L1(g′,Lip([n]d, δZ))/2.

The first inequality above holds because for all `, the function g′|` can be transformed into a Lipschitz
function with range δZ by first changing it to g|` at the cost of at most δn in the L1 distance, then changing
g|` to the closest Lipschitz function—call it h—at the cost of L1(g|`,Lip([n],R)), and finally rounding it
down to hδ at the cost of δn. The second inequality above holds because δ is sufficiently small. The final
inequality above holds because g can be transformed into a Lipschitz function by first changing it to g′ at
the cost of at most nd in the L1 distance and then changing it to the closest Lipschitz function.

Thus, g′ contradicts the reduction dimension lemma in [4]. This completes the proof of Lemma 4.8.

27

Proof of Lemma 4.4. Let f : [n]d → [0, r] be ε-far from Lipschitz w.r.t. the L1 distance. By Lemma 4.5, the
number of pairs in Pn,d violated by f is at least

∑
`∈Ln,d

L1(f |`,Lip)
4

·min

{
1,
n− 1

r − 1

}
=

∑
`∈Ln,d

dLip(f |`) · n · (r − 1)

4
·min

{
1,
n− 1

r − 1

}
= E

`←Ln,d
[dLip(f |`)] · |Ln,d| ·

n

4
·min {r − 1, n− 1}

≥ dLip(f)

2d
· |Ln,d| ·

n

4
·min {r − 1, n− 1}

≥ εn

8d
·min{n− 1, r − 1} · |Ln,d|.

The first inequality above follows from the dimension reduction lemma (Lemma 4.8). The second inequality
holds because f is ε-far from Lipschitz w.r.t. L1.

5 Complexity of Lp-Testing Problems: Proofs of Facts 1.1 and 1.2

In this section, we prove more general versions of Facts 1.1 and 1.2, which establish basic relationships
between Lp-testing problems.

Definitions of distances. Let (D,Σ, µ) be a measure space with finite measure µ(D) and let p ∈ {0} ∪
[1,∞). For any real number a, we define

a0 =

{
1 if a 6= 0;

0 if a = 0.

Consider the set of all measurable functions h : D → [−1, 1], where the integral
∫
D
|h|p dµ is finite. Then

the standard definition of the Lp-norm for p ≥ 1 is

‖h‖p =
(∫

D

|h|p dµ
)1/p

.

We also define ‖h‖0 =
∫
D
|h|0 dµ. Hamming distance is not formally a norm; so L0-norm is usually defined

differently. We call Hamming distance L0 for consistency with the special case of discrete domain D.
For all functions f, g : D → [0, 1] for which ‖f − g‖p is well defined, we define the relative Lp distance

between f and g as follows:

d0(f, g) =
‖f − g‖0
µ(D)

and dp(f, g) =
‖f − g‖p
µ(D)1/p

for all p ≥ 1.

For a function f : D → [0, 1] and a set P of functions g : D → [0, 1], the relative Lp distance between f and
P is

dp(f,P) = inf
g∈P

dp(f, g).

Basic relationships between Lp-norms and between dp-distances. The following relationships be-
tween norms are standard. For all h : D → [−1, 1] and all p ≥ q ≥ 1,

1. ‖h‖1 ≤ ‖h‖0; 2. ‖h‖q ≤ µ(D)
1
q−

1
p ‖h‖p; 3. ‖h‖qq ≥ ‖h‖pp.

The first and the third items hold because the range of h is [−1, 1]; the second item can be derived from
Jensen’s inequality. Moreover, if h : D → {−1, 0, 1}, by definition,

28

‖h‖0 = ‖h‖pp for all p ≥ 1.

Consider f, g : D → [0, 1]. Recall that d0(f, g) = ‖f−g‖0
µ(D) and dp(f, g) =

‖f−g‖p
µ(D)1/p

for all p ≥ 1. We set

h = f − g in the above relationships and immediately get that for all p ≥ q ≥ 1,

1. d1(f, g) ≤ d0(f, g); 2. dq(f, g) ≤ dp(f, g); 3. dqq(f, g) ≥ dpp(f, g).

Moreover, if f and g are Boolean functions, we get

d0(f, g) = dpp(f, g) for all p ≥ 1.

Analogous inequalities also hold for distances between a function and a set.

Observation 5.1. For all p ≥ q ≥ 1, functions f : D → [0, 1], and sets P of functions D → [0, 1],

1. d1(f, P) ≤ d0(f, P); 2. dq(f, P) ≤ dp(f, P); 3. dq(f, P) ≥ dp/qp (f, P).

Moreover, if f is a Boolean functions and P is a set of Boolean functions, we get

d0(f, P) = dpp(f, P) for all p ≥ 1.

5.1 Relationships between complexity of Lp-testing problems

Recall that we denote the worst-case query complexity of Lp-testing for property P with proximity parameter
ε by Qp(P, ε).
Fact 5.2. Let ε ∈ (0, 1) and P be a property over any domain. Then

1. Q1(P, ε) ≤ Q0(P, ε); 2. Qq(P, ε) ≤ Qp(P, ε) ≤ Qq(P, εp/q) for all p ≥ q ≥ 1.

Moreover, if P is a property of Boolean functions then

Qp(P, ε) = Q0(P, εp) for all p ≥ 1.

Fact 5.2 follows from Observation 5.1 above and the following observation.

Observation 5.3. Let f be a functions and P be a property of functions. Consider two distance measures
d and d′ that map a function and a set of functions to [0, 1]. Suppose there is a monotone nondecreasing
function t : [0, 1]→ [0, 1] such that

d(f,P) ≥ t(d′(f,P)) for all f,P.

Let ε ∈ (0, 1). Then a tester for property P w.r.t. distance d run with proximity parameter t(ε) is also a
tester for property P w.r.t. distance d′ with proximity parameter ε.

Note that the time and query complexity of the tester are preserved in this no-op transformation from
a tester w.r.t. d to a tester w.r.t. d′. Also, if a tester is nonadaptive or has one-sided error w.r.t. d, it will
retain these features w.r.t. d′.

Proof. Let T be a tester for property P w.r.t. distance d with proximity parameter t(ε). Then T

1. accepts functions f ∈ P with probability at least 2/3, and

2. rejects functions f , where d(f,P) ≥ t(ε), with probability at least 2/3.

A tester for property P w.r.t. distance d′ with proximity parameter ε, in addition to satisfying item 1 above,
must also also reject functions f , where d′(f,P) ≥ ε, with probability at least 2/3. For such a function f ,
the distance d(f,P) ≥ t(d′(f,P)) ≥ t(ε) by the inequality in the statement of Observation 5.3 and since t is
monotone nondecreasing. Thus, by item 2 above, T rejects f with probability at least 2/3, as required.

Proof of Fact 5.2. Let p1, p2 ∈ {0} ∪ [1,∞). By Observation 5.3, if there is a monotone nondecreasing
function t : [0, 1] → [0, 1], such that dp1(f,P) ≥ t(dp2(f,P)) for all f,P, then Qp2(P, ε) ≤ Qp1(P, t(ε)).
Specifically, if dp2(f,P) ≤ dp1(f,P) for all f,P than Qp2(P, ε) ≤ Qp1(P, ε). Now all inequalities in Fact 5.2
follow from the corresponding inequalities in Observation 5.1.

29

5.2 Relationships between complexity of tolerant Lp-testing problems

In this section, we state a prove a generalization of Fact 1.2.

Fact 5.4. Consider p ≥ q ≥ 1. Let ε1, ε2 ∈ (0, 1), satisfying ε1 < εp2, and P be a property over any domain.
Then

Qq(P, εp/q1 , ε2) ≤ Qp(P, ε1, ε2) ≤ Qq(P, ε1, ε
p/q
2).

Moreover, if P is a property of Boolean functions then

Qp(P, ε1, ε2) = Q0(P, εp1, ε
p
2) for all p ≥ 1.

Fact 5.4 follows from Observation 5.1 above and the following observation.

Observation 5.5. Let f be a functions and P be a property of functions. Consider two distance measures
d and d′ that map a function and a set of functions to [0, 1]. Suppose there are monotone nondecreasing
functions b, t : [0, 1]→ [0, 1] such that

b(d′(f,P)) ≥ d(f,P) ≥ t(d′(f,P)) for all f,P.

Let ε1, ε2 ∈ (0, 1), such that b(ε1) < t(ε2). Then a tolerant tester for property P w.r.t. distance d run with
parameters b(ε1), t(ε2) is also a tolerant tester for property P w.r.t. distance d′ with parameters ε1, ε2.

Proof. Let T be a tolerant tester for property P w.r.t. distance d with parameters b(ε1), t(ε2). Then T

1. accepts functions f , where d(f,P) ≤ b(ε1), with probability at least 2/3, and

2. rejects functions f , where d(f,P) ≥ t(ε2), with probability at least 2/3.

A tolerant tester for property P w.r.t. distance d′ with parameters ε1, ε2 must satisfy the following:

(Requirement 1): accept functions f , where d′(f,P) ≤ ε1, with probability at least 2/3,

(Requirement 2): reject functions f , where d′(f,P) ≥ ε2, with probability at least 2/3.

If f satisfies d′(f,P) ≤ ε1 then the distance d(f,P) ≤ b(d′(f,P)) ≤ b(ε1) by the inequality in the
statement of Observation 5.5 and since b is monotone nondecreasing. Thus, by item 1 satisfied by T , it
accepts f with probability at least 2/3, satisfying Requirement 1. If f satisfies d′(f,P) ≥ ε2 then the
distance d(f,P) ≥ t(d′(f,P)) ≥ t(ε2) by the inequality in the statement of Observation 5.5 and since t is
monotone nondecreasing. Thus, by item 2 satisfied by T , it rejects f with probability at least 2/3, satisfying
Requirement 2.

Proof of Fact 5.4. Let p1, p2 ∈ {0} ∪ [1,∞). By Observation 5.5, if there are monotone nondecreasing
functions b, t : [0, 1]→ [0, 1], such that b(dp2(f,P)) ≥ dp1(f,P) ≥ t(dp2(f,P)) for all f,P, then Qp2(P, ε) ≤
Qp1(P, t(ε)). Now all inequalities in Fact 5.4 follow from the corresponding inequalities in Observation 5.1.

Specifically, the first inequality holds because d
q/p
q (f, P) ≥ dp(f, P) ≥ dq(f, P). The second inequality holds

because dp(f, P) ≥ dq(f, P) ≥ dp/qp (f, P). The equality follows from the equality in Observation 5.1.

6 Open Problems

This paper introduces testing properties of functions under Lp-distances. Among multiple open problems
left we would like to highlight the following:

• (Adaptive L1-tester for monotonicity) Our L1-tester for monotonicity (Theorem 1.3) is nonadaptive
and cannot be substantially improved without adaptivity (Theorem 2.14). However, we show that
adaptivity helps for Boolean range (Theorem 2.8). Is there a better adaptive tester for L1?

30

• (Better Lp-testers for p > 1) All our algorithms for Lp-testing for p > 1 were obtained directly from
L1-testers. Can one design better algorithms by working directly with Lp-distances for p > 1?

• (Approximating Lp-distance to monotonicity in high dimensions) We designed a distance approxima-
tion algorithm only for monotonicity of functions on [n] and [n]2 (Corollary 2.4) Designing tolerant
Lp-testers and distance approximation algorithms for monotonicity of functions over higher-dimensional
grids is an open question.

• (Tolerant testers for other properties) Designing tolerant Lp-testers for other properties is also open.
The starting point here would be to design tolerant testers and distance approximation algorithms for
the Lipschitz property and convexity of functions on a line (d = 1).

• (Testing convexity in high dimensions) The last open problem is designing a (non-tolerant) Lp-tester
for convexity in high dimension with subexponential dependence on the dimension (see Table A.1.
We expect this to be quite challenging (see also [49] for an exponential lower bound against the one-
dimensional restriction technique in a related testing model).

Acknowledgements

We would like to thank Kenneth Clarkson, Jan Vondrak and Vitaly Feldman for helpful discussions and
Adam Smith for comments on this document.

References

[1] Mathematische Annalen, 297(1), 1993. ISSN 0025-5831.

[2] N. Ailon and B. Chazelle. Information theory in property testing and monotonicity testing in higher dimension.
Inf. Comput., 204(11):1704–1717, 2006.

[3] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a monotone function. Random
Struct. Algorithms, 31(3):371–383, 2007.

[4] P. Awasthi, M. Jha, M. Molinaro, and S. Raskhodnikova. Testing Lipschitz functions on hypergrid domains. In
APPROX-RANDOM, pages 387–398, 2012.

[5] M.-F. Balcan, E. Blais, A. Blum, and L. Yang. Active property testing. In FOCS, pages 21–30, 2012.

[6] T. Batu, R. Rubinfeld, and P. White. Fast approximate PCPs for multidimensional bin-packing problems. Inf.
Comput., 196(1):42–56, 2005.

[7] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing closeness of discrete distributions. J.
ACM, 60(1):4, 2013.

[8] S. Ben-Moshe, Y. Kanza, E. Fischer, A. Matsliah, M. Fischer, and C. Staelin. Detecting and exploiting near-
sortedness for efficient relational query evaluation. In ICDT, pages 256–267, 2011.

[9] A. Bhattacharyya, E. Fischer, R. Rubinfeld, and P. Valiant. Testing monotonicity of distributions over general
partial orders. In ICS, pages 239–252, 2011.

[10] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. P. Woodruff. Transitive-closure spanners.
SIAM J. Comput., 41(6):1380–1425, 2012.

[11] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication complexity. Computational
Complexity, 21(2):311–358, 2012.

[12] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev. Lower bounds for testing properties of functions over hypergrid
domains. In CCC, 2014.

31

[13] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah. Monotonicity testing and shortest-path routing
on the cube. Combinatorica, 32(1):35–53, 2012.

[14] J. Brody and P. Hatami. Distance-sensitive property testing lower bounds. CoRR, abs/1304.6685, 2013.

[15] D. Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz testing over hypercubes and
hypergrids. In STOC, pages 419–428, 2013.

[16] D. Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions over the hypercube. In
STOC, pages 411–418, 2013.

[17] D. Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing over hypergrids. In
APPROX-RANDOM, pages 425–435, 2013.

[18] D. Chakrabarty, K. Dixit, M. Jha, and C. Seshadhri. Optimal lower bounds for Lipschitz testing via monotonicity.
Private communication, 2013.

[19] S. Chan, I. Diakonikolas, P. Valiant, and G. Valiant. Optimal algorithms for testing closeness of discrete
distributions. In SODA, pages 1193–1203, 2014.

[20] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight in sublinear time.
SIAM J. Comput., pages 1370–1379, 2005.

[21] C. Daskalakis, I. Diakonikolas, R. A. Servedio, G. Valiant, and P. Valiant. Testing k-modal distributions: Optimal
algorithms via reductions. In SODA, pages 1833–1852, 2013.

[22] I. Diakonikolas, H. K. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. A. Servedio, and A. Wan. Testing for concise
representations. In FOCS, pages 549–558, 2007.

[23] K. Dixit, M. Jha, S. Raskhodnikova, and A. Thakurta. Testing the Lipschitz property over product distributions
with applications to data privacy. In TCC, pages 418–436, 2013.

[24] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Improved testing
algorithms for monotonicity. In RANDOM, pages 97–108, 1999.

[25] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In
TCC, pages 265–284, 2006.

[26] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. J. Comput. Syst. Sci.,
60(3):717–751, 2000.

[27] S. Fattal and D. Ron. Approximating the distance to convexity. Available at: http: // www. eng. tau. ac. il/

~ danar/ Public-pdf/ app-conv. pdf , 2007.

[28] S. Fattal and D. Ron. Approximating the distance to monotonicity in high dimensions. ACM Transactions on
Algorithms, 6(3), 2010.

[29] V. Feldman and P. Kothari. Learning coverage functions. CoRR, abs/1304.2079, 2013.

[30] V. Feldman and J. Vondrák. Optimal bounds on approximation of submodular and XOS functions by juntas.
In FOCS, pages 227–236, 2013.

[31] E. Fischer. On the strength of comparisons in property testing. Inf. Comput., 189(1):107–116, 2004.

[32] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky. Monotonicity
testing over general poset domains. In STOC, pages 474–483, 2002.

[33] O. Goldreich. On multiple input problems in property testing. Electronic Colloquium on Computational Com-
plexity (ECCC), 20:67, 2013.

[34] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In STOC, pages 25–32, 1989.

[35] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica, 32(2):302–343, 2002.

32

[36] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation.
J. ACM, 45(4):653–750, 1998.

[37] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing monotonicity. Combinatorica,
20(3):301–337, 2000.

[38] P. M. Gruber. Convex and discrete geometry, volume 336. Springer Berlin, 2007.

[39] S. Halevy and E. Kushilevitz. Distribution-free property-testing. SIAM J. Comput., 37(4):1107–1138, 2007.

[40] S. Halevy and E. Kushilevitz. Testing monotonicity over graph products. Random Struct. Algorithms, 33(1):
44–67, 2008.

[41] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications.
Inf. Comput., 100(1):78–150, 1992.

[42] A. Hinrichs, E. Novak, and H. Wozniakowski. The curse of dimensionality for the class of monotone functions
and for the class of convex functions. Journal of Approximation Theory, 163(8):955–965, 2011.

[43] M. Jha and S. Raskhodnikova. Testing and reconstruction of Lipschitz functions with applications to data
privacy. SIAM J. Comput., 42(2):700–731, 2013.

[44] M. J. Kearns, R. E. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine Learning, 17(2-3):
115–141, 1994.

[45] L. A. Levin. One-way functions and pseudorandom generators. In STOC, pages 363–365, 1985.

[46] R. J. Lipton and J. F. Naughton. Query size estimation by adaptive sampling. J. Comput. Syst. Sci., 51(1):
18–25, 1995.

[47] M. Parnas, D. Ron, and R. Rubinfeld. On testing convexity and submodularity. SIAM J. Comput., 32(5):
1158–1184, 2003.

[48] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation. J. Comput. Syst.
Sci., 72(6):1012–1042, 2006.

[49] L. Rademacher and S. Vempala. Testing geometric convexity. In FSTTCS, pages 469–480, 2004.

[50] S. Raskhodnikova. Approximate testing of visual properties. In RANDOM-APPROX, pages 370–381, 2003.

[51] S. Raskhodnikova and G. Yaroslavtsev. Learning pseudo-Boolean k-DNF and submodular functions. In SODA,
pages 1356–1368, 2013.

[52] D. Ron. Property testing: A learning theory perspective. Foundations and Trends in Machine Learning, 1(3):
307–402, 2008.

[53] G. Rote. The convergence rate of the sandwich algorithm for approximating convex functions. COMPUTING,
48:337–361, 1992.

[54] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program testing.
SIAM J. Comput., 25(2):252–271, 1996.

[55] M. Saks and C. Seshadhri. Estimating the longest increasing sequence in polylogarithmic time. In FOCS, pages
458–467, 2010.

[56] R. A. Servedio. Testing by implicit learning: A brief survey. In Property Testing, pages 197–210, 2010.

[57] C. Seshadhri and J. Vondrák. Is submodularity testable? Algorithmica, 69(1):1–25, 2014.

[58] G. Sonnevend. An optimal sequential algorithm for the uniform approximation of convex functions on [0, 1]2.
Applied Mathematics and Optimization, 10(1):127–142, 1983.

[59] G. Valiant and P. Valiant. The power of linear estimators. In FOCS, pages 403–412, 2011.

[60] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[61] P. Valiant. Testing symmetric properties of distributions. SIAM J. Comput., 40(6):1927–1968, 2011.

33

Convexity, submodularity, Monge matrices

D Hamming Testing Lp-testing

Convexity [n] Θ
(

logn
ε

)
[47] Θ(1

εp)

Submodularity {0, 1}d
(

1
ε

)O(
√
d log d)

[57] 2Õ(1/εp) + poly(1/ε) log d [30]

Monge [n]2 O
(

log2 n
ε

)
[47] —

Convexity [n]d — O
(

c(d)
εp(d/2+1)

)
Table A.1: Query complexity of Lp-testing convexity/submodularity of a function f : D → [0, 1]. For
convexity c(d) is a fixed function of d.

A L1-Testing Convexity and Related properties via Learning

In this section we describe the connections between PAC-style learning models under Lp distances and Lp-
testing and state the results, which can be obtained through this connection. For definitions of submodularity
and Monge matrices see, e.g. [30, 47].

A.1 Testing via learning and approximation

A connection between PAC-style learning and Hamming property testing is well-known [36, 52]. We first give
standard definitions of agnostic and proper PAC-style learning with Lp-error under the uniform distribution,
including versions with and without queries [60, 44, 41], and then describe an analogous connection with
Lp-testing.

Definition A.1 (PAC-style learning with Lp error). Let P be a class of functions f : D → [0, 1]. An
algorithm A agnostically PAC-learns P under the uniform distribution with Lp-error if for every ε > 0, given
access to random examples labeled by f and drawn uniformly and independently from D, with probability at
least 2/3 it outputs a hypothesis h such that:

‖f − h‖p − inf
g∈P
‖f − g‖p ≤ ε.

If A has oracle access to f , we call it a PAC-style learning algorithm with queries. For the promise problem
when f ∈ P (i.e., infg∈P ‖f − g‖p = 0) the agnostic quantifier is omitted. Algorithm A is proper if it always
outputs h ∈ P.

If in the definition above the approximation guarantee holds with probability 1 instead of 2/3 and A is a
proper learner, which is allowed to make queries, then we call A an approximation algorithm with Lp error.

Lemma A.1. If there exists an PAC-style learning algorithm A with Lp error for a class P with query
complexity q(ε, n) and running time r(ε, n) then there exists an Lp-testing algorithm B with query complex-
ity q(ε, n) + O(ε−p). If the learning algorithm is also proper then the running time of the resulting testing
algorithm is r(ε, n) +O(ε−p). If the learning algorithm is agnostic, then there also exists a distance approx-
imation algorithm with additive error ε with the same query complexity and running time, except for the
additive term being O(ε−2p) instead of O(ε−p).

If A only uses random examples then B also only uses random examples. If A is nonadaptive then B is
also nonadaptive.

34

Our proof follows the lines of [52] except that we need to argue differently about sample complexity of
estimating Lp distance between the concept output by a proper learner and a function f . This results in
a different bound for L2-testing as compared to that in [52], which considers L0 testing. For L1-testing
the query complexity is the same as for L0-testing. We also make the same observation as in [51] that for
non-proper learners query complexity is the same as for proper learners, while the running time increases.

Proof of Lemma A.1. If the learning algorithm doesn’t output a hypothesis, exceeds the upper bound on
its running time or outputs a hypothesis that is not in P then we reject f . Otherwise, let g ∈ P be the
hypothesis produced by a proper Lp-learning algorithm with precision ε/3 when it is given access to f . We
use k independently chosen uniformly distributed samples x1, . . . , xk to estimate the distance between f and

g as d = k−
1
p ·
(∑k

i=1 |f(xi)− g(xi)|p
) 1
p

. If d ≤ 2ε/3 then the algorithm accepts, otherwise it rejects.

Using multiplicative Chernoff bound (Theorem E.1) we show below that k = O(1/ε) samples suffice for
L0, L1 and L2

2-testing and k = O(1/ε2) samples suffice for L2-testing.
Indeed, if f ∈ P then ‖f − g‖p ≤ ε/3 with probability 1 − δ by the guarantee of a proper learning

algorithm. We may assume that ‖f − g‖p = ε/3 since otherwise our bounds are only better. We have:

Pr

[
d >

2ε

3

]

= Pr

k− qp (k∑
i=1

|f(xi)− g(xi)|p
) 1
p

> 2dp(f, h)


= Pr

[
1

k

(
k∑
i=1

|f(xi)− g(xi)|p
)
> 2pdistpp(f, h)

]

< e−
(2p−1)2(ε/3)pk

3

because χi = (f(xi) − g(xi))
p are i.i.d random variables with expectation p = (distpp(f, h)) = (ε/3)p.

Thus, taking the number of samples to be k = O(ε−p) suffices to have Pr[d > 2ε
3] < 1/6.

If f is ε-far from P then because g ∈ P (the learning algorithm is proper) we have ‖f − g‖p ≥ ε. Same
reasoning as above together with the second Chernoff bound (7) completes the proof for proper learners. If
the learning algorithm is not proper, we can make it proper by finding the closest function h to g by going
over all functions h ∈ P. See Proposition A.1 in [51] for the details.

For the connection with agnostic learning note that by Chernoff bound a sample of size O(ε−2p) suffices
to estimate the distance between two functions with additive error ε under Lp distance.

A.2 Convexity

Our results for Lp-testing convexity over hypergrids [n]d have query complexity independent of n, thus
for convenience we use a continuous domain [0, 1]d in this section instead. All approximation algorithms
discussed in this section don’t require any assumptions about smoothness of the function class, which is
being approximated, and thus can be also used in the discrete setting. Stronger results are known for
approximation under smoothness assumptions (see e.g. [38]).

A function f : [0, 1]d → [0, 1] is convex if αf(x) + (1− α)f(y) ≥ f(αx+ (1− α)y) for every x, y ∈ [0, 1]d

and α ∈ [0, 1].
For the class of convex functions f : [0, 1]d → [0, 1] the following approximation algorithms are known:

• For d = 1 the folklore nonadaptive proper “sandwich algorithm” with L∞ error (and hence also L1

error), which uses queries, has query complexity O
(

1√
ε

)
(see, e.g., [53]).

• For d = 2 there exists an adaptive non-proper algorithm with L∞ error, which uses queries and has

query complexity O
(

log 1/ε
ε

)
[58] (see also [53] for a discussion).

35

• For every d ≥ 1 there exists a nonadaptive proper algorithm with L1 error which only uses random

examples and has query complexity O
(

c(d)
εd/2+1

)
for a fixed function c (see, e.g., [1, 49]).

Exponential in d lower bounds for deterministic approximation with Lp error follow from lower bounds for
integration [42].

We remark that the algorithm in the last item above is stated in [1, 49] for d-dimensional convex bodies
rather than functions and requires access to an oracle giving random samples from the body. The formulation
that we use here follows by considering the plot above a convex function f : [0, 1]d → [0, 1] as a (d + 1)-
dimensional convex body. To implement a random oracle it suffices to sample a random point (x1, . . . , xd, y) ∈
[0, 1]d+1, return it if f(x1, . . . , xd) ≤ y and repeat the process otherwise.

Using Lemma A.1 we get the following corollary.

Corollary A.2. For p ≥ 1 there exist Lp-testing algorithms for convexity of functions f : [0, 1]d → [0, 1]
with the following properties.

• Query complexity O
(

1
εp

)
for d = 1 (nonadaptive, requires queries).

• Query complexity O
(

log 1/ε
εp

)
for d = 2 (adaptive, requires queries).

• Query complexity O
(

c(d)
εp(d/2+1)

)
for d ≥ 1 (nonadaptive, random queries suffice).

While the algorithm for d = 1 matches the trivial Ω(1/εp) lower bound and the algorithm for d = 2 only
loses a logarithmic factor, the complexity of testing convexity for d ≥ 3 remains widely open. It is known,
however, that probably the most natural approach to this problem which tests one-dimensional convexity of
projection on a randomly chosen line fails to reduce the exponential dependence on d for a related problem
of testing convexity of bodies [49].

B Computing L1 distance to monotonicity

Lemma B.1. Given f : [n] → [0, 1], the relative L1 distance to monotonicity, dM(f), can be computed in
O(n log n) time.

Proof. By Lemma 2.1, dM(f) =
∫ 1

0
dM(f(t)) dt. Let a1 ≤ · · · ≤ an be the sequence of values that the

function f takes, sorted in nondecreasing order. Let a0 = 0, an+1 = 1. Clearly, for all t ∈ (ai, ai+1],
threshold functions f(t) are the same. Thus,

dM(f) =

n∑
i=0

(ai+1 − ai) · dM(f(ai)).

Thus, dM(f(ai)) =
n−2mf(ai)

+sf(ai)

n . Thus, it suffices to compute values mf(ai)
and sf(ai) for all i ∈ [0, n]. For

i = 0 we have mf(0) = 0 and sf(0) = −n. Clearly, sf(i) = sf(i−1)
+ 2. The value mf(ai)

can be also computed
easily from mf(ai−1)

using the interval tree data structure.

Proposition B.2. An interval tree data structure can be used to store a sequence b1, . . . , bn, where bi ∈ [0, 1],
and support the following two operations, each in O(log n) time:

1. (Incremental update on an interval) Given i ≤ j and a number p, update bk to bk + p for all k ∈ [i, j].

2. (Maximum query on an interval) Given i ≤ j, return maxk∈[i,j] bk.

For j ∈ [n], we define a sequence bij =
∑j
x=0 gf(ai)(x). By definition, mf(ai)

= maxj∈[n] b
i
j , and we can

use the maximum query on the interval [1, n] to determine this value. Given values bij , the values bi+1
j are

defined as follows. Let x be such that f(x) = ai+1. We have bi+1
j = bij if j < x and bi+1

j = bij + 1 if j ≥ x.

Thus the incremental update operation on an interval [x, n] suffices to recompute values bi+1
j from bij .

36

C Optimality of the improved Levin’s work investment strategy

In this section, we give a result on the optimality of the work investment strategy explained in the beginning
of Section 2.2.

Lemma C.1. When the work needed for an element e is 1/q(e), the cost of the optimal work investment
strategy is Θ

(
1
ε log 1

ε

)
.

After stating Lemma 2.5, we argued that the work investment strategy suggested by this lemma has cost
O
(

1
ε log 1

ε

)
. Here we show that there exists a distribution D for which every strategy costs Ω

(
1
ε log 1

ε

)
. The

lemma follows from the following claim.

Claim C.2. Let ε ∈ [0, 1/16] be a parameter. There exists a distribution D with EX∼D[X] = ε and a

constant c > 0 such that any algorithm which has
∑k
i=1 si < c 1

ε log 1
ε loses with probability at least 1

2 .

Proof. Let t = log 1
ε . Let D be described as follows. To pick X ∼ D, we do the following:

1. Pick j uniformly from [t].

2. Let X be 1/2j with probability p = 2jε and X = 0 otherwise.

Let s1, . . . , sk be the vector defining the strategy of the algorithm. We can assume that si’s have been
chosen in advance (i.e., the algorithm is nonadaptive) because the only information the algorithm gets during
the game until it wins is that its attempts to win have been unsuccessful. We will also assume that each si
is rounded up to the next power of two because this transformation can increase the sum of the numbers
by at most a factor of 2. Because the probability of winning is monotonically increasing as a function of
(s1, . . . , sk), it suffices to show the claim for this new sequence.

Let nj =
∣∣{i|si = 2j}

∣∣ for j ∈ [t] so that we have
∑t
j=0 nj = k. Now the probability of losing is given as:

∏
j∈[t]

(
1− 1

t

j∑
`=1

2`ε

)nj
≥
∏
j∈[t]

(
1− 2j+1ε

t

)nj
≥ e−

4ε
t

∑
j∈[t] 2jnj .

The second inequality uses that 1− x ≥ e−2x for x ∈ [0, 1/2], where we take x = 2j+1ε
t . Indeed, 2j+1ε

t ≤ 1/2

for all j because the largest value of j is t = log 1/ε and we have 2j+1ε
t = 2

log 1
ε

≤ 1/2 because ε ≤ 1/16.

Finally, note that
∑
i si =

∑
j 2jnj and thus if

∑
i si <

ln 2
2

1
ε log 1

ε we have that the probability of not
winning is at least 1/2.

D Auxiliary lemmas

Lemma D.1. If X ∈ [0, 1] is a random variable such that with probability at least 1− γ it holds that:

ε− c1δ ≤ X ≤ ε+ c2δ,

for some values δ, ε, c1, c2 > 0 then if γ = δ2 then:

|E[X]− ε| = O(δ)

σ[X] = O(δ).

Proof. For the expectation we have:

E[X] =

∫ 1

0

Pr[X ≥ x]dx =

∫ ε+c2δ

0

Pr[X ≥ x]dx+

∫ 1

ε+c2δ

Pr[X ≥ x]dx ≤ ε+ c2δ + γ = ε+O(δ),

37

and also

E[X] =

∫ 1

0

Pr[X ≥ x]dx =

∫ ε−c1δ

0

Pr[X ≥ x]dx+

∫ 1

ε−c1δ
Pr[X ≥ x]dx ≥ (1− γ)(ε− c1δ) = ε−O(δ).

For the variance:

V ar[X] = E[(X − E[X])2] =

∫ 1

0

Pr[(X − E[X])2 ≥ x]dx ≤

max

(∫ 1

0

Pr[(X − ε− c2δ − γ)2 ≥ x]dx,

∫ 1

0

Pr[(X − (1− γ)(ε− c1δ))2 ≥ x]dx

)
We have: ∫ 1

0

Pr[(X − ε− c2δ − γ)2 ≥ x]dx ≤ (c1δ + c2δ + γ)2 + γ

and the same bound holds for the second term as well. Thus for γ = δ2 we have σ[X] ≤ cδ for some constant
c > 0.

E Standard Probabilistic Inequalities

Theorem E.1 (Multiplicative Chernoff Bound). Let χ1, . . . , χm be m independent random variables, where
χi ∈ [0, 1] for all i ∈ [m]. Let p = 1

m

∑
i E[χi]. Then for every γ ∈ [0, 1] the following bounds hold:

Pr

[
1

m

m∑
i=1

χi > (1 + γ)p

]
< e−

γ2pm
3 ; (6)

Pr

[
1

m

m∑
i=1

χi < (1− γ)p

]
< e−

γ2pm
2 . (7)

38

