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Abstract

We present primal-dual algorithms which give a 2.4 approximation for a class of node-weighted network design
problems in planar graphs, introduced by Demaine, Hajiaghayi and Klein (ICALP’09). This class includes
Node-Weighted Steiner Forest problem studied recently by Moldenhauer (ICALP’11) and other node-
weighted problems in planar graphs that can be expressed using (0, 1)-proper functions introduced by Goemans
and Williamson. We show that these problems can be equivalently formulated as feedback vertex set prob-
lems and analyze approximation factors guaranteed by different violation oracles within primal-dual framework
developed for such problems by Goemans and Williamson.

For edge-weighted versions of these problems, as well as versions with uniform node weights, there has been
significant progress in obtaining PTASs recently. There were proposed general techniques, such as bidimen-
sionality of Demaine and Hajiaghayi, algorithmic theory of vertex separators of Feige, Hajiaghayi and Lee and
contraction decomposition of Demaine, Hajiaghayi and Kawarabayashi. For Edge-Weighted Steiner For-
est PTAS was obtained by Bateni, Hajiaghayi and Marx and by Eisenstat, Klein and Mathieu. In contrast,
for more general node-weighted versions constant factor approximations via primal-dual algorithms remain the
state of the art, while no APX-hardness is known.

1. Introduction

In feedback vertex set problems input is a graph G = (V, E), a family of cycles C in G and a non-negative
weight function w : V → R≥0 on the set of vertices of G. The goal is to find a set of vertices H ⊂ V which
contains a node in every cycle in C such that the total weight of vertices in H is minimized. This is a special
case of a general hitting set problem, when sets correspond to cycles in the graph.

Feedback Vertex Set (FVS) problem in a graph is the problem of finding a hitting set for all cycles.
We consider the problem of hitting sets for cycles that satisfy some special properties. There are four natural
examples.
• Odd cycles. If H ⊂ V is a hitting set for all odd-length cycles then the subgaph of G, induced by the

vertex set V \H is bipartite and removal of H is called graph bipartization. The corresponding hitting set
problem is denoted as Bipartization (BIP).

• The set of all cycles which contain at least one node from a given set of nodes. The corresponding hitting
set problem is known as Subset Feedback Vertex Set (S-FVS).

• The set of all directed cycles of a given directed graph. The corresponding problem is called Directed
Feedback Vertex Set (D-FVS).

• In Node-Weighted Steiner Forest problem we are given a weighted undirected graph and a set of
terminal pairs (si, ti). The goal is to select a subset of vertices of the graph of minimum weight such that
in the subgraph induced by these vertices all pairs of terminals are connected. In Section 2.1 we show that
Node-Weighted Steiner Forest belongs to a class of problems which can be expressed as hitting set
problems for some collection of cycles.

While in general graphs Feedback Vertex Set can be approximated within factor of 2 for all graphs,
as shown by Becker and Geiger [4] and Bafna, Berman and Fujito [1], hitting a restricted family of cycles can
be much harder. For example, the best known approximation ratio for graph bipartization in general graphs is
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Problem Approximation Hardness of approximation

Feedback Vertex Set 2 [4, 1] MAX-SNP complete [24, 28]:
Bipartization O(logn) [14] 1.3606, if P 6= NP [8]
Directed Feedback Vertex Set O(logn log logn) [11] 2− ε, assuming UGC [21]
Subset Feedback Vertex Set 8 [10]

Node-Weighted Steiner Forest O(log k) [23] (1− o(1)) log k [12],
if NP * ZTIME(2nη) for some η > 0

Table 1: General graphs

Problem Previous work (our analysis)1 Our work Hardness

FVS 10 [2], 3(18/7) [16]
2.4 NP-hard [30]BIP, D-FVS, S-FVS 3(18/7) [16]

Node-Weighted Steiner Forest 6 [5], 3(18/7) [26]

Table 2: Planar graphs

O(logn) by Garg, Vazirani and Yannakakis [14]. For D-FVS the best known approximation isO(logn log logn),
as shown by Even, Naor, Schieber and Sudan [11]. These and other results for general graphs are summarized
in Table 1.

Yannakakis [30] has given an NP-hardness proof for many vertex deletion problems restricted to planar
graphs which applies to all problems that we consider. Also, it is known that D-FVS is NP-hard even if both
indegree and outdegree of every vertex are at most 3 (Garey and Johnson, [13, p. 191]). For planar graphs, the
unweighted Feedback Vertex Set problem admits a PTAS, as shown by Demaine and Hajiaghayi [6] using
a bidimensionality technique. Goemans and Williamson [16] created a framework for primal-dual algorithms
that for planar instances of all above problems provide approximation algorithms with constant approximation
factors. More specifically, they showed 9/4-approximations for FVS, S-FVS, D-FVS and BIP. For Node-
Weighted Steiner Forest it was shown by Demaine, Hajiaghayi and Klein [5] that the generic framework
of Goemans and Williamson gives a 6-approximation which was improved to 9/4-approximation by Molden-
hauer [26]. However, the original paper by Goemans and Williamson [16] contains a mistake in the analysis.
Similar mistake was repeated in [26]. We exhibit the mistake on an example and prove that no worse example
exists. More precisely, primal-dual approximation algorithms of Goemans and Williamson for all problems
described above give approximation factor 18/7 rather than 9/4. We also give an improved version of the vio-
lation oracle which can be used within the primal-dual framework of Goemans and Williamson and guarantees
approximation factor 2.4. Results for planar graphs are summarized in Table 2.

The edge counterparts of the given problems, i.e. finding a minimum-weight subset of edges which intersects
with every cycle in a given collection, are also well-studied. They reduce to vertex-weighted versions by adding
a new vertex on each edge and assigning its weight to be equal to the weight of the edge. These problems are
also significantly simpler, especially in planar graphs. Feedback Edge Set problem is a complement of the
maximum spanning tree problem. Minimum-weight graph bipartization by edge removals is complementary
to the maximum-weight cut problem which in planar graphs can be solved in polynomial time (Hadlock [19],
Dorfman and Orlova [9]). Directed Feedback Edge Set problem in planar graphs reduces to finding a
minimum-weight dijoin in the dual graph which can be solved in polynomial time (see, e.g. Grötschel, Lovász
and Schrijver [17, p.253-254]). Edge-weighted Steiner Forest problem in planar graphs is NP-hard [13], but
admits a PTAS, as shown recently by Bateni, Hajiaghayi and Marx [3].

1See discussion in the text.
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Applications and ramifications. Node-weighted Steiner problems have been studied theoretically in many dif-
ferent settings, see e.g. [23, 27, 29, 25]. Applications of such problems range from maintenance of electric
power networks [18] to computational sustainability [7]. Experimental evaluation of primal-dual algorithms for
feedback vertex set problems in planar graphs in applications to VLSI design was shown by Kahng, Vaya and
Zelikovsky [20].

As observed by Goemans and Williamson primal-dual algorithms for feedback vertex set problems in planar
graphs have close connections to conjectures of Akiyama and Watanabe and Gallai and Younger about the size
of minimum feedback vertex set in planar graphs. See [16] for more details.

Organization. We give basic definitions and preliminary observations in Section 2. In Section 2.1 we show that a
wide class of node-weighted network design problems in planar graphs, introduced by Demaine, Hajiaghayi and
Klein [5], can be equivalently defined as a class of hitting set problems for appropriately defined collections of
cycles satisfying uncrossing property, as introduced by Goemans and Williamson [16]. In Section 3 we introduce
local-ratio analog of primal-dual framework of Goemans and Williamson for such problems and give examples
of violation oracles which can be used within this framework.

In Section 4 we give a corrected version of the analysis of the approximation factor achieved by the generic
primal-dual algorithm with a violation oracle, presented by Goemans and Williamson in [16]. In Appendix B
we present analysis of primal-dual algorithms with a new violation oracle which gives approximation factor 2.4.
In Section 4.4 we show examples, on which these approximation factors are achieved.

2. Preliminaries

A simple cycle of length k is a sequence of vertices v1, . . . , vk+1, where vk+1 ≡ v1, all vertices v1, . . . vk are
distinct, (vi, vi+1) ∈ E for all 1 ≤ i ≤ k and all these edges are distinct. When working with simple graphs, the
edge set above is uniquely defined. Note that in undirected simple graphs a simple cycle has length at least
three. For a cycle C, the edge set of C is denoted as E(C), although to simplify presentation we will abuse the
notation slightly and sometimes refer to it as just C.

Every planar graph has a combinatorial embedding that for each vertex specifies a cyclic ordering of edges
that are adjacent to it. A subset U ⊂ V defines G[U], the induced subgraph of G, with node set U and edges
{(u, v) ∈ E : u, v ∈ U}. An embedding of a planar graph naturally defines embeddings of all its induced
subgraphs. We denote the set of faces of a planar graph as F (for a standard definition of the set of faces via a
combinatorial embedding, see e.g. [22]). The planar dual of a graph G is graph G∗ = (F, E ′) where F is the set
of faces of G, and E ′ is the set of pairs of faces that share an edge. We select one face F0 as the outer face.

For a simple cycle C = (v1, . . . , vk+1) we denote the set of faces that are surrounded by C as Faces(C).
More formally, let E ′′ be the set of pairs of faces that share an edge that is not on C then in (F, E ′′) has exactly
two connected components. We denote as Faces(C) the connected component of (F, E ′′) that does not contain
the outer face F0. A family of cycles Z is laminar iff for every C,D ∈ Z either Faces(C) ⊂ Faces(D), or
Faces(D) ⊂ Faces(C), or Faces(D) ∩ Faces(C) = ∅.

We use notation • to denote contact between two objects. More formally u • V, if u ⊆ V. For example, we
can have nodes and edges in contact with faces and cycles.

2.1. Uncrossable families of cycles and proper functions

Our algorithms apply to every family of cycles that satisfies the following:

Definition 2.1 (Uncrossing property [16]). For any two cycles C1, C2 ∈ C such that there exists a path P2 in
C2 which is edge-disjoint from C1 and which intersects C1 only at the endpoints of P2, the following must hold.
Let P1 be a path in C1 between the endpoints of P2. Then either P1 ∪ P2 ∈ C and (C1 \ P1) ∪ (C2 \ P2) contains
a cycle in C, or (C1 \ P1) ∪ P2 ∈ C and (C2 \ P2) ∪ P1 contains a cycle in C.

Many natural families of cycles satisfy the uncrossing property. Goemans and Williamson [16] showed this
for FVS, D-FVS, BIP, and S-FVS. We show that a certain class of node-weighted connectivity problems in
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planar graphs can be expressed as problems of finding hitting sets for families of cycles satisfying the uncrossing
property. To formalize this statement we introduce some definitions.

Definition 2.2 ((0, 1)-proper function). A Boolean function f : 2V → {0, 1} is proper if f(∅) = 0 and it satisfies
the following two properties:

1. (Symmetry) f(S) = f(V \ S).

2. (Disjointness) If S1 ∩ S2 = ∅ and f(S1) = f(S2) = 0 then f(S1 ∪ S2) = 0.

These two properties imply the property known as complementarity: if A ⊆ S and f(S) = f(A) = 0 then
f(S \A) = 0.

For a set S ⊆ V, let Γ(S) be its boundary, i.e. the set of nodes not in S which have a neighbor in S, or
formally Γ(S) = {v ∈ V |v /∈ S,∃u ∈ S : (u, v) ∈ E}. As observed by Demaine, Hajiaghayi and Klein [5], a wide
class of node-weighted network design problems can be formulated as the following generic integer program,
where f : 2V → {0, 1} is a proper function:

Minimize:
∑
v∈V

w(v)x(v)

Subject to:
∑
v∈Γ(S)

x(v) ≥ f(S) for all S ⊆ V

x(v) ∈ {0, 1} for all v ∈ V,

For example, for Node-Weighted Steiner Forest the corresponding (0, 1)-proper function is defined as
follows: f(S) = 1 iff there exists a pair of terminals (si, ti), such that |S∩ {si, ti}| = 1. The edge-weighted version
of this program was introduced by Goemans and Williamson in [15]. Note that without loss of generality we
can assume that the input graph is triangulated. Otherwise we add extra nodes of infinite cost inside each face
and connect these new nodes by edges to all nodes on their faces without changing the cost of the optimum
solution.

In Theorem 2.1 we will show that problems which can be expressed by a generic integer program above with
some (0, 1)-proper function f can also be expressed as problems of hitting uncrossable collections of cycles. We
give some definitions and simplifying assumptions first.

Definition 2.3 (Active sets and boundaries). For a proper function f : 2V → {0, 1} we say that sets S, such that
f(S) = 1 are active. For an active set S we refer to its boundary Γ(S) as active boundary. If an active boundary
forms a simple cycle we call it active simple boundary. We denote the collection of all active simple boundaries
as CfA.

Using this terminology, the generic integer program expresses the problem of finding a minimum weight
hitting set for the collection of all active boundaries. Note that we can assume that all active singleton sets
are included into the solution because each such set {s} forms a boundary of its complement V \ {s}, which is
active by symmetry, and thus {s} has to be hit. We simplify the generic integer program using this observation
so we can assume that all active boundaries don’t contain active singleton sets. In particular, this implies by
disjointntess of f that all active boundaries Γ(S) are not active, namely f(Γ(S)) = 0.

We first show that finding a minimim weight hitting set for all active boundaries is equivalent to finding a
minimum weight hitting set for CfA by showing that every active boundary contains an active simple boundary
as a subset in Lemma Appendix A.1. Then we show that the family of active simple boundaries CfA satisfies
the uncrossing property.

Theorem 2.1. Let G(V, E) be a triangulated planar graph. For every proper function f : 2V → {0, 1} the collection
of active simple boundaries CfA forms an uncrossable family of cycles.

4



Proof. Consider two active simple boundaries Γ(S1) and Γ(S2). If Γ(S2) crosses Γ(S1) then there exists a collection
of edge-disjoint paths in Γ(S2) which we denote as P, such that each path Pi ∈ P has only two nodes in common
with Γ(S1). Each path Pi ∈ P partitions S1 \Pi into two parts which we denote as A1i and A2i respectively. Let’s
fix a path Pi ∈ P, such that at A1i doesn’t contain any other paths from P.

There are two cases: A1i ∩ S2 = ∅ and A1i ⊆ S2. They are symmetric because if A1i ⊆ S2 we can replace
the set S2 by a set S ′2 = V \ S2 \ Γ(S2), ensuring that A1i ∩ S2 = ∅. Note that the boundary doesn’t change
after such replacement, because Γ(S2) = Γ(S

′
2). By symmetry of f we have that f(S2) = f(V \ S2) = 1. Because

f(Γ(S2)) = 0 by disjointness we have f(V \ S2 \ Γ(S2)) = f(S
′
2) = 1, so S ′2 is also an active set.

This is why it is sufficient to consider only the case when A1i ∩ S2 = ∅. We will show the following auxiliary
lemma:

Lemma 2.2. Let A1, A, B ⊆ V be such that A1 ⊆ A, A1 ∩B = ∅ and f(A) = f(B) = 1. Then at least one of the
following two statements holds:

1. f(A1 ∪ B) = f(A \A1) = 1.

2. f(A1) = max [f(B \ (A \A1)), f((A \A1) \ B)] = 1.

The proof of the lemma follows from the properties of (0, 1)-proper functions and is given in Appendix A.3
To show the uncrossing property for cycles C1 = Γ(S1) and C2 = Γ(S2) we select the paths in the definition

of the uncrossing property as P1 = Γ(A
2
i ) \ Pi and P2 = Pi. Now we can apply Lemma 2.2 to sets A1i , S1 and S2,

because A1i ⊆ S1, A1i ∩ S2 = ∅ and f(S1) = f(S2) = 1. Thus, by Lemma 2.2 either f(A1i ∪ S2) = f(S1 \A1i ) = 1 or
f(A1i ) = max(f(S2 \ (S1 \A

1
i )), f((S1 \A

1
i ) \ S2)) = 1. In the first case we have f(A2i ) = f(A

1
i ∪ S2) = 1 and thus

both cycles P1 ∪ P2 = Γ(A2i ) and (C1 \ P1) ∪ (C2 \ P2) = Γ(A
1
i ∪ S2) are active simple boundaries. In the second

case f(A1) = 1 and thus the cycle (C1 \ P1)∪ P2 = Γ(A1) is an active simple boundary. The cycle (C2 \ P2)∪ P1
is not necessarily simple, but it forms a boundary of an active set (S2 \ (S1 \ A

1
i )) ∪ ((S1 \ A

1
i ) \ S2). Thus, by

Lemma Appendix A.1 it contains an active simple boundary, which is a cycle in CfA.

3. Algorithm

3.1. Generic local-ratio algorithm

We will use a local-ratio analog of a generic primal-dual algorithm formulated by Goemans and Williamson
[16] which we state as Algorithm 1

Algorithm 1: Generic local-ratio algorithm (G(V, E), w, C).

1 w̄← w.
2 S← {u ∈ V : w̄(u) = 0}.
3 while S is not a hitting set for C do
4 M← a collection of cycles returned by a violation oracle Violation(G, C, S).
5 cM(u)← |{M ∈M : u •M}|, for all u ∈ V.

6 α← minu∈V\S
w̄(u)
cM(u) .

7 w̄(u)← w̄(u) − αcM(u), for all u ∈ V.
8 S← {u ∈ V : w̄(u) = 0}.

end
9 return a minimal hitting set H ⊂ S of C.

Note that we don’t need to specify the collection of cycles C explicitly. instead the generic algorithm requires
that we specify an oracle Violation(G, C, S) used in Step 4. Given a graph G, collection of cycles C and a
solution S if there are some cycles in C which are not hit by S this oracle should return a non-empty collection
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of such cycles, otherwise it should return the empty set. Such an oracle also allows to perform Step 3 and Step 9
without explicitly specifying C.

The performance guarantee of the generic algorithm depends on the oracle used as described below. If
z : Z→ R we use z(Z) to denote

∑
a∈Z z(a).

Theorem 3.1 (Local-ratio analog of Theorem 3.1 in [16]). If the set M returned by a violation oracle used in
Step 4 of the generic local-ratio Algorithm 1 satisfies that for any minimal solution H̆:

cM(H̆) ≤ γ|M|,

then Algorithm 1 returns a hitting set H of cost w(H) ≤ γw(H∗), where H∗ is the optimum solution.

We give the proof of this theorem for completeness in Appendix A.2.
The simplest violation oracles return a single cycle. Bar-Yehuda, Geiger, Naor and Roth [2] show that for

FVS this approach can give a 10-approximation for planar graphs and Goemans and Willamson [16] improve
it to a 5-approximation. They also analyzed an oracle, which returns a collection of all faces in C, which
are not hit by the current solution, and showed such oracle gives a 3-approximation for all families of cycles
satisfying uncrossing property. Thus, by Theorem 2.1 such oracle gives a 3-approximation for all problems that
we consider. We now give more complicated examples of violation oracles which give better approximation
factors.

3.2. Minimal pocket violation oracles

The following oracle, introduced by Goemans and Williamson [16], returns a collection of faces in C inside
a minimal pocket not hit by the current solution H.

Definition 3.1. A pocket for a planar graph G(V, E) and a cycle collection C is a set U ⊆ V such that:
1. The set U contains at most two nodes with neighbors outside U.
2. The induced subgraph G[U] contains at least one cycle in C.

Algorithm 2: Minimal-Pocket-Violation (G, C, S).

1 C0 ← {c ∈ C : c not hit by S}
2 Construct a graph GS by removing from G:
3 All edges which do not belong to any cycle in C0.
4 All vertices which are not adjacent to any edges.
5 Let U0 be a pocket for GS and C0 which doesn’t contain any other pockets.
6 return A collection of all cycles in C0 which are faces of GS[U0].

As in the generic algorithm, we will not specify C and C0 explicitly, but will rather use an oracle to check
relevant properties with respect to them. We show analysis of the approxiamtion factor obtained with this
oracle in Section 4.

We will obtain a better approximation ratio by analyzing the following oracle in Section Appendix B.

Definition 3.2. A triple pocket for a planar graph G(V, E) and a cycle collection C is a set U ⊆ V such that:
1. The set U contains at most three nodes with neighbors outside U.
2. The induced subgraph GS[U] has at least three faces in C.

The violation oracle Minimal-3-Pocket-Violation finds a minimal U0 that is either a pocket or a triple
pocket, and otherwise works like Minimal-Pocket-Violation.
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4. Proof of 18/7 approximation ratio with pocket oracle

According to Theorem 3.1, to show that Algorithm 1 has approximation factor 18/7 it suffices to prove the
following:

Theorem 4.1. In every iteration of the generic local-ratio algorithm (Algorithm 1) with oracle Minimal-
Pocket-Violation for every minimal hitting set H̆ of C we have cM(H̆) ≤ γ|M| for γ = 18/7.

The rest of this section is the proof of this theorem. The strategy of the proof is a variant of amortized
analysis. We consider an arbitrary minimal hitting set H̆ of C-cycles in the residual graph GS (as defined in
Algorithm 2). For every cycle in M we get 1 unit of credit, and for a node h ∈ H̆ we get cM(h)/γ units of
debit (i.e. negative), and we need to show that overall balance is non-negative. We start by decomposing the
balance into smaller parts which are simpler to analyze than the balance of the entire pocket. The goal is to
limit the impact of the nodes in H̆ for which witness cycle Ah is not inM. We decompose the pocket into parts
that have at most two such nodes (Section 4.1). Further analysis refers to one such part.

We further simply the analysis of the balance by applying a pruning rule, each application of the pruning
rule makes the instance smaller while the balance decreases. Thus it is enough to prove the claim when the
pruning rule cannot be applied. In particular, this proves the claim if pruning produces an instance with no
credits and debits. (Section 4.2).

Finally (Section 4.3) we define objects called envelopes and we assign all credits and debits to the envelopes.
Then we show that each envelope has a non-negative balance. The nature of the pocket oracle eliminates
conceivable envelopes with negative balance. In the next section we show that we eliminate more types of
envelopes with the oracle Minimal-3-Pocket-Violation which gives an approximation factor 12/5.

Before we proceed we need several definitions.

Definition 4.1 (See also [16]).

(a) Given a hitting set H̆ for C we say that A ∈ C is a witness cycle for h ∈ H̆ if A ∩ H̆ = {h}.
(b) If H̆ is a minimal hitting set, we can select A

H̆
= {Ah : h ∈ H̆}, a family of witness cycles for H̆.

(c) Given a pocket GS[U0] with M being set of faces of GS[U0] that are in C we define debit graph, a bipartite
graph G = (M∪ H̆, E) with edges E = {(M,h) ∈M× H̆ : M • h}.
(d) For N ⊂M we define EN = {(M,h) ∈ E : M ∈ N } and balance(N ) = |N |− |EN |/γ.

Goemans and Williamson showed the following:

Lemma 4.2 (Lemma 4.2 in [16]). For every collection of cycles C and every minimal hitting set H̆ there exists
a laminar family of witness cycles A

H̆
.

Observe also that the planar embedding of GS defines a planar embedding of G. We are going to use the
fact that G is planar. By the definition, cM(H) = |E |, so to prove Lemma 4.1 it suffices to show that

balance(M) ≥ 0 (1)

We prove inequality (1) using mathematical induction on |M∪A
H̆
|.

4.1. Complex witness cycles and decomposition of the debit graph

In this subsection we will show a sufficient condition for inequality (1) and thus for our theorem.

Definition 4.2. If Ag ∈ Ahmin and Ag 6∈ M we say that Ag ∈ AH̆ is a complex witness cycle and that g is
an outer (hit) node.

Complex witness cycle Ah makes the analysis more complicated because there exist debits associated with
pairs (M,h) but there is no credit for Ah. We reduce the problem of proving the non-negative balance of the
debit graph to the problem of proving sufficiently high balances in simpler parts of that graph, where a part
may have at most two complex witness cycles. There are two types of complex witness cycles:
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Definition 4.3. Let Cg = Faces(Ag) ∩ C and Mg = Cg ∩M.
If all nodes of a complex witness cycle Ag are in the pocket U0 we say that Ag is a hierarchical witness cycle.

Otherwise both contact nodes of U0 belong to Ag and we say that Ag is a crossing witness cycle.

First we discuss how to handle the hierarchical witness cycles. If there are such cycles, one of them, say Ag,
has a minimal set Faces(Ag), and for such a cycle Ag we will show that

balance(Mg) ≥ 1− 1/γ (2)

As a consequence of this inequality we can simplify the debit graph G by removing Mg and inserting in its
place Ag. After that replacement Mg becomes {Ag} and EMg becomes {(Ag, g)}, so balance(Mg) changes to
1 − 1/γ. The replacement reduces |A

H̆
∪M| while the inequality (2) assures that the balance(E) does not

increase. This allows to invoke the inductive hypothesis.
We can repeat the simplification as long as there exists a hierarchical witness cycle. Note that we in the set

of pairs EMg (of the form “cycle M, hit node h”) only g is a hit node with a complex witness cycle.
Now it remains to consider the case when for every hit node g that occurs in pairs of E , if its witness cycle

Ag is complex then Ag is a crossing witness cycle. Each such Ag contains a path Pg ⊂ U0 between the two
contact nodes of U0, these paths cannot cross each other, thus they split pocket U0 into subpockets; a subpocket
has the boundary contained in two paths that either are of the form Pg or form a part of the outer face of G[U0].

Let X be the set of faces ofM that are contained in a subpocket. It is sufficient to show that if X 6= ∅ then

balance(X ) ≥ 1− 2/γ. (3)

We established that it suffices two consider two types of simplified debit graphs and to prove that they
respectively satisfy inequalities (2) and 3. We can describe a more general type of a debit graph that includes
both types as special cases. In our first type, Ag is a hierarchical witness cycle that does not contain other
hierarchical witness cycles in its interior and we can define W, the set of nodes of GS that are on Ag or its
interior. In our second type, Pg and Ph are two paths connecting the contacts of U0 and W is the set of nodes
of GS that are on these two paths or in the interior of the cycle formed by these two paths; W may contains
outer nodes only on these paths. Let MW be the set of faces of G[W] that are in M, the inequalities (2) and
(3) have LHS equal to balance(MW).

Moreover, RHS of (2) and (3) also can be written with the same expression: if a is the number of the outer
nodes in W than in both cases RHS = 1− a/γ. The next lemma summarizes these observations.

Lemma 4.3. To prove (1) it suffices to prove the following. Consider W ⊂ U0 such that H̆∩W contains a ≤ 2
outer nodes, all on the outer face of G[W]. Let MW be the set of faces in M that have all nodes in W. Then

balance(MW) ≥ 1− a/γ (4)

In the remainder of this section we will refer to W and a as introduced in this lemma, and we will assume
that we have at most a outer nodes, all on the outer face of W.

4.2. Pruning

The following operation simplifies MW and thus facilitates the proof of inequality (4).
Pruning M cycles of small degree. If a cycle M ∈MW \A

H̆
participates in at most two edges in E , we remove

M from M. If Ah ∈ MW for some h ∈ H̆ and h participates in at most two edges in E , including (Ah, h), we
remove h from H̆ and Ah from M.

Lemma 4.4. Each step of pruning decreases |MW | by exactly 1 and balance(MW) by at least 1− 2/γ.
If MW 6= ∅ and applications of pruning lead to MW = ∅ then before pruning inequality (4) was true.
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Proof. The first claim follows from the fact that a step of pruning decreases |MW | by 1 and EMW
by at most 2.

The second claim for a = 2 follows from the first claim because we apply at least one step of pruning.
The second claim for a = 1 follows from the fact that before the last step of pruning we have |Mg| = 1,

i.e. Mg = {M} for some face M. If M is not a witness cycle then all witness cycles except Ag were eliminated,
hence EMW

consists of exactly one pair (M,g). If M is a witness cycle Ah, then EMW
consists of exactly one

pair (Ah, h). In both cases balance(Mg) = 1− 1/γ.

4.3. Envelopes

It remains to prove inequality (4) when pruning cannot be applied and EMW
is non-empty. We decompose

balance(MW) into parts that can be analyzed using Euler formula.
We partition the set of all faces of G[W] into three parts as follows: A =MW ∩ AH̆, B =MW \ A

H̆
and

Z is the set of faces in W which are not in M. Consider the dual graph G∗ = (A ∪ Z, E∗); we have an edge
between two vertices of G∗ if the corresponding faces share an edge. For every connected component Ci of G∗

let Ei be the set of its boundary edges which are edges that are adjacent to one face in Ci ⊂ A∪Z and one face
in B. Every Ei forms a cycle (not necessarily simple) and we call such cycles envelopes.

Definition 4.4 (Envelopes in W). Envelopes in W are cycles consisting of boundary edges of connected com-
ponents in the dual of A ∪ Z. We assign each h ∈ A

H̆W
to an envelope which contains h; we select the one

which is on the boundary of the component of A∪Z that contains Ah. If h is an outer node, select the envelope
which is on the boundary of the component of A ∪ Z that contains the other face of G[W]. An outer envelope
is an envelope to which we assigned an outer node.

We will split balance(MW) into balances of envelopes; an edge (M,h) is assigned to the envelope where
we assigned h together with its witness cycle Ah; below we explain how to assign faces from B to envelopes.
We will show that each envelope has a non-negative balance and at least one envelope has a sufficient positive
balance.

Envelopes do not have to be simple cycles, but balance for non-simple envelopes is positive, we omit the
details in the preliminary version, instead, we assume that each envelope is a simple cycle.
Envelopes: normal form. For an envelope S we define principal neighbors, B-faces that have edges on S.
Because we do not have pockets inside W, S must have at least 3 principal neighbors, except for the outer
envelope. One can see that a traversal of S is a face of G of the form

(h0, B0, h1 . . . , ha−1, Ba−1, h0).

Envelopes: normalizing neighbors. First, suppose that some B ∈ B contains both hi and hi+1 but B 6= Bi.
This case is excluded, because if there are some M faces between B and Bi we would have a pocket, and if
there are not, Bi would have at most two neighbors: hi and hi+1, and we have pruned M-cycles with at most
two neighbors in EMW

. (Observe that hi, hi+1 do not have to belong to H̆.)
Now we modify EMW

to E ′ as follows:
• we eliminate pairs of the form (Ah, h);
• for each envelope S we contract nodes of H̆ that were assigned to S to a single node S.
The resulting graph is bipartite, but it can be a multi-graph. Therefore we modify it further: if Bi is a

principal neighbor of S and (B, hi), (B, hi+1) ∈ EMW
, in E ′ these two edges produce a single double edge. The

edge set E ′ may remain a multigraph, e.g. if B = Bi the same as outer neighbor Bj then we have two double
edges from B to S. However, the edges from B to S cannot be consecutive in the circular ordering of S, hence
this multigraph does not have faces with two edges only.

Note that non-outer hit nodes assigned to an envelope S are contact nodes of S; otherwise such a node h
would belong to exactly two edges of E : (Ah, h) and (B, h) where B is the principal neighbor that contains S;
in that case h and Ah would be eliminated by pruning.

Let nS be the number of contact nodes of S, and let nS − `S be the number of hit nodes assigned to S.
Also, let dS be the number of edges of the modified graph that are incident to S.

9



If S is not the outer envelope, nS ≥ 3.
Balance of envelopes We define balanceS as the part of balance(EMW

) that can be attributed to S. We will
consider EMW

edges that are incident to H-nodes of S, and A-cycles of these nodes, and a “share” of B-cycles
that can be attributed to S using dS and the Euler formula.

Suppose that the modified graph has m nodes, d edges and f faces. Note that d =
∑
dS. Also, m = b+ s

where b is the number of faces in B and s is the number of envelopes.
Because each face has at least 4 edges and each edge is in two faces, we have f ≤ d/2, hence the Euler

formula implies m = d− f+ 2 ≥ d/2+ 2.
Thus we can allocate dS/2 nodes to an envelope S, because one of these nodes is S, we allocate dS/2 − 1

B-nodes, while to the outer envelopes we can allocate extra two B-nodes.
To simplify the estimate of the number of pairs in E that are incident to S we assume first that `S = 0. For

an non-outer envelope S we allocate nS A-faces, and this gives this estimate:

balanceS =

nS + dS/2− 1− (2nS + dS)/γ =

3

2
nS − 1+ (dS − nS)/2− (3nS + (dS − nS))/γ ≥ γ > 2

3

2
nS − 1− 3nS/γ ≥ nS ≥ 3

7

2
− 9/γ = 0 γ =

18

7

For every contact node h that is not a hit node (counted by `S) we decrease the number of credits in
balance(S) by 1, as we do not have the credit of Ah, and the number of debits by 3/γ as we do not have (Ah, h),
(B, h) and (B ′, h) where B,B ′ are the principal neighbors adjacent to h on S. Thus balance(S) ≥ `S(3/γ− 1).

To estimate the balance of outer envelopes, observe that each outer envelope is in a separate connected
component of the modified graph: all outer nodes are on the outer face of G[W] so they are in the same
connected component of G∗, hence an outer envelope is a connected component of edges of the boundary of
that component of faces. In turn, B-nodes of the modified graph are separated between the interiors of the
outer envelopes. As a result, we can add 2 to the lower bound of each outer envelope.

Therefore an outer envelope S with a ′ outer nodes has balance at least

3

2
nS − 1− 3nS/γ+ 2− a ′(1− 1/γ) =

3nS

(
1

2
− 1/γ

)
+ 1− a ′(1− 1/γ) ≥ nS ≥ 2

4− 6/γ− a ′(1− 1/γ) > (2− a ′)(1− 1/γ) γ ≥ 2

For a ′ < 2 this gives the desired claim. For a ′ = 2 and nS one can improve the estimate to 2(1 − 2/γ).
Thus we have proven inequality (4) which suffices to prove Theorem 4.1, i.e. we showed that oracle Minimal-
Pocket-Violation guarantees approximation factor 18/7. We generalize this proof to show that oracle
Minimal-3-Pocket-Violation gives approximation factor 12/5 in Theorem Appendix B.1, which is deferred
to Appendix B.

4.4. Tight examples

We show instances of graphs, on which the primal-dual algorithm with oracles Minimal-Pocket-Violation
and Minimal-3-Pocket-Violation gives 18/7 and 12/5 approximations respectively.

Our examples are for the Subset Feedback Vertex Set problem. Recall that in this problem we need
to hit all cycles which contain a specified set of “special” nodes. Our examples are graphs with no pockets
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Figure 1: Family of instances of Subset Feedback Vertex Set with approximation factor 18/7 for the
primal-dual algorithm with oracle Minimal-Pocket-Violation
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Figure 2: Family of instances of Subset Feedback Vertex Set with approximation factor 12/5 for primal-
dual algorithm with oracle Minimal-3-Pocket-Violation

(or triple pockets), in which every face belongs to the family of cycles that we need to hit – this is ensured
by selection of “special” nodes, which are marked with a star. The weights of vertices are assigned as follows.
Given a node u with degree d(u), its weight is w(u) = d(u) if u is a solid dot and w(u) = d(u) + ε otherwise
(for some negligibly small value of ε).

First we show an example for the oracle Minimal-Pocket-Violation in Figure 1. Because there are no
pockets, the first execution of the violation oracle returns the collection of all faces in the graph. Thus, in each
building block of Picture 1 (which shows 5 such blocks from left to right), the primal-dual algorithm selects the
black dots with total weight 18 while stars also form a valid solution with weight 7 + 3ε. Hence the ratio will
be arbitrarily close to 18/7, if we repeat the building block many times.

Similar family of examples for the oracle Minimal-3-Pocket-Violation is shown in Figure 2. In these
examples there are no pockets or triple pockets, so the oracle Minimal-3-Pocket-Violation returns the
collection of all faces in the graph. As above, the primal-dual algroithm selects the black dots with total weight
12 within each block, while the cost of the solution given by the stars is 5 + 2ε, so we can make the ratio
arbitarily close to 12/5.
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Appendix A. Omitted proofs

Appendix A.1. Lemma Appendix A.1

Lemma Appendix A.1. Assume that (V, E) is a connected triangulated planar graph, f is a proper function
and Γ ⊂ V has these properties: (a) f(A) = 0 for every A ⊆ Γ and (b) f(B) = 1 for some B that is a connected
component of V \ Γ . Then there exists C ⊆ Γ with properies (a) and (b) such that C is a simple cycle.

Proof. We will show the existence of C by taking any minimal subset of Γ , which has properties (a) and (b).
The proof of the lemma follows from the Claim Appendix A.4, Claim Appendix A.5 and Claim Appendix A.6.

Claim Appendix A.2. There exist two active connected components in V \ C.

Proof. Let B0 be a connected component of V\Γ such that f(B0) = 1 which exists by property (b). By symmetry
of f, we have f(V \ B0) = 1, and by disjointness of f, we have f(V \ B0 \ Γ) = 1. By applying disjointness again,
there exists a connected component B1 of V \ B0 \ Γ such that f(B1) = 1.

We will denote two active components, whose existence is guaranteed by Claim Appendix A.2 as B0 and B1.

Claim Appendix A.3. Each c ∈ C is adjacent to both B0 and B1.

Proof. Otherwise, suppose that c is not adjacent to Bi and let C ′ = C \ {c}. Then Bi is a connected component
of V \C ′, hence C ′ has property (b). Because C ′ is a subset of C it has property (a) and we get a contradiction
with minimiality of C.

Claim Appendix A.4. Each c ∈ C has at most 2 neighbors in C.

Proof. Otherwise, let c1, c2, c3 be three distinct nodes of C that are neighbors of c. Contract B0 and B1 to a
single node, this allows to define a minor with nodes in two groups: c, B0, B1 in one group, c1, c2, c3 in the
second group, and this minor contains K3,3.

Claim Appendix A.5. Each c ∈ C has at least 2 neighbors in C, or C forms a cycle of length 2.

Proof. In triangulated planar graphs neighbors of a node form a (not necessarily simple) cycle. Consider the
cycle of neighbors of c ∈ C. On this cycle we can traverse a group of nodes from B0, say b10, . . . , b

k
0 . Because

the cycle contains also nodes from other connected components of V \ C, this groups must be preceeded and
followed by a node from C, say c0 and c1. If c0 6= c1, Claim Appendix A.5 is true. Otherwise (c, c0) and (c, c1)
are two separate edges from c to the same node, and the cycle C ′ = (c, c0 = c1, c) has in its interior the group
of nodes of B0 that we have discussed and no other neighbors of c. Thus the nodes from B1 that are neighbors
of c must be in the exterior or C ′; consequently there are no nodes of C in the interior of C ′, as they would
violate Claim Appendix A.3. In the same way we can argue that the are no nodes of C in the exterior of C ′

and thus we conclude that C = C ′.

Claim Appendix A.6. The subgraph C is connected.

Proof. This is obvious when C is a 2-cycle, so it remains to consider the case when each node in C has exactly
2 neighbors in C. If C is not connected it forms a set of disjoint simple cycles and nodes of different cycles are
not adjacent. Each such cycle is adjacent to exactly two connected components of V \ C and we can consider
a cycle C ′ with the minimal interior I. If f(I) = 1 then C ′ satisfies property (b), which is a contradiction with
the minimality of C. If f(I) = 0 then nodes of C ′ don’t satisfy Claim Appendix A.3, because they are adjacent
to at most one active connected component.
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Appendix A.2. Analysis of the generic local-ratio algorithm

Here we give the proof of Theorem 3.1

Proof. When Algorithm 1 returns the hitting set H we have w̄(H) = 0. Thus the cost of this hitting set w(H)
is the sum of decreases of w̄(H) that are caused by Step 7, and the same applies to an optimum solution H∗.
To show approximation ratio γ it suffices to show that anytime we decrease w̄(H) by some γx we also decrease
w̄(H∗) by at least x.

The decrease of w̄(H∗) is αcM(H∗). We can estimate cM(H∗) it as follows: if u ∈ H∗ is responsible for
hitting some m cycles in M then cM(u) ≥ m, thus cM(H∗) ≥ |M|. Thus the decrease of w̄(H∗) is at least
α|M|.

The decrease of w̄(H) is αcM(H). Thus to show the approximation ratio γ it suffices to show that for every
minimal hitting set H̆ we have cM(H̆) ≤ γ|M|.

Appendix A.3. Uncrossing proper sets (Lemma 2.2)

Here we give the proof of Lemma 2.2.

Proof. For a set S ⊆ V we use notation S̄ to denote V \ S, the complement of S in V. We will show that if the
second statement is false then the first one is true. There are two cases.

Case 1. Suppose for the sake of contradiction that f(A1) = 0. Then because f(A) = 1 we have f(A\A1) = 1
by disjointness.

By symmetry we have f(B) = f(B̄) = 1. Because A1 ⊆ B̄ and f(A1) = 0 by disjointness we have f(B̄\A1) = 1.

By symmetry this implies that f(B̄ \A1) = f(A1 ∪ B) = 1, because B̄ \A1 = B ∪A1.
Case 2. Suppose for the sake of contradiction that f(B \ (A \A1)) = f((A \A1) \ B) = 0.
Note that A \ ((A \ A1) \ B) = A1 ∪ (A ∩ B). From f((A \ A1) \ B) = 0 and f(A) = 1 we thus conclude by

disjointness that f(A \ ((A \ A1) \ B)) = f(A1 ∪ (A ∩ B)) = 1. Because A1 ∩ B = ∅ the sets B \ (A \ A1) and
A1 ∪ (A ∩ B) are disjoint. Using this together with the assumption that f(B \ (A \ A1)) = 0 by disjointess we
have that f(B \ (A \A1) ∪A1 ∪ (A ∩ B)) = f(A1 ∪ B) = 1.

From the assumption that f(B \ (A \A1)) = 0 and f(B) = 1 by disjointness we have f(B \ (B \ (A \A1))) =
f(A ∩ B) = 1. Together with f((A \A1) \ B) = 0 by complementarity we have f(A \A1) = 1.

Appendix B. Proof of 12/5 approximation ratio with triple pocket oracle

Theorem Appendix B.1. In every iteration of the generic local-ratio algorithm (Algorithm 1) with oracle
Minimal-3-Pocket-Violation for every minimal hitting set H̆ of C we have cM(H̆) ≤ γ|M| for γ = 12/5.

Proof. We change the proof of Theorem 4.1 in only a few aspects.
We need to consider a triple pocket, with contact nodes c, d, e. The crossing witness cycles contain paths

between contact nodes, now we have 3 pairs of contact nodes rather than one, hence 3 possible families of
crossing paths. Thus we need to change the analysis of subpockets. A subpocket defined by two crossing paths
from the same family has two contact nodes, as before. However, one subpocket can be defined by crossing
paths from different families and this subpocket may have 3 contact nodes.

The subpocket with 3 contact nodes can have a negative balance if it contains less than two faces in M.
Thus it is important that if we have such subpocket we must also have nother subpockets that bring the total
number of faces in M to at least 3, and those subpockets have positive balance.

If the subpocket with 3 contact nodes contains exactly 1 face in M its balance is at least 1 − 3/γ, while
the balance of the other pockets is at least 2(1− 2/γ), for the total of 3− 7/γ = 1/12. If the subpocket with 3
contact nodes contains exactly 2 faces inM, its balance is at least 2−5/γ while the other pockets have balance
at least 1− 2/γ and the estimate of the total is the same.

The effects of pruning are estimated exactly as before.
The balance of envelopes is estimated similarly, but we can make assumptions based on the fact that

an envelope cannot be used to define a triple pocket. For a non-outer envelope the critical cases are when
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nS ≤ 4. The case when nS ≤ 2 is excluded because we would define a pocket. The case when nS = 3 and
`S = 0 is excluded because we would define a triple pocket. If nS = 3 and `S ≥ 1 the balance is at least
(7/2−9/γ)+3/γ−1 = 5/2−6/γ = 5/2−5/2 = 0. If nS ≥ 4 then the balance 3

2nS−1−3nS/γ = 5−12/γ = 0.
The estimate of the balance of an outer envelope is similar to an estimate of a non-outer envelope, so we

just need to examine the differences to see that it cannot be lower. We can increase the credit given to an outer
envelope by 2, because of Euler formula applied to the connected component of the debit graph that contains
that envelope: one can see that each outer envelope is in a separate component.

The impact of an outer node on the balance can occur in two ways. We can replace the status of a hit node
on the envelope from non-outer to outer. This decreases the credits by 1, and debits by 1/γ, hence we subtract
7/12 from the balance. We can also add an outer hit node that is not a contact node, this does not change
credits but adds 1/γ to the debit, hence we subtract 5/12 from the balance. Thus the worst case is that the
balance increases by 2− 3× 7/12 = 1/4.
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