CIS 399:

"Foundations of Data Science"

Massively Parallel Algorithms

Grigory Yaroslavtsev

Warren Center for Network and Data Sciences

http://grigory.us

Big Data = buzzword

Non-experts, media:

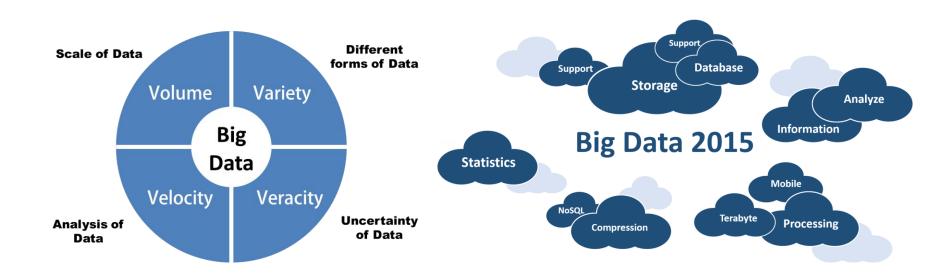
- a lot of spreadsheets, medical data,
- electropop band

— ...

52,00
365,00 ~ \$ 365,00 ~ \$ 3.655,00 ~ \$
365,00 -\$
3.655,00 -\$
977,00 - 4
792,00 -5
2.225,00 \$
3.641,00
69.887,00 -
656.853,00
\$ 5.599,00
\$ 25.333,00
-\$ 56.852,0
≈5 36,958,0
△\$ 22.895.
75 365
A\$ 3.65
75 9
75
71
-

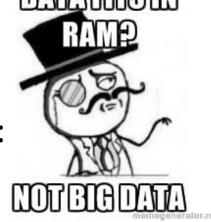
Big Data = buzzword

- Business experts, analysts, data scientists:
 - Volume, velocity, variety, (veracity)
 - Databases, statistics, cloud computing, machine learning, privacy, ...



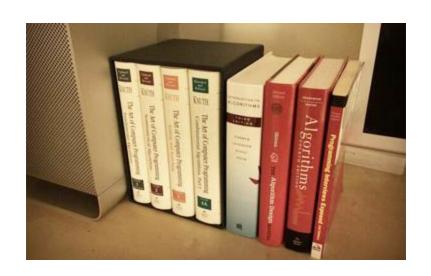
Big Data: technical definition

- "Big Data" = "Data that doesn't fit in RAM"
 - Massively parallel computing:MapReduce/Hadoop/Apache Spark
 - Streaming: Apache Storm, etc.
 - "algorithms for Big Data" class at Penn: http://grigory.us/big-data-class.html



Algorithms for Big Data

- Algorithms/theory perspective: a fundamental challenge
 - Data fits into RAM \Rightarrow decades of previous work
 - Data doesn't fit into RAM ⇒ algorithmic
 challenges are qualitative, not quantitative





Algorithms for Big Data

- User's perspective: paradigm shift brought by cloud services
 - Outsourcing computation and data storage is great for both businesses and researchers
 - Cloud service providers: Amazon EC2, Google
 Compute Engine, ...
 - Open source stacks/frameworks:
 MapReduce/Hadoop, Apache Spark, etc.



Business perspective

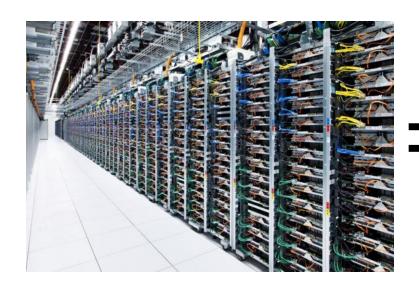
- Pricings:
 - https://cloud.google.com/pricing/
 - https://aws.amazon.com/pricing/
- ~Linear with space and time usage
 - 100 machines: 5K \$/year
 - 10000 machines: 0.5M \$/year
- You pay a lot more for using provided algorithms
 - https://aws.amazon.com/machine-learning/pricing/

Getting hands dirty

- Cloud computing platforms (all offer free trials):
 - Amazon EC2 (1 CPU/12mo)
 - Microsoft Azure (\$200/1mo)
 - Google Compute Engine (\$200/2mo)
- Distributed Google Code Jam
 - First time in 2015:https://code.google.com/codejam/distributed_index.html
 - Caveats:
 - Very basic aspects of distributed algorithms (few rounds)
 - Small data ($\sim 1~GB$, with hundreds MB RAM)
 - Fast query access ($\sim 0.01~ms$ per request), "data with queries"

Google Compute Engine

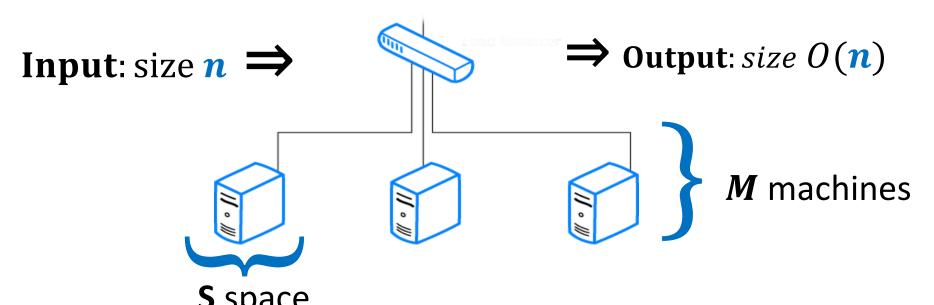
"Big Data Theory" = Turing meets Shannon



CPU time / Computational Complexity Network munication Complexity

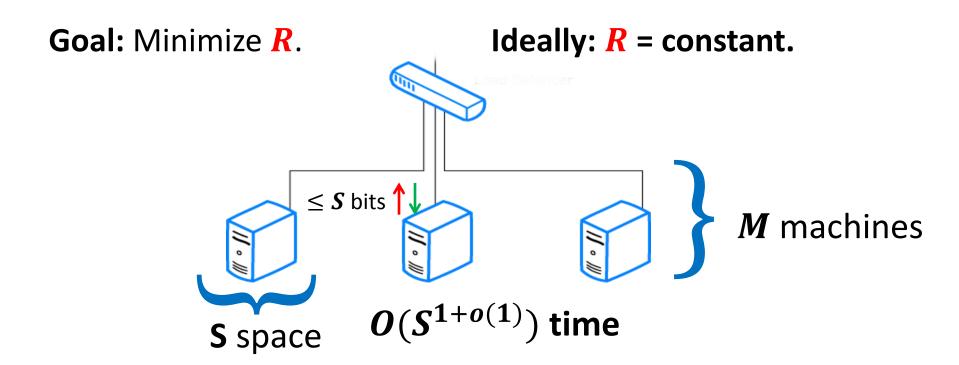
Computational Model

- Input: size n
- M machines, space S on each ($S = n^{\epsilon}$, $0 < \epsilon < 1$)
 - Constant overhead in total space: $\mathbf{M} \cdot \mathbf{S} = O(\mathbf{n})$
- Output: solution to a problem (often size O(n))
 - Doesn't fit on a single machine ($S \ll n$)



Computational Model

- Computation/Communication in R rounds:
 - Every machine performs a **near-linear time** computation => Total user time $O(S^{1+o(1)}R)$
 - Every machine sends/receives at most S bits of information => Total communication O(nR).



MapReduce-style computations

YAHOO! Google

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
 - Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM
 - Can be done in $O(\log_s n)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13]
 Pros:
 - Inspired by modern systems (Hadoop, MapReduce, Dryad, ...)
 - Few parameters, simple to design algorithms
 - New algorithmic ideas, robust to the exact model specification
 - #Rounds is an information-theoretic measure => can prove unconditional lower bounds
 - Between linear sketching and streaming with sorting

Sorting: Terasort

- Sort Benchmark: http://sortbenchmark.org/
- Sorting n keys on $M = O(n^{1-\epsilon})$ machines
 - Would like to partition keys uniformly into blocks: first n/M, second n/M, etc.
 - Sort the keys locally on each machine
- Build an approximate histogram:
 - Each machine takes a sample of size s
 - All $M * s \leq S = n^{\epsilon}$ samples are sorted locally
 - Blocks are computed based on the samples
- By Chernoff: $\mathbf{M} * \mathbf{s} = O\left(\frac{\log n}{\sigma^2}\right)$ samples suffice to compute all block sizes up to $\pm \alpha n$ error with high probability
- Take $\alpha = \frac{n^{\epsilon 1}}{2}$: error O(S)• $\mathbf{M} * \mathbf{s} = \widetilde{O(n^{2 2\epsilon})} = \mathbf{O}(\mathbf{M}^2) \le \mathbf{O}(n^{\epsilon})$ for $\epsilon \ge 2/3$

Algorithms for Graphs

- Dense graphs vs. sparse graphs
 - Dense: $S \gg |V|$
 - Linear sketching: one round
 - "Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]
 - Sparse: $S \ll |V|$ (or $S \ll$ solution size) Sparse graph problems appear hard (**Big open question**: connectivity in $o(\log n)$ rounds?)

VS.

Algorithm for Connectivity

- Blog: http://grigory.us/blog/mapreduce-model/
- Version of Boruvka's algorithm
- Repeat $O(\log n)$ times:
 - Each component chooses a neighboring component
 - All pairs of chosen components get merged
- How to avoid chaining?
- If the graph of components is bipartite and only one side gets to choose then no chaining
- Randomly assign components to the sides

Algorithm for Connectivity: Setup

Data: **N** edges of an undirected graph.

Notation:

- For $v \in V$ let $\pi(v)$ be its id in the data
- $\Gamma(S) \equiv \text{set of neighbors of a subset of vertices } S \subseteq V$.

Labels:

- Algorithms assigns a label $\ell(v)$ to each v.
- Let $L_v \subseteq V$ be the set of vertices with the label $\ell(v)$ (invariant: subset of the connected component containing v).

Active vertices:

- Some vertices will be called active.
- Every set L_{ν} will have exactly one active vertex.

Algorithm for Connectivity

- Mark every vertex as **active** and let $\ell(v) = \pi(v)$.
- For phases $i = 1, 2, ..., O(\log N)$ do:
 - Call each **active** vertex a **leader** with probability 1/2. If v is a **leader**, mark all vertices in L_v as **leaders**.
 - For every **active non-leader** vertex w, find the smallest **leader**(with respect to π) vertex $w^* \in \Gamma(L_w)$.
 - If w^* is not empty, mark w **passive** and relabel each vertex with label w by w^* .
- Output the set of CCs, where vertices having the same label according to ℓ are in the same component.

Algorithm for Connectivity: Analysis

- If $\ell(u) = \ell(v)$ then u and v are in the same CC.
- Unique labels w.h.p after $O(\log N)$ phases.
- For every CC # active vertices reduces by a constant factor in every phase.
 - Half of the active vertices declared as non-leaders.
 - Fix an active **non-leader** vertex \boldsymbol{v} .
 - If at least two different labels in the CC of v then there is an edge (v', u) such that $\ell(v) = \ell(v')$ and $\ell(v') \neq \ell(u)$.
 - u marked as a leader with probability 1/2; in expectation half of the active non-leader vertices will change their label.
 - Overall, expect 1/4 of labels to disappear.
 - By Chernoff after $O(\log N)$ phases # of active labels in every connected component will drop to one w.h.p.

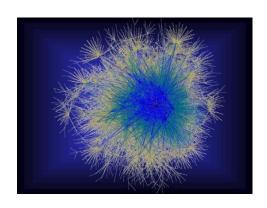
Algorithm for Connectivity: Implementation Details

- Distributed data structure of size O(|V|) to maintain labels, ids, leader/non-leader status, etc.
 - O(1) rounds per stage to update the data structure
- Edges stored locally with all auxiliary info
 - Between stages: use distributed data structure to update local info on edges
- For every **active non-leader** vertex w, find the smallest **leader** (w.r.t π) vertex w* $\in \Gamma(L_w)$
 - Each (non-leader, leader) edges sends an update to the distributed data structure
- Much faster with Distributed Hash Table Service (DHT)
 [Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii'14]

Approximating Geometric Problems in Parallel Models

Geometric graph (implicit):

Euclidean distances between **n** points in \mathbb{R}^d



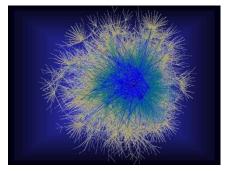


Already have solutions for old NP-hard problems (Traveling Salesman, Steiner Tree, etc.)

- Minimum Spanning Tree (clustering, vision)
- Minimum Cost Bichromatic Matching (vision)

Geometric Graph Problems

Combinatorial problems on graphs in \mathbb{R}^d



Polynomial time ("easy")

- Minimum Spanning Tree
- Earth-Mover Distance =

Min Weight Bi-chromatic Matching

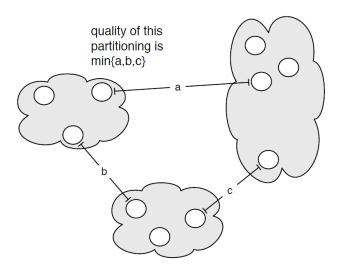
whard ("hard")

- Steiner Tree
- Traveling Salesman
- Clustering (k-medians, facility location, etc.)

eed new

MST: Single Linkage Clustering

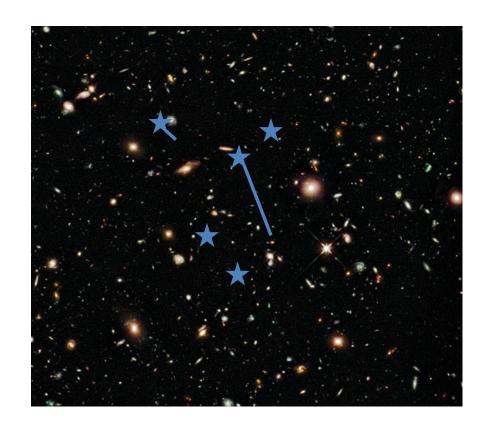
- Blog: http://grigory.us/blog/mapreduce-clustering/
- [Zahn'71] **Clustering** via MST (Single-linkage):
- **k** clusters: remove k-1 longest edges from MST
- Maximizes minimum intercluster distance

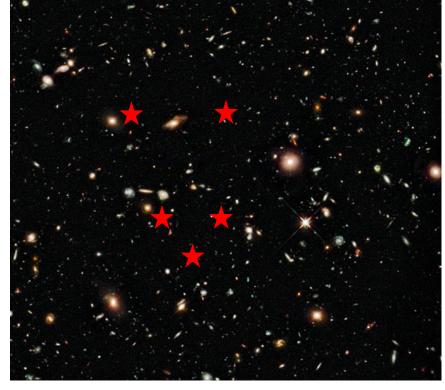


[Kleinberg, Tardos]

Earth-Mover Distance

 Computer vision: compare two pictures of moving objects (stars, MRI scans)





Large geometric graphs

- Graph algorithms: Dense graphs vs. sparse graphs
 - Dense: $S \gg |V|$.
 - Sparse: $S \ll |V|$.

• Our setting:

- Dense graphs, sparsely represented: O(n) space
- Output doesn't fit on one machine ($S \ll n$)
- Today: $(1 + \epsilon)$ -approximate MST
 - d = 2 (easy to generalize)
 - $R = \log_S n = O(1) \text{ rounds } (S = n^{\Omega(1)})$

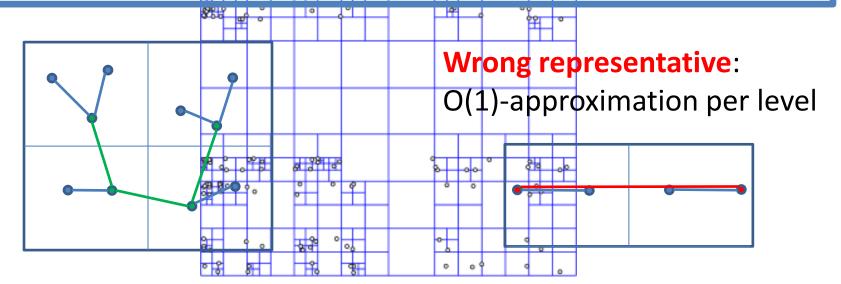
$O(\log n)$ -MST in $R = O(\log n)$ rounds

• Assume points have integer coordinates $[0, ..., \Delta]$, where $\Delta = O(n^2)$.

Impose an $O(\log n)$ -depth quadtree

Bottom-up: For each cell in the quadtree

- compute optimum MSTs in subcells
- Use only one representative from each cell on the next level



EL-nets

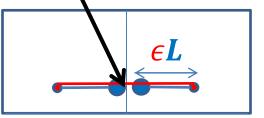
• ϵL -net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance \leftarrow ϵL from some vertex in S. (Fact: Can efficiently compute ϵ -net of size $O\left(\frac{1}{\epsilon^2}\right)$)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level
- Idea: Pay only $O(\epsilon L)$ for an edge cut by cell with side L
- Randomly shift the quadtree:

 Pr[cut edge of length Whonk] presentation per level

 O(1)-approximation per level



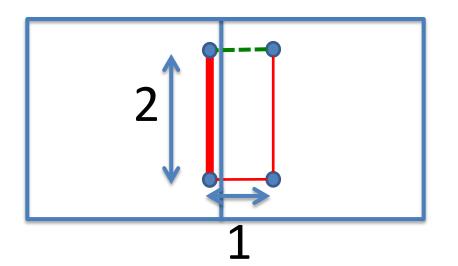
Randomly shifted quadtree

• Top cell shifted by a random vector in $[0, L]^2$

Impose a randomly shifted quadtree (top cell length 2Δ)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level



Pay 5 instead of 4

Pr[Bad Cut] = $\Omega(1)$

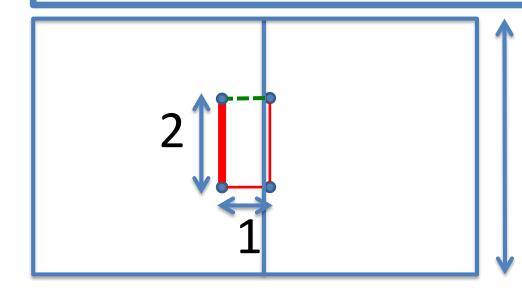
$(1 + \epsilon)$ -MST in $\mathbf{R} = O(\log n)$ rounds

Idea: Only use short edges inside the cells

Impose a **randomly shifted** quadtree (top cell length $\frac{2\Delta}{\epsilon}$)

Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

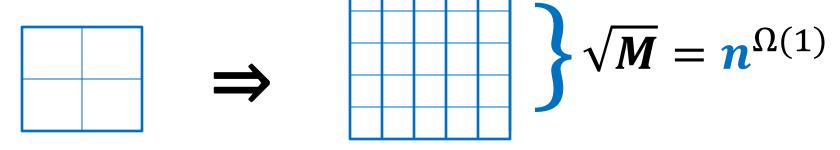


$$L = \Omega(\frac{1}{\epsilon})$$

$$Pr[Bad Cut] = O(\epsilon)$$

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

- $O(\log n)$ rounds => $O(\log_s n)$ = O(1) rounds
 - Flatten the tree: $(\sqrt{M} \times \sqrt{M})$ -grids instead of (2x2) grids at each level.



Impose a randomly shifted $(\sqrt{M} \times \sqrt{M})$ -tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = 0(1)$ rounds

Theorem: Let l = # levels in a random tree P $\mathbb{E}_{P}[\mathsf{ALG}] \leq \left(1 + O(\epsilon ld)\right)\mathsf{OPT}$

Proof (sketch):

- $\Delta_P(u, v)$ = cell length, which first partitions (u, v)
- New weights: $w_P(u,v) = ||u-v||_2 + \epsilon \Delta_P(u,v)$ $||u-v||_2 \le \mathbb{E}_P[w_P(u,v)] \le (1 + O(\epsilon d))||u-v||_2$
- Our algorithm implements Kruskal for weights w_P

"Solve-And-Sketch" Framework

$(1+\epsilon)$ -MST:

- "Load balancing": partition the tree into parts of the same size
- Almost linear time locally: Approximate Nearest
 Neighbor data structure [Indyk'99]
- Dependence on dimension d (size of ϵ -net is $O\left(\frac{d}{\epsilon}\right)^d$)
- Generalizes to bounded doubling dimension
- Implementation in MapReduce

"Solve-And-Sketch" Framework

$(1 + \epsilon)$ -Earth-Mover Distance, Transportation Cost

- No simple "divide-and-conquer" Arora-Mitchell-style algorithm (unlike for general matching)
- Only recently sequential $(1 + \epsilon)$ -approximation in $O_{\epsilon}(n \log^{O(1)} n)$ time [Sharathkumar, Agarwal '12]

Our approach (convex sketching):

- Switch to the flow-based version
- In every cell, send the flow to the closest net-point until we can connect the net points

"Solve-And-Sketch" Framework

Convex sketching the cost function for τ net points

- $F: \mathbb{R}^{\tau-1} \to \mathbb{R}$ = the cost of routing fixed amounts of flow through the net points
- Function F' = F + "normalization" is monotone, convex and Lipschitz, $(1 + \epsilon)$ -approximates F
- We can $(1 + \epsilon)$ -sketch it using a lower convex hull

Thank you! http://grigory.us

More in the CIS 700 class:

http://grigory.us/big-data-class.html